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Abstract: The animal models of neuropathic pain that faithfully reproduce the symptoms that oc-
cur in humans are a fundamental tool for understanding the mechanisms underlying the disease,
identifying new targets, and developing effective drugs. So far, the studies aimed at describing the
animal models of neuropathic pain have been focused mainly on the sensory symptoms associated
with the disease consisting of mechanical allodynia and hyperalgesia, cold allodynia and hyperalge-
sia, and heat hyperalgesia. However, affective and cognitive comorbidities occur in patients suffer-
ing from neuropathic pain, arising in a closely associated and dependent manner on the sensory
symptoms. The same occurs in animal models of neuropathic pain in which anxiety- and depres-
sive-like behaviors and cognitive disorders are observable at different time points from the induc-
tion of neuropathy. Today there are several tests available that exploit different paradigms in ro-
dents for measuring sensorial, affective, and cognitive behavior. This review will describe those
mainly used in the scientific community. The tests mainly used are based on the motor activity of
the animals tested, so it is fundamental that it remains unaffected in the model used for inducing
neuropathic pain. We hope that this review will be useful to the scientific community to direct the
choice towards the best, most suitable, and simplest tests for the study of the sensory, affective, and
cognitive symptoms associated with neuropathic pain.

Keywords: Neuropathic pain, stimulus-evoked pain, spontaneous pain, anxiety-like and depression-like behavior, cognitive de-
ficits, behavioral tests.

1. INTRODUCTION
Neuropathic pain is a chronic pain condition caused by a

lesion or disease affecting the somatosensory nervous sys-
tem. Injuries to this system alter the signal transmission to
the  spinal  cord  and the  brain  and its  following processing
leading  to  abnormal  sensorial  symptoms  such  as  burning
and  electrical-like  pain,  allodynia  (pain  resulting  from in-
nocuous stimuli), hyperalgesia (increased pain sensation re-
sulting  from  noxious  stimuli),  dysesthesia,  tingling,  and
numbness. These symptoms become chronic and are resis-
tant to traditional analgesic medications. Causes and forms
of neuropathic pain include post-herpetic or trigeminal neu-
ralgia, diabetes mellitus, HIV infection, leprosy, amputation,
painful radiculopathy, peripheral nerve injury due to com-
pression or trauma, and stroke. Neuropathic pain occurs in
1.5–6.9% of the general population, more frequently in wom-
en (8%) than in men (5.7%) and in patients  over 50 years
(8.9%) than under this age (5.6%) [1]. It affects mainly the
lower  back,  lower  limbs,  neck,  and  upper  limbs [2]. The
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most frequent causes of neuropathic pain are the radiculo-
pathies of the back and neck [3]. Understanding the plastic
changes affecting the nervous system and the pathophysio-
logical mechanisms underlying the initiation, development,
and maintenance of neuropathic pain is fundamental for the
identification of new targets on which addressing effective
drugs.  The  discovery  of  new  therapies  goes  hand  in  hand
with the need for animal models of neuropathic pain to trans-
fer the knowledge acquired to clinical practice [4, 5]. More-
over,  sensory  anomalies  are  only  part  of  the  symptoms of
the disease, which extend to the alteration of affective and
cognitive  behavior.  Neuropathic  pain  is  often  associated
with affective disorders such as depression, anhedonia, im-
paired family and social interactions, anxiety, and cognitive
disorders [6-8]. The prevalence of anxiodepressive disorders
in  patients  suffering  from  neuropathic  pain  reaches  30%
[9-11].  This  is  since  chronic  pain  causes  anatomical  and
functional alterations in the main neural circuitries that con-
trol pain, affectivity, and cognition in both, humans and ro-
dents.  The  prefrontal  cortex,  including  anterior  cingulate,
prelimbic,  and  infralimbic  cortices,  through  its  reciprocal
functional connections with mesolimbic dopaminergic sys-
tem, hippocampus, and amygdala, represents the neural subs-
trate regulating both, sensorial or affective/cognitive compo-
nents of pain [12]. Apart from the neural circuitries, there is
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also an overlap of neurotransmitters and mechanisms under-
lying pain, affective behavior, and cognition justifying why
sensory alterations are associated with anxiety- and depres-
sive-like behavior and cognitive disorders [13, 14]. Maladap-
tive alterations in neurotransmitter release, neuron activity,
immune  cell  infiltration,  glia-neuron  communication,  and
gut microbiota appear to be closely associated with sensory,
affectivity,  and cognitive disorders in the spared nerve in-
jury  model  of  neuropathic  pain  [15].  Considering  a  large
number of high-quality literature in the field, the current re-
view,  based on structured research of  electronic  databases
(medline,  google  scholar,  embase,  etc.),  will  briefly  sum-
marize and outline the main conclusions of the key articles
dealing with the most used models and tests for evaluating
the sensorial, emotional and cognitive symptoms associated
with neuropathic pain.

1.1. Animal Models of Neuropathic Pain
The  most  used  animal  models  of  neuropathic  pain  are

those that are based on the injury to a peripheral nerve. Of-
ten the injury is produced by the compression of the nerve as
in the chronic constriction injury (CCI), spinal nerve ligation
(SNL), partial sciatic nerve ligation (PSNL), and polyethy-
lene cuff models. The CCI model consists of applying four
loose  ligatures  around  the  sciatic  nerve  [16].  A  variant  of
this model, based on the application of a single loose liga-
ture around the sciatic nerve, produces the same sensorial, af-
fective, and cognitive disorders. Furthermore, compared to
the CCI model with four ligatures, it induces fewer motor im-
pairments  and  does  not  cause  autotomy  [17].  The  spinal
nerve ligation (SNL) model is produced by the tight ligation
of the L5 and L6 spinal nerves [18]. A variation of the latter
model is the tight ligation of the spinal nerve L5 only [19].
The partial sciatic nerve ligation (PSNL) is also based on a
tight ligature applied on one third to half of the sciatic nerve
[20]. Another way for producing nerve compression is the
implantation of a polyethylene cuff around the main branch
of the sciatic nerve [21].  The spared nerve injury (SNI) is
among the most used models of neuropathic pain. It is based
on the axotomy of two branches of the sciatic nerve (com-
mon peroneal and tibial), leaving the sural component intact
[22]. A variant of the SNI model is the tibial nerve transec-
tion  (TNT),  which  consists  of  the  axotomy  of  the  tibial
branch only, leaving the sural and common peroneal compo-
nents intact [23]. The spinal cord injury (SCI) model repre-
sents an animal model of neuropathic pain in which the in-
jury affects the central nervous system and not a peripheral
nerve. The injury is produced by a weight falling on the spi-
nal cord, which has been previously exposed [24] or by in-
ducing  occlusion  of  small  vessels  feeding  the  spinal  cord
and thrombosis [25]. Neuropathic pain models may also re-
produce trigeminal neuralgia such as the infraorbital nerve
constriction (CION), which exploits the same technique of
the CCI on the infra-orbital  nerve [26],  and trigeminal  in-
flammatory compression (ICT) in which a suture is applied
on the same nerve [27]. Alternatively, neuropathic pain can
be induced by the administration of neurotoxic anti-tumoral
agents,  such  as  vinca  alkaloids,  platinum compounds,  and

taxols [28-30] or the antiretroviral stavudine [31]. Another
way to induce neuropathic pain is based on reproducing dis-
eases  that  are  associated  with  its  development  in  humans,
such as diabetes, which is induced by streptozotocin [32], hu-
man immunodeficiency virus-1 (HIV-1),  which is induced
by virus coat protein gp120 [33] or postherpetic neuralgia in-
duced by the infection with varicella-zoster virus [34, 35].

1.2. Measurements of Pain Responses
Sensory  symptoms  associated  with  neuropathic  pain

have  been  widely  described  in  both,  humans  and  rodents.
Clinically, pain is evaluated verbally, which is not feasible
in rodents. Therefore, the choice of the test to evaluate the
pain  threshold  assumes  critical  importance  in  preclinical
studies. Moreover, most of the nociceptive tests commonly
used to measure pain in rodents are evoked by stimuli (me-
chanical, thermal, chemical), while in humans, spontaneous
pain is  the predominant  symptom. Novel  tests  such as  the
Grimace scale, burrowing assay, gait analysis, weight-bear-
ing, and automated behavioral analysis have been recently in-
troduced for measuring spontaneous pain in rodents [14, 36,
37].

1.3. Measurements of Pain Evoked by Stimuli
Tests for measuring pain evoked by the stimuli quantify

the  latency  or  force  evoking  a  nocifensive  reaction  in  ro-
dents. Among these, manual and electronic von Frey, Ran-
dall-Selitto, tail-flick, and Hargreaves’ tests are those widely
used. In most cases, the stimulus is applied on the hind paw,
so in neuropathic pain models that are based on the unilater-
al injury, the contralateral hind paw to the insult provides an
internal control for the experiment. Alternatively, the stimu-
lus can be applied to the tail.

The Von Frey test represents the reference test for mea-
suring mechanical allodynia. The animals are positioned in
cages with a mesh floor, which is penetrated by a metal fila-
ment  applied  for  2–5  s  on  the  plantar  surface  of  the  hind
paw with a predetermined and constant force (0.2-13.7 mN
for mice and 5.9–98 mN for rats). The nocifensive response
consists of the rapid withdrawal, shaking, or licking of the
stimulated paw. Alternatively, other body surfaces such as
the abdomen or dorsal surface of the hind paw can be stimu-
lated using the same filaments. Recently, an automated ver-
sion of the Von Frey has been introduced: the plantar dynam-
ic aesthesiometer. It uses a single filament applied with in-
creasing force to evoke the withdrawal of the paw; this force
value is automatically recorded. The advantage of this auto-
mated version of von Frey is that the same filament can al-
ways be used, thus greatly saving the time of the test. How-
ever, the discrimination between proper from false respons-
es due to touch or normal walking or hind paw movements
remains critical.

The Randall-Selitto, which is also called the paw pres-
sure test, consists of applying a mechanical stimulus with in-
creasing force on the plantar or dorsal surface of the fore-
paw, hind paw or tail up to the withdrawal or vocalization
evoked by the pressure [38]. In this way, the test allows for
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measuring mechanical hyperalgesia. The main disadvantage
of  the  test  is  the  restraint,  particularly  critical  in  mice,  in
which the test does not apply to the paw [39-41] and is pre-
ferred the application of the mechanical stimulus on the tail
[42].  The  previous  handling  of  the  rodent  is  necessary  to
avoid stress-induced false responses.

The hot plate test [43] consists of placing a mouse or rat
on a metal surface kept at a constant temperature (between
50 and 55 °C). It measures thermal sensitivity. A limit of the
test is that the nocifensive response is highly variable, con-
sisting of the withdrawal, licking, stamping, shaking of the
paws, freezing, or jumping [44]. The dynamic version of the
hot plate exploits  a heat  flow, starting with a non-harmful
temperature (<42), which increases at a constant speed. The
nocifensive reaction, based on the same responses of the stat-
ic version, stops the heating through a sensor and records the
time  of  latency  and  the  temperature  evoking  the  response
[45, 46]. Manual removal of the rodent from the heated sur-
face is a critical point of the test since the slightest delay, in
addition to distorting the outcome, could induce tissue dam-
age [47]. Furthermore, these tests have the limit of the ten-
dency to learn (especially in rats) that may shorten the laten-
cy [48, 49].

The limitations of these tests have been overcome by the
Hargreaves’ test, which consists of the focused application
of  radiant  infrared  heat  on  the  plantar  surface  of  the  hind
paw and the automatic or manual quantification of the laten-
cy of the nocifensive response recorded as thermal withdraw-
al  latency  [50].  The  test  apparatus  consists  of  plexiglass
transparent enclosures in which rodents can stay unrestraint,
anti-refraction glass floor, and a mobile infrared heat source
unit  below the  latter.  The  method allows  measurement  on
both ipsilateral and contralateral hind paws and does not re-
quire restraint. The habituation allows minimizing the explo-
ratory walking, a factor which is particularly critical in the
mouse, which requires a longer habituation time [51-53].

The tail-flick is a test based on the application of a heat
stimulus, radiant heat or hot water, on the tail of mice or rats
and  the  recording  of  the  time,  which  evokes  the  abrupt
twitch of the tail from the thermal stimulus (tail flick) [54].
Although the test is relatively quick and easy to perform, it
requires the restraint of both, rats and mice. The tail-flick re-
sponse is a spinal reflex rather than an integrated response to
pain  involving  the  supraspinal  centers  [55].  However,  the
slope of heating and temperature are believed to be crucial
elements that can involve, at least in part, the supraspinal ar-
eas [56]. The test has often been associated with single-unit
extracellular recordings of the rostral ventromedial medulla
(RVM) to characterize a population of pain-responding neu-
rons:  the  ON  and  OFF  cells  [57].  Simultaneous  measure-
ment of the spontaneous and/or induced activity of ON and
OFF  neurons  and  behavioral  responses  to  tail-flick  allow
identification of the analgesic (or pain-facilitating) potential
of pharmacological compounds or treatments [58, 59].

The thermal probe test is a novel method which permits
to evaluate the thermal threshold using the same apparatus
for  the  von  Frey  or  dynamic  plantar  aesthesiometer.  The

wire mesh floor is penetrated by a slightly rounded, 2 mm
large mobile thermal probe. It is applied to the plantar sur-
face of the hind paw and heats on contact. The mobile probe
starts heating from 37°C until the cut-off (60°C), the with-
drawal response automatically stops the heating and the tem-
perature at which this occurs is automatically recorded. The
thermal thresholds of both, ipsilateral and contralateral hind
paws can be quantified in unilateral models of neuropathic
pain. The opportunity to measure the mechanical and ther-
mal  thresholds  in  the  same  apparatus  permits  apart  from
avoiding the restraint to save the time necessary for habitua-
tion [60].

The acetone evaporation test quantifies cold allodynia. It
consists  of  buffering or  spraying a  drop of  acetone on the
plantar surface of the hind paw and recording the nocifen-
sive reaction evoked by the cooling due to the evaporation
[61-65]. The control is easily made by applying a drop of wa-
ter at 30 °C [61, 62]. The difficulty of the test consists of the
fact that acetone has a low surface tension, which makes the
formation of uniform drops through pipette or syringe diffi-
cult [66, 67]. The quantification of nociceptive responses is
based on the number and duration of the nocifensive respons-
es or the use of a score based on the intensity of the nocifen-
sive behavior (no response = 0, rapid withdrawal or twitch =
1; repeated flicking of the paw = 2; repeated flicking of the
hind paw and licking of the paw = 3). The use of video re-
cording in a slow-motion setting makes the score quantifica-
tion easier [64, 68].

The cold plate test permits to measure cold-induced allo-
dynia and hyperalgesia, quantifying the behavioral respons-
es to innocuous and noxious cold, respectively [69]. The ani-
mal is placed on a cooling plate and the latency of the nocif-
ensive response is recorded. The nocifensive reaction con-
sists  of  the  shaking or  licking of  the  fore  or  hind paws or
jumping. This test is particularly suitable for unilateral pain
models  because  it  allows  the  guarding  of  the  injured  paw
while in bilateral pain models, the nocifensive reactions are
identified more critically.

The cold plantar assay also measures cold allodynia and
hyperalgesia. It consists of applying a cold stimulus to the
hind paw using a cut off syringe filled with dry or wet ice
through the glass serving as floor. The time of latency to the
withdrawal of the hind paw is recorded. The rodent needs to
be placed in an enclosure and restraint is avoided. The limit
of the test is that the paw to be tested needs to remain in con-
tact with the glass floor for achieving efficient temperature
transfer so that any guarding or altered weight distribution
of the hind paw may lead to false measurements [70, 71].

Ultrasound vocalizations (22-kHz) measured by condens-
er  microphones  associated  with  software  sensitive  to  high
frequencies are also used as an indicator of pain in rodents
[72]. However, the quantification of ultrasound vocalization
emissions of rodents subjected to pain has yielded mixed re-
sults [73-77]. In particular, Wallace and colleagues did not
find  any  correlation  between  ultrasound  vocalizations  and
withdrawal responses evoked by thermal and mechanical sti-
mulations in rats rendered neuropathic by the partial sciatic
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nerve ligation. Indeed, it seems that the measurement of ul-
trasonic vocalizations gives convincing results only when th-
ese are evoked by acute nociceptive stimulations [74].

1.4. Measurements of Spontaneous Pain
Animal  tests  for  the  measurement  of  pain  responses

evoked by stimuli are difficult to translate to the neuropathic
pain condition in humans in which spontaneous pain is the
most  disabling  symptom.  Novel  methods  for  measuring
spontaneous pain have been now introduced, such as burrow-
ing assays, weight-bearing, Grimace scale, gait analysis, and
automated behavioral analysis [78].

The burrowing test is based on the paradigm that the bur-
rowing  represents  a  spontaneous  and  self-motivated  be-
havior in rodents,  so any modification of normal behavior
can represent a state of “malaise” and can be quantified as a
measure of spontaneous pain or anxiety. The test apparatus
consists of a transparent tube closed at one end and raised at
the other filled with material suitable for building a burrow
such as pellets,  sand, or marbles.  The quantity of material
displaced  is  weighed  and  measured.  A  reduction  in  the
amount of material pushed out from the burrow is an index
of malaise, such as that generated by spontaneous pain [79,
80].

In the weight-bearing, also called incapacitance test, the
rodent  is  placed on an inclined holder  with  the hind paws
resting on two separate pressure sensors able to measure the
weight distribution of the body on the hind paws. Unequal
weight distribution between the ipsilateral and the contralat-
eral  paw  is  related  to  the  degree  of  spontaneous  pain
[81-84]. The test is suitable only for unilateral hind paw pain
models.  The  advanced  dynamic  weight-bearing  apparatus
represents an evolution of the weight-bearing permitting to
measure  the  weight  ratio  and  the  weight-bearing  for  each
paw in unrestrained animals [85].

In the Grimace scale, facial expressions of rats or mice
are scored for quantifying spontaneous pain intensity. Orbi-
tal tightening, nose and cheek bulge, ear and whisker posi-
tion are the facial expressions that are scored varying from
normal (0), moderate (1), and severe (2) [86, 87]. The limit
of the Grimace scale is that it can only be used in pain mod-
els that evoke intense and short-lived pain while neuropathic
pain  models,  including  CCI  and  SNI,  do  not  determine
changes  in  facial  expression  of  rodents.

Gait analysis measures gait changes in rodents. Rodents
are left free to walk and any change played out to guard the
painful limb is recorded and analyzed [88]. Initially, this test
was performed by coloring the animal's paws with ink and
letting it walk freely on a sheet of paper, then scanned for
analysis [89]. Currently, several automated gait analysis de-
vices  have  been  introduced for  measuring  gait  alterations.
These devices exploit reflected light illuminating paw prints
of the animal freely walking on an elevated glass floor and
video recordings associated with software [90-92]. The pa-
rameters used to analyze gait changes are the paw pressure
intensity,  print  area,  stance  phase  duration  (time  spent  on

paw), and swing phase duration (time spent off paw) of the
ipsilateral  hind  paw.  The  reduction  of  paw pressure,  print
area,  and  the  increase  in  the  swing  phase  duration  corre-
spond  to  guarding  behavior  and  reducing  weight-bearing,
which  are  positive  indexes  of  spontaneous  pain  [91,  92].
Apart from gait analysis, other behaviors may be indicative
of spontaneous pain such as motor activity (still,  walking,
trotting, running), velocity, distance traveled, posture, eat-
ing/drinking, grooming, and foraging.

The automated behavioral analysis, which uses automat-
ed video analysis, vibration sensors, photobeams, and combi-
nations thereof, has been developed and can be performed in
rodents' home cages or dedicated apparatus. The behavioral
spectrometer  consists  of  an  enclosed  box  endowed  with  a
ceiling-mounted fish-eye lens, accelerometer, and a row of
wall-mounted photo beams for the real-time recording of dif-
ferent  behaviors  (ambulation,  grooming,  rearing,  distance
traveled and average velocity) [93]. The HomeCageScan ex-
ploits  an  automated  video  analysis  for  quantifying  pre-
defined behaviors such as sleeping, walking, sniffing, rear-
ing, stretching, foraging, jumping, digging, drinking, eating,
hanging, grooming in the rodent home cage [94, 95]. While
these tests have the caveats of being no specific, they have
the advantages of the unrestraint, unconsciousness, and lack
of any stress applied to the tested animals.

1.5. Measurements of Anxiety-like Behavior
There are several tests to measure anxiety-like behavior

in rodents, among these, the open field is one of the oldest
tests and consists of a lighted square arena which permits to
quantify the number of entries and the time spent in the cen-
tral  part.  The test  is  based on the paradigm of the conflict
generated by the innate exploratory activity and the fear of
the illuminated and unprotected environment in rodents. The
anxiety-like behavior  corresponds to the preference of  ex-
ploring the part of the arena close to the walls, whereas the
time spent in the center area represents a negative index of
anxiety-like behavior. This test is based on the rodent's mo-
tor activity, so that it is often used to measure motor activity.
It does not permit to discriminate between general locomo-
tor activity and novel environment exploration, and it is of-
ten considered for providing an initial screen for anxiety-re-
lated behavior in rodents [96].

The  light-dark  box  is  another  test  exploiting  the  same
conflict paradigm between two preferred and non-preferred
environments: two communicating chambers, one is brightly
lit and open and the other is covered and dark. The rodent's
preference is for the darker and covered area, however, the
innate tendency to explore a new environment pushes it to
enter  the  non-preferred  environment  as  well.  The  low
propensity to explore the open and illuminated chamber is
an index of anxiety-like behavior [97].

Elevated plus-maze is certainly one of the widely used
tests for measuring anxiety-like behavior in rodents. The ap-
paratus consists of a cross formed by two open arms and two
closed ones separated by a central platform, set at 40 to 80
cm above the floor [98]. This creates a conflict between the
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rodent's innate predisposition to explore the spaces available
and the fear generated by the open and raised arms. The en-
trances and time spent in open arms are measured for a peri-
od ranging from 5 to 15 minutes and represent a negative in-
dex of anxiety. The validity of the test to measure anxiety is
out of the question, even if it is based on the locomotor activ-
ity of the animal tested, the motor deficit that can arise from
the  nerve  injury  could  thus  compromise  the  outcome.
Another  critical  issue  is  the  repetition  of  the  test,  which
could lead to a reduction in the time spent in the open arms
[99].

The elevated zero maze is a variant of the elevated plus-
maze  in  which  the  closed  and  open  arms  are  sequentially
placed in an annular way to avoid any ambiguity in the inter-
pretation of time spent in the central square and interruption
of exploration. Rodents tend to stay in the central part of the
elevated plus-maze for 20-30% of the duration of the test. Al-
terations in the time spent in the central area have often been
attributed to changes in anxiety-like behavior, but the inter-
pretation remains ambiguous [100].

The test of social interaction is widely used to evaluate
anxiety and is based on allowing the rodent freely exploring
an unfamiliar congener in its home cage or another neutral
environment and measuring the time spent sniffing, follow-
ing, allogrooming, biting, mounting, or wrestling the congen-
er [101]. This test can be performed in rodents of the same
sex or in male-female pairs. Furthermore, both in male-fe-
male and female-female social interaction tests, the emission
of concomitant ultrasound vocalizations, ranging from 40 to
80 kHz, represents a further measurable event considered as
an index of interest and social motivation [102-104].

Marble burying is a test used to measure either anxiety-
like [105] or compulsive-like behavior [106]. It is performed
in cages of the same dimension of the home cage containing
3-5  cm  of  sawdust  and  12-15  marbles  of  1  cm  diameter
each. Rodents are left undisturbed for 15-30 min after which
the number of marbles buried, duration of burying, and the
number of burying events are scored, representing an index
of anxiety- or compulsive-like behavior.

The hole board test was developed to overcome the lim-
its  of  the  open field  test,  which,  being simply a  free  area,
does not allow discrimination between locomotion and ex-
ploratory behavior. The hole board apparatus consists of an
arena in which floor 9 to 16 holes are distributed. The latest
generation devices are equipped with infrared sensors  and
software for measuring nose pokes into the holes,  rearing,
and locomotion. These behaviors are monitored for periods
ranging from 5 to 15 min and the more they occur, the less
anxious  the  animal  is  and,  reciprocally,  if  these  behaviors
are reduced, then the animal is more anxious [107].

1.6. Measurements of Depression-like Behavior
The forced swim or Porsolt's test is certainly among the

most common tests for measuring depression-like behavior
in rodents [108, 109]. The test is slightly differently carried
out in the rat and mouse. The rat is placed in a cylindrical

tank filled with water at 23-25 ° C for 15 min and the day af-
ter, it is re-exposed to the same apparatus for measuring the
immobility time in a 5-min session [100]. In the mouse, the
pre-exposure to the test apparatus is not necessary and it is
directly monitored for the immobility time in a 6-min trial
[110].  Mice require a longer observation time since in the
first two minutes of the test no immobility is observed, the
latter can only be measured in the remaining last 4 minutes
of the session. Immobility, considered as the rodent's float-
ing  with  the  minimum  movements  necessary  to  keep  the
head  out  of  the  water,  corresponds  to  a  state  of  despair
caused by the inevitability of escaping from an aversive con-
dition. The duration of immobility is, therefore, a positive in-
dex of depression-like behavior and, reciprocally, swimming
and climbing are indicators of antidepressant activity. Inter-
estingly, an increase in the duration of immobility in forced
swimming was observed only 8 weeks after the induction of
neuropathic pain, while anxiety-like behavior was evident al-
ready after 6 weeks [111].

The tail  suspension is  also used for  measuring depres-
sion-like behavior. It is based on the same paradigm of des-
pair. The mouse is hanging from the tail with adhesive tape
on a bar at 50 cm from the floor and the duration of immobil-
ity time is measured in a 6-minute session. Reciprocally, es-
cape oriented behaviors can be quantified. The tail suspen-
sion is not suitable for rats or heavy mice (obesity models)
since  supporting  the  weight  of  heavier  animals  by  the  tail
can be potentially painful. Another critical issue of the test
that  can  compromise  the  result  is  represented  by  the  tail-
climbing behavior [112].

In  sucrose  preference  and  novelty-suppressed  feeding
tests,  the  paradigms  used  to  measure  depression-like  be-
havior are different.

The  sucrose  preference  test  measures  anhedonia  [113,
114], a reduced propensity to experience pleasure associated
with depression in humans and rodents. Rodents are trained
for  the  preference  of  sucrose  for  including  in  the  experi-
ments,  only  those  with  a  clear  propensity  to  consume  the
sweet solution. In the test, lasting from 15 min to 48 hours,
the rodents are left free to drink water or the solution contain-
ing sucrose from 1% to 20%. The decrease in the ratio be-
tween the intake of the sweet solution compared to the total
solution drunk is an index of anhedonia associated with de-
pressive behavior. Saccharin can also be used to avoid exces-
sive caloric intake that could lead to errors. The test requires
habituation  during  which  the  bottles  are  interchanged  to
avoid  side  preference  and,  sometimes,  water  deprivation
from 2 to 24 hours. Water, sucrose, and total fluid intakes
are measured by weighing the bottles containing the respec-
tive drinking solutions before and after the test. Noteworthy
is the fact that in neuropathic mice, anhedonia develops in
parallel with allodynia and hyperalgesia, is dependent on tu-
mor necrosis factor, and is associated with hippocampal neu-
roplasticity [115].

The novelty suppressed feeding test measures the laten-
cy to eat of rodents left fasted for 24 hours and subsequently
exposed to a single food pellet [116]. The latency to feed is
the result of the conflict between the need to eat and the fear
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of an un-preferred environment. The latency to feed is a mea-
sure of depression- (and anxiety-) like behavior [116].

The  splash  test  exploits  the  paradigm  of  the  innate
grooming behavior in rodents, a deficiency of which is an in-
dication of depression-like behavior.  A 10% sucrose solu-
tion is sprayed on the rodent's back. Cleaning the body fur
by licking or scratching it, strokes along the snout, cleaning
the face with semicircular movements of the paws above the
top of the head, and behind the ears are considered as groom-
ing and recorded in sessions of 5 min duration [111, 117].

The nesting test exploits the innate behavior of rodents
to reproduce and protect themselves from the cold. The re-
duction in nesting behavior can, therefore, be considered as
an index of malaise. Mice are housed, individually in cages
for habituation of 30 minutes, after which compressed cot-
ton sheets are weighed, cut into 6 pieces, and placed on the
lid of the metal cage. The session lasts 120 min and at the
end of the test, the material left on the cage lid is measured
and scored: no nest (0) poor nest (1) and complete nest (2).
A poor nest score is indicative of depression-like behavior
[118].

1.7. Measurements of Cognitive Performance
Pain affects cognition in humans and rodents since it can

divert attention, memory, and decision-making. Neuropathic
pain has a negative impact on cognition in rodents, however
in preclinical studies, unlike clinical studies, caution is re-
quired when interpreting behavioral test outcomes to mea-
sure cognitive performance. These tests are mainly based on
space learning, memory, or attention and depend strictly on
locomotor activity, exploration, and appetite that are compro-
mised in the models of neuropathic pain [119]. The devices
most  used  to  test  memory  and  learning  in  rodents  are  the
mazes. Mazes exploit the innate learning and remembering
of the location associated with safety, food, or any other re-
ward in rodents [120]. The simplest procedure to study spa-
tial working memory, the capability to retain spatial informa-
tion for a short time, is the scoring of the spontaneous alter-
nation in devices either in “T” or “Y” shapes. The alterna-
tion is the result of the innate propensity of rodents to ex-
plore the less recently visited arm, implicating that the ro-
dent remembers the last arm visited. Positive reinforcements
such as food or sweetened water may be used to reward alter-
nation.

The radial maze measures spatial learning and memory
and  consists  of  eight  equidistantly  spaced  arms  radiating
from a central platform. The rodent is gently placed on the
center  of  the  maze  and  a  food  reward  at  the  ends  of  each
arm, not visible from the center of the maze, serves as moti-
vation  to  visit  all  the  arms.  The test  allows us  to  measure
two types of memory: the reference memory when mice vis-
it the arms of the maze that contains the food (reward) and
the working memory when mice enter an arm that has not
been visited before [121].

The Morris water maze is one of the most used tests for
assessing  spatial  learning  and  memory  in  rodents.  In  this

paradigm, rodents are placed in a cylindrical pool with an in-
visible platform submerged under the surface of the water.
The innate aversion of rodents to water gives the motivation
to perform the test.  The test  consists of firstly training ro-
dents  to  locate  the  hidden platform in  the  target  quadrant,
defined by ideally dividing the surface of the water into 4
quadrants of equal size. Rodents learn to locate the platform
by accidentally touching it during swimming in daily trials
(typically  4)  of  a  predetermined  duration  (cut-off).  After
that, it is possible to verify the mnestic capacity of the ro-
dent  (short  and  long  term memory)  by  removing  the  plat-
form and measuring the behavior in the swimming pool, the
elapsed time, the number of crossings and the distance trav-
eled  in  the  target  quadrant  [122].  Compared  to  rats,  mice
have greater difficulty in finding the platform due to species
differences:  rats  build  burrows  near  water  and  normally
swim, whereas mice tend to avoid water as much as possible
[123].

Sustained  attention  over  several  seconds  may  be  mea-
sured throughout operant tasks, such as pressing a lever or
nose poke into a window. The 5-choice serial reaction time
task, depending on its configuration, is used to measure at-
tention, memory, and impulsivity [124]. Rodents are trained
to exploring 5 apertures, one of which lights up when food
is gained. The duration of the light signal is reduced over-
time, requiring increased attention [125]. The nose poke car-
ried out before the light stimulus indicates an impulsive re-
sponse and it determines the end of the trial. The test is typi-
cally  used  in  rats,  although  it  can  also  be  set  up  for  mice
[126].

The novel object recognition is one of the most common
tests used to evaluate recognition memory in rodents and it
exploits the spontaneous tendency of rodents to explore nov-
el objects. The test is carried out in an open field arena and
consists  of  habituation,  training,  and  testing  trials.  During
the habituation period, rodents are freely allowed to explore
the  arena  without  any  object.  During  the  training  period,
which is carried out 24 hours after habituation, rodents are
freely allowed to explore 2 identical objects. Finally, in the
test trial, one of the identical objects is replaced with a new
one and the time spent to explore the novel object is scored
[127, 128]. Overall, the amount of studies investigating the
cognitive  deficits  associated  with  neuropathic  pain  is  less
than those that  have focused on affective disorders.  These
fewer  studies  targeting  memory  deficits  could  reflect  the
complexity, high number and diversity of paradigms avail-
able for measuring cognition.

CONCLUSION
The main concern in the study of the sensory, affective,

and cognitive symptoms associated with neuropathic pain in
rodents  is,  first  of  all,  the  choice  of  the  neuropathic  pain
model, which must be as faithful as possible to the same con-
dition reported in humans. There are several models avail-
able  today,  mainly  induced  by  the  injury  to  a  peripheral
nerve, nerve roots or spinal cord. Alternatively, neuropathic
pain  can  be  caused  by  anti-cancer  chemotherapic  drugs,
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virus infections, or metabolic diseases such as diabetes. The
choice of model should take into account the one associated
with  minimal  motor  impairment  because  most  behavioral
tests are based on motor activity. In rodents, moreover, the
study of sensory disturbances is mainly assessed through the
responses to pain evoked by stimuli (thermal, chemical, and
mechanical), while in humans, the most debilitating sensory
disturbance  is  spontaneous  pain.  In  humans,  spontaneous
pain is self-referred and obviously, this is not doable in ro-
dents, however, in the last years, new methods for measur-
ing spontaneous pain have been developed. The close corre-
lation between chronic pain in general and neuropathic pain
in particular and affective/cognitive disorders is due to mala-
daptive plasticity observed in brain areas involved in the con-
trol of pain, emotions, and cognition that occur in both, hu-
mans and rodents. The anthropomorphization of rodent be-
havior and reciprocally the translation of rodent behavior on
humans are the main complexities of studying depressive-
and anxiety-like  behavior  in  laboratory  rodents.  There  are
several  tests  to  measure  anxiety  and  depressive-like  be-
havior, that exploit the innate behavior of the animal and in-
troduce  an  “anxio/depressio-genic”  element,  such  as  the
height, lighting, novelty, water, hunger, thirst or simple mon-
itor the normal rodent behavior such as nesting, grooming,
borrowing and burying. The studies on cognitive deficits as-
sociated with neuropathic pain are scarce compared to those
on emotional deficits and this is probably due to the wider
number, and variability of tests available to study cognitive
performance.  Indeed,  cognition  includes  different  compo-
nents, such as attention, learning, and different types of me-
mory. The most used tests are the mazes and the novel ob-
ject  recognition.  This  review  has  treated  very  briefly  the
tests available today for the study of sensory, affective and
cognitive  disorders  associated  with  neuropathic  pain  be-
cause rather than describing the various existing models, it
was intended to suggest that the complete description of neu-
ropathic pain symptoms should include those affective/cogni-
tive beyond the purely sensory ones.
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