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A B S T R A C T   

Predicting the duration of traffic accidents is a critical component of traffic management and 
emergency response on expressways. Traffic accident information is inherently multi-mode data 
in terms of data types. However, most existing studies focus on single-mode data, and the in-
fluence of multi-mode data on the prediction performances of models has been the subject of only 
very limited quantitative analysis. The present work addresses these issues by proposing a het-
erogeneous deep learning architecture employing multi-modal features to improve the accuracy 
of predictions for traffic accident durations on expressways. Firstly, six unique data modes are 
obtained based on the structured data and the text data. Secondly, a hybrid deep learning 
approach is applied to build classification models with reduced prediction error. Finally, a 
rigorous analysis of the influence for multi-mode data on the accident duration prediction per-
formances is conducted using a variety of deep learning models. The proposed method is eval-
uated using survey data collected from an expressway monitoring system in Shaanxi Province, 
China. The experimental results show that Word2Vec-BiGRU-CNN is a suitable and better model 
using text features for traffic accident duration prediction, as the F1-score is 0.3648. This study 
confirms that the newly established structured features extracted from text data substantially 
enhance the prediction effects of deep learning algorithms. However, these new features were a 
detriment to the prediction effects of conventional machine learning algorithms. Accordingly, 
these results demonstrate that the processing and extraction of text features is a complex issue in 
the field of traffic accident duration prediction.   

1. Introduction 

Traffic accidents have a highly negative impact on the efficiency and service quality of transportation networks. Among the many 
negative impacts of traffic accidents, delays caused by traffic accidents are most significant because they reduce the efficiency of the 
entire network while increasing fuel consumption and air pollution. In fact, the expense of delays caused by accidents is around 70% 
greater than the expense of material damage [1]. Hence, the period of time required to clear an accident and return traffic to normal 
conditions, which is typically denoted as the accident duration, is the dominant feature affecting the level of delay and its cost to 
transportation networks. As a part of the predictive maintenance, it is essential for measuring the deterioration level of the 

* Corresponding author. 
E-mail addresses: chenjn@xsyu.edu.cn (J. Chen), twj574755804@yeah.net (W. Tao), zj_1998626@163.com (Z. Jing), wp19991013@163.com 

(P. Wang), yljin@chd.edu.cn (Y. Jin).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e25957 
Received 23 October 2023; Received in revised form 26 January 2024; Accepted 5 February 2024   

mailto:chenjn@xsyu.edu.cn
mailto:twj574755804@yeah.net
mailto:zj_1998626@163.com
mailto:wp19991013@163.com
mailto:yljin@chd.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e25957
https://doi.org/10.1016/j.heliyon.2024.e25957
https://doi.org/10.1016/j.heliyon.2024.e25957
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e25957

2

transportation system in term of accident duration to achieve economic and environmental objectives [2]. Consequently, accurately 
predicting the durations of accidents from start to finish would be highly useful for guiding transportation agencies and drivers in 
mitigating the congestion arising from accidents. 

Early studies focused on developing parametric prediction models based on an assumption that accident durations statistically 
follow some distribution. For example, Li proposed an accelerated failure time hazard-based model for predicting the durations of 
different stages of traffic incidents [3]. In a follow-up study, Li et al. investigated the influence of clearance methods and various 
covariates on the duration of traffic incidents. They verified that a competing risks mixture model obtained greater accuracy for 
predicting traffic accident duration than the conventional AFT (Accelerated Failure Time) model [4]. However, the factors influencing 
the occurrence of accidents are numerous and complex. Accordingly, parametric models are limited in practice regarding their as-
sumptions pertaining to the overall distribution of data. In this regard, Wali et al. determined that random parameter models can 
obtain more accurate predictions than quantile regression and fixed parameter models based on more than 45,000 traffic incidents 
recorded in the state of Virginia, USA [5]. 

These issues can be effectively addressed by developing accident duration prediction approaches based on machine learning 
methods, such as support vector machine (SVM) [6], k-nearest neighbor (KNN) algorithms [7], and artificial neural networks (ANNs) 
[8]. Gao et al. conducted a study where they developed a random survival forest model to analyze accident durations. They found that 
this model outperformed the random forest model in terms of prediction accuracy. The results of their study indicate that the duration 
of traffic accidents is influenced by various factors including the type of traffic accident, the length of the road segment, the location of 
the accident, the number of remaining lanes, and the traffic intensity [9]. Li et al. conducted a comprehensive review of research on the 
analysis and prediction of traffic incident duration. The objective of their study was to discuss the evolution of research in this field, 
focusing on different phases of incident duration, data resources, and the various methods used in analyzing factors that influence 
traffic incident duration and predicting duration time [10]. Similarly, He et al. developed combined model of principal component 
analysis (PCA) and random forest (RF) to predict the duration of traffic accidents for highway tunnels. The results show that the 
average absolute error of PCA-RF combined model is 12.80 min, and the accuracy of error within 20 min is 89.15% [11]. Shang et al. 
introduced a new method for predicting the duration of traffic incidents. They utilized the Neighborhood Components Analysis (NCA) 
and the Bayesian Optimization Algorithm (BOA) to optimize the Random Forest (RF) model. The evaluation of the method using the 
confusion matrix showed that it achieved high accuracy and demonstrated excellent reliability and robustness [12]. Later, Hamad et al. 
established RF models for predicting traffic accident durations over both a wide duration range (1–1440 min) and a short range (5–120 
min) based on 146,573 incident records and 52 variables [13]. A detailed study by Saracoglu et al. demonstrated that CHAID 
(Chi-square Automatic Interaction Detector), CART (Classification and Regression Tree), C4.5 (Cart 4.5), and LMT (Logistic Model 
Tree) models provided nearly equivalent prediction accuracies between 74% and 75.6% [14]. Ghosh et al. conducted an analysis on 
prediction errors obtained from Bayesian Support Vector Regression (BSVR) and Gaussian Process (GP) models for traffic incident 
duration predictions using two datasets, one from Singapore and the other from the Netherlands. They found that for incidents in 
Singapore, the sensitivity of BSVR and GP at 70% specificity were 67% and 78% respectively. For incidents in the Netherlands, the 
sensitivity of the two methods at the same level of specificity were 55% and 60% respectively. The study concluded that the BSVR 
model was more reliable [15]. Jia et al. compared the traffic incident duration prediction performances of a back propagation (BP) 
neural network, RF, SVM, and long short-term memory (LSTM) methods based on 550 traffic incidents from the Xi’an Ring expressway 
in China. The results demonstrated that the proposed LSTM model with its attention mechanism obtained superior performance [16]. 
Their conclusion is consistent with Zhu et al. [17]. 

In addition to the use of machine learning technologies for predicting the duration of traffic accidents, a growing body of literature 
has demonstrated that ensemble learning methods can obtain enhanced predictive performance by applying multiple learning algo-
rithms. For example, Ghosh et al. proposed an adaptive ensemble model that can provide reliable predictions even under limited 
available information. They compared the prediction performance of various traditional regression methods and found that the 
Treebagger method outperformed the others. For incidents with durations ranging from 36 to 200 min, the mean absolute percentage 
error (MAPE) in predicting the duration ranged from 25% to 55% [18]. Zhao et al. obtained good prediction accuracy by applying data 
associated with millions of traffic incidents in the United States in conjunction with eXtreme Gradient Boosting (XGBoost), light 
gradient-boosting machine (LightGBM), and category boosting (CatBoost) gradient boosting frameworks, and a stacking and elastic 
network to establish a heterogeneous ensemble learning scheme. Their result shows that the MAPE, MAE, and MSE of heterogeneous 
ensemble learning are 35.6101%, 30.7432, and 4252.1728 [19]. In Zhao’s study, they utilized an ensemble clustering-based approach 
that combined an artificial neural network (ANN) model and a random forest (RF) model to predict the durations of traffic incidents. 
Their dataset consisted of 18,462 incidents from Singapore. The results indicate that the ensemble model performed better than both 
the traditional model with fixed clusters and the classical model without clustering [20]. Grigorev et al. proposed a new intra-extra 
joint optimization machine learning (IEO-ML) approach and verified that 40–45 min is the best threshold for distinguishing be-
tween short-term versus long-term traffic incidents [21]. Lv et al. developed an optimized integrated learning algorithm to estimate the 
duration of traffic accidents. The temporal stability of the model was evaluated using traffic accident data from Guizhou province over 
different time periods. Additionally, the spatial stability of the model was assessed by comparing the results obtained from traffic 
accident data of Guizhou Province and Shandong province during the same period. The results indicate that while the model dem-
onstrates temporal stability, it lacks spatial stability [22]. 

The above-discussed models developed to predict the duration of traffic incidents uniformly applied structured datasets that 
employ predefined data fields. While good prediction performance has been obtained, prediction models are inevitably influenced by 
the source, quantity, and quality of the data employed for model training and testing. We first note that research on the subject has 
been mostly restricted to an analysis of the impact of the heterogeneity of the predefined fields on the outcomes of prediction models. 
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Furthermore, we note that studies focused on this topic tend to design an increasing number of predefined data fields with increasingly 
limited applicability, which makes no obvious sense for practical applications. Moreover, the use of single-mode data involving a single 
data field or datatype as the object of analysis cannot meet the demands of increasing randomness and complexity. As a result, multi- 
mode analysis involving multiple data fields or multiple datatypes has generated increasing interest in the prediction of traffic incident 
durations. Through effective fusion, multi-mode data can provide richer information than single-mode data, and thereby improve the 
prediction accuracy of models. For example, Li et al. used a stacked restricted Boltzmann machine (RBM) to fuse the features extracted 
from both traffic accident data and traffic flow data. The results demonstrated that the fused model obtained improved prediction 
accuracy [23]. At the same time, the information expressed by different modes may complement each other, and thereby enhance 
model accuracy, or conflicting relations between some data modes may be a detriment to accuracy. This represents one of the main 
difficulties associated with multimodal data analysis. As a result, most studies have focused on single-mode data only, and the in-
fluence of multi-mode data on the accident duration prediction performance of models remains poorly understood due to a lack of 
quantitative analysis. 

In fact, traffic incidence information is itself typical multi-mode data in terms of datatypes and time series, which include a wealth 
of structured data, text, and video owing to the rapid development of information technology. Hence, accident information is recorded 
many times at different intervals by an intelligent transportation information system as traffic events evolve. 

As discussed, unstructured text data reflecting the status of a traffic incident is also collected by traffic information systems. In 
addition to many of the factors directly pertaining to traffic incidents, such as time, location, and event type, the evolution of the 
incident and its clearance status are described in text. Accordingly, text information integrates entire traffic incident cycles of dis-
covery, response, and recovery. Hence, text data contains more comprehensive accident information than the conventional predefined 
fields in structured data. Moreover, the duration of traffic accidents is affected by a wide range of factors. Accordingly, it is not 
practical to pre-define all potentially important factors. 

All these issues highlight the benefits of applying text data for accident duration prediction. However, as unstructured data, text 
cannot be directly used as model inputs. This is addressed in the field of natural language processing by transforming the text into 
numerical vectors through feature extraction. Therefore, the emergence of natural language processing technology has the potential to 
bring accident duration prediction research to a new level of accuracy. For example, the use of pre-trained models [24]and deep 
learning models [25,26] has recently provided a new foundation for implementing unstructured text data in the field of natural 
language processing. Wei conducted an analysis on 400 valid literatures from January 1985 to March 2023, focusing on the factors 
affecting road traffic accidents in China. The literatures were retrieved from the journal database of China National Knowledge 
Network (CNKI). The study utilized the visualization function of CiteSpace bibliometric software platform to provide insights into the 
current situation, future development trends, and hot spots in the field of road traffic accident influencing factors [27]. In another 
study, Yang et al. examined the current research on highway traffic accidents and the application of new technologies in highway 
traffic safety. They found differences between conventional traffic accidents and non-conventional accidents in terms of influencing 
factors mining, severity analysis, and accident prediction [28]. However, few studies have applied natural language technology for the 
purpose of predicting accident durations. Among the few such published studies, Zhang et al. analyzed and constructed traffic accident 
knowledge graphs based on four factors, including accident portraits, accident classifications, accident statistics, and accident cor-
relation paths [29]. Later, Guo et al. proposed a study on the automatic text quality analysis of emergency response plans written in 
Chinese, focusing on process descriptions. The proposed approach extracted message sending tasks, message receiving tasks, and 
regular tasks. This was achieved through the use of Bi-LSTM-CRF networks, which combined a Conditional Random Fields network 
with a Bidirectional Long Short-Term Memory network [30]. 

However, despite the many benefits of applying text data in accident duration predictions, relatively little work has actually been 
published in this regard. For example, Ji et al. applied ensemble learning using the V-Fisher ordered clustering model to predict ac-
cident durations with the records of 4164 expressway accidents in China. The results show that the accuracy of their approach reaches 
0.82 [31]. Similarly, Ji et al. predicted the duration of highway accidents based on the text data associated with 969 traffic accident 
records and social network information, and an average mean absolute percentage error (MAPE) of less than 22% was obtained for 
accident durations within the range of 0–180 min [32]. Shang et al. established a mixed deep learning model combining latent 
Dirichlet allocation-BiLSTM (LDA-BiLSTM) networks to predict the duration of traffic accidents based on an analysis of the text data 
associated with 78,317 traffic incidents [33]. However, the traffic accident durations considered in this work were limited to within 90 
min, and far too little attention was given toward capturing multi-mode data via the fusion of structured data and text data. Finally, 
Chen et al. applied text data fusion and ensemble learning algorithms to predict accident duration based on specific feature variables of 
text data selected by an RF algorithm. The results show that the MAPE value is stable within 73–75% [34]. 

As discussed above, relatively little work has been published regarding the application of unstructured text data in accident 
duration prediction operations, and the influence of multi-mode data on duration prediction remains poorly understood due to a lack 
of quantitative analysis. Nonetheless, the above discussion clearly demonstrates the considerable benefits of applying text data, and 
that combinations of features can have a profound impact on the performance of prediction models. The present work addresses these 
issues by proposing a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of pre-
dictions for traffic accident durations on expressways. Accordingly, this study makes the following contributions.  

(1) Unstructured text information pertinent to traffic accidents is extracted statistically to obtain new structured features, and 
typical pre-trained natural language processing models are also applied to the unstructured text to obtain text data in numerical 
form as an additional data mode. 
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(2) A hybrid deep learning approach is applied to build classification models with reduced prediction error. The influence of pre- 
trained models on the approach is summarized.  

(3) Standard structured data is combined with the newly established structured data and numerical text data into five unique data 
modes to conduct a rigorous analysis of the influence of multi-mode data on the accident prediction performances of a variety of 
deep learning models. 

The proposed method is evaluated using survey data collected from an expressway monitoring system in Shaanxi Province, China. 
This study provides a new insight into the consistency and differences between prediction models based on multimodal analysis. 

The remainder of this paper is organized as follows. Section 2 provides a brief introduction to the prediction methodologies and 
measures applied herein for evaluating model performance. Section 3 discusses the data sources and the prediction results based on 
multi-mode data. Section 4 compares and summarizes the numerical results obtained by the proposed method. Finally, Section 5 
concludes the paper and provides suggestions for future research. 

2. Methodology 

2.1. Construction of multi-mode data and prediction model training 

This study utilizes text-based input features combined with traditional accident data to develop an ensemble deep learning based 
accident duration prediction model. The proposed prediction process is based on the heterogeneous ensemble prediction architecture 
illustrated in Fig. 1, which consists of three main components: (1) extraction of features from the dataset; (2) multimodal feature fusion 
conducted by combing the various extracted feature variables via simple concatenation; (3) prediction model training. 

The standard structured features in the dataset were transferred directly into the multimodal dataset. The feature extraction process 
for text was divided into two sub-processes. In the first sub-process, text features were extracted using pre-trained models in natural 
language processing techniques. This is discussed in detail in Subsection 2.2. In the second sub-process, we constructed new structured 
features based on properties extracted from the text using a one-hot model. These newly established features in the dataset were then 
transferred directly into the multimodal dataset. The precise nature of the multimodal dataset constructed in the present work is a 
function of the database employed, and is therefore discussed in detail in Subsection 3.2 after introducing the database. 

In the model training process, the numerical vectors of text data and structured features were concatenated in different combi-
nations as six defined modes, which were then employed as inputs for training the proposed accident duration prediction model 
denoted as a bidirectional gated recurrent unit-convolutional neural network (BiGRU-CNN) model. The model training process was 
repeated several times, and the model parameters attaining the best results were adopted. The advantages of the proposed method 
were demonstrated by comparing the obtained prediction results with those obtained using currently well-established models, 
including an ensemble learning algorithm, deep learning based on LSTM, and deep learning based on gated recurrent units (GRUs). The 
BiGRU-CNN prediction model is presented in detail in Subsection 2.3. 

2.2. Text vectorization 

Text vectorization is a process employed for representing text semantics using numerical vectors, which ensures that the textual 
information in different texts is distinguishable, and facilitates the extraction of features. Hence, text vectorization is an important part 
of text representation. 

Conventional methods applied to extract text vectors employ statistical models, such as one-hot models, bag of words (BOW) 
models, and the term frequency-inverse document frequency (TF-IDF) metric. However, the obtained text vectors are high- 
dimensional and sparse. Moreover, BOW models and the TF-IDF metric focus exclusively on the number of words appearing in the 
text, and therefore ignore contextual correlations. Accordingly, we applied the Word2Vec algorithm pre-trained on a large data corpus 

Fig. 1. Heterogeneous ensemble prediction architecture based on multi-mode data and its three main components: (1) feature extraction; (2) 
multimodal feature fusion; (3) prediction model training. 
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as a word embedding model for generating vectors of real numbers pertaining to the nature of the words in a text. In addition, 
Word2Vec can map high-dimensional sparse vectors to low-dimensional dense vectors. The Word2Vec algorithm comprises either 
continuous BOW (CBOW) or skip-gram network architectures. The CBOW structure has been demonstrated to work well with small 
databases, while the skip-gram structure works best with large corpora [24]. Therefore, the present work applied the skip-gram ar-
chitecture for Word2Vec. 

Nonetheless, no pre-trained model can effectively take into account reasonable model size, advanced small sample capability, and 
advanced fine-tuning capability. Hence, we compared the text vectorization results obtained using the Word2Vec algorithm with those 
obtained by two other pre-trained natural language processing models, including the bidirectional encoder representation from 
transformers (BERT) model, which uses a deeply bidirectional self-attention mechanism, and the robustly optimized BERT approach 
(RoBERTa), which represents an improved version of BERT obtained by applying a larger training corpus, using dynamic masking 
patterns, training with longer text sequences, and omitting the next sentence pre-training objective. 

2.3. Prediction model based on BiGRU-CNN 

The proposed multi-feature prediction model based on the BiGRU-CNN architecture is illustrated in Fig. 2. As can be seen, the 
BiGRU-CNN framework consists of four layers, including an input layer with structured data and text data output by the feature 
extraction module in Fig. 1, a BiGRU layer that obtains contextual semantics features, a CNN layer that obtains local features, and an 
output layer. As can be seen, the CNN layer consists of a convolution layer, pooling layer, dropout layer, and a fully connected layer, 
and a softmax activation function is applied in the output layer to the output of the CNN. 

The GRU model is a variant of the LSTM model that was developed to solve the vanishing gradient problem that interfered in the 
training process of recursive neural network (RNN) models employing backpropagation in conjunction with gradient-based learning 
approaches. Moreover, the GRU network structure is simpler than that of an RNN and with fewer parameters. The structure of a GRU 
model is illustrated in Fig. 3, which includes a hidden state Ht− 1 at time t − 1, and an input Xt and a hidden state Ht at time t, along with 
sigmoid σ and tanh activation functions. The GRU model is mainly composed of an update gate and a reset gate with values of Ut and Rt 
at time t, respectively, which are defined as Eq. (1) and Eq. (2). 

Fig. 2. Schematic illustrating the multi-feature fusion model based on a BiGRU-CNN architecture. BiGRU-CNN, bidirectional gated recurrent unit- 
convolutional neural network. 

J. Chen et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e25957

6

Rt = σ(wr ⋅ [Ht− 1,Xt] + br) (1)  

Ut = σ(wu ⋅ [Ht− 1,Xt] + bu) (2) 

Here, the terms [Ht-1, Xt] represent the concatenation of vectors Ht-1 and Xt, wr and wu are weight matrices, and br and bu are bias 
values. The process then yields the candidate set H̃ of the current state and the value of Ht as Eq. (3) and Eq. (4). 

H̃t = tanh(wh ⋅ [Rt ∗ Ht− 1] + bh) (3)  

Ht =Ut ∗ Ht− 1 + (1 − Ut)H̃t (4)  

where ωh and bh are the corresponding weight matrix and bias value, respectively. The weight matrices and bias values are determined 
during the training process. 

The BiGRU model consists of forward GRUs and reverse GRUs, which are denoted in Fig. 2 by the orange and magenta circles, 
respectively. The input is passed to both the first forward GRU, which processes the forward information of the sequence, and the first 
reverse GRU, which processes the reverse information of the sequence, and the final results are assembled from the outputs of each 

GRU in both processes. This processing ensures more accurate results. Accordingly, the output H→t of a forward GRU and the output H
←

t 
of a reverse GRU are given as Eq. (5) and Eq. (6). 

H→t =GRU
(

Xt, H→t− 1

)

(5)  

H
←

t =GRU
(

Xt,H
←

t− 1

)

(6)  

Ht =
[

H→,H
←]

(7)  

Here, GRU(•) represents the output of Eq. (4), and the final output is a combination of H→t and H
←

t. As illustrated in Fig. 2, the output 
vector H = [ H1,H2,⋯,Ht ] of all GRU sets in the BiGRU model obtained from Eq. (7) serves as the input of the CNN. The final output Y 
obtained after applying the softmax activation function soft(•) is given as Eq. (8). 

Y = sfot(W ⋅ H + b) (8)  

where W is the weight matrix and b is the bias. 

2.4. Performance evaluation 

The prediction of traffic accident durations can be regarded as a classification task involving multiple categories. Based on previous 
research, we know that the accident samples considered herein have durations between 5 min and 200 min. Accordingly, we can 
conveniently divide the durations into four categories, including durations with intervals of 5–30 min, 31–60 min, 61–120 min, and 
120–200 min. Therefore, the goal of the prediction model is to classify the accident durations into the four categories according to 
relevant traffic accident features. 

We evaluated the performances of the prediction models according to the precision Pj, recall Rj, and Fj metric values of categories j 
= 1, 2, 3, 4, which are calculated as Eq. (9), Eq. (10), and Eq. (11). 

Pj =
TPj

TPj + FPj
(9)  

Fig. 3. GRU network structure, which includes a hidden state Ht− 1 at time t − 1, and an input Xt and a hidden state Ht at time t, along with sigmoid σ 
and tanh activation functions. GRU, gated recurrent unit. 
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Rj =
TPj

TPj + FNj
(10)  

Fj =
2PjRj

Pj + Rj
(11) 

Here, TPj is the number of true positives, FPj is the number of false positives, and FNj is the number of false negatives observed for 
the j-th category. As can be seen, the prediction performance of an algorithm for a given category increases with increasing values of Pj, 
Rj, and Fj. However, the different categories suffer from unbalanced sample sizes. Therefore, we adopted a weighted F value defined as 
Eq. (12). 

Fw =
∑4

j=1
wjFj (12)  

where wj is the proportion of class j in the training dataset. 

3. Results 

3.1. Multimodal data collection 

The survey data employed in this work consisted of traffic accident records recorded in Shaanxi Province from June 2021 to August 
2022. As discussed above, the same accident is reported multiple times at each stage of the incident. Obtaining accurate predictions 
requires survey data collected from the information that was first reported. Then, the accident duration was defined as the difference 
between the time the accident was cleared and the time the accident was first reported. The original structured data describes in-
formation in the form of natural language associated with pre-defined fields, such as accident type, time, weather, and location. The 
text data is very sparse and heterogeneous, and includes a number of aspects, such as accident descriptions, treatment measures, and 
empirical predictions. 

On the basis of literature research [35], the accident duration employed in the current work was limited to the range of 5–200 min. 
Therefore, removing outliers and empty values from the survey data resulted in a total of 3887 samples. In addition, statistical de-
scriptions of the traffic accident durations are listed in Table 1. According to the proportions shown in Fig. 4 for accident duration 
samples with different time intervals observed in the dataset, about 83% of the accidents had durations less than 120 min. Accordingly, 
the dataset is characterized by considerable unbalance. A resampling method adopted to reduce the implications of class imbalance. 
After data balancing, five cross-validation techniques was used in model training. The data was divided into five parts. Each part of 
data was selected as the testing dataset and the remaining of the data was served as the training dataset. Finally, the mean of the five 
model training results is calculated as the model performance. 

3.2. Feature extraction and fusion 

The multimodal features observed or extracted from the dataset are listed in Table 2, along with the various modes, expressed as 
Mode 1, Mode 2, Mode 3, Mode 4, Mode 5, and Mode 6, that include select variables of the features considered, and were designed for 
various testing purposes. In this regard, the structured data obtained without data fusion in Mode 1 was employed as the baseline 
mode, Mode 2 fused these feature variables with the newly-established structured feature variables by simple concatenation, Mode 3 
was formed of the text features extracted using one of the three pre-trained models, Mode 4 was the result of fusing Mode 3 with the 
feature variables in Mode 1 via simple concatenation, Mode 5 was the result of fusing Mode 3 with the new structured features via 
simple concatenation, and Mode 6 was designed to evaluate the benefits of including all feature variables. We note that the impact of 
the newly established structured features alone can be ascertained by comparing the results obtained using Modes 4 and 6. 

3.3. Comparisons based on multimodal features 

The benefits of the various feature variables considered on accident duration predictions were evaluated by comparing the 
weighted F1 scores obtained using the various modes in conjunction with various prediction models. We evaluated the benefits of the 
conventional feature variables in Modes 1 and 2 using various conventional and more recent methods, including decision tree [14], 
random forest [11], adaboost [19], gradient-boosted decision tree (GBDT) [34], catboost [19], extra tree [19], XGBoost [19], and the 
proposed BiGRU [36] and BiGRU-CNN [36] deep learning methods. In addition, the benefits of the feature variables in Modes 3 and 4 
were evaluated using deep-learning-based BiLSTM [37], LSTM-CNN, BiLSTM-CNN [34], GRU-CNN, BiGRU, and BiGRU-CNN [36] 

Table 1 
Statistical descriptions of traffic accident durations in the dataset.  

Maximum Minimum Average value Standard deviation Median Coefficient of variation (cv) 

200 5 73.634 45.376 62 0.616  
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Fig. 4. Proportion of accident duration samples with different time intervals in the dataset.  

Table 2 
Definitions of the multimodal features in the dataset.  

Feature Variable Description Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Mode 
6 

Original structured 
features 

Hour Discovery time in hours from 0 to 23 ✓ ✓  ✓  ✓ 
Type Accident type ✓ ✓  ✓  ✓ 
Scope Spatial difference between the starting point and 

the ending point of the accident 
✓ ✓  ✓  ✓ 

Injured Number of people injured when the accident was 
discovered 

✓ ✓  ✓  ✓ 

Death Number of deaths when the accident was 
discovered 

✓ ✓  ✓  ✓ 

Vehicles Number of vehicles in the accident ✓ ✓  ✓  ✓ 
Location Accident location type ✓ ✓  ✓  ✓ 
Weather Weather at moment of accident ✓ ✓  ✓  ✓ 
Loss Whether the road was damaged ✓ ✓  ✓  ✓ 

New structured 
features 

Dangerous Vehicles transporting dangerous goods involved 
in accident, yes or no  

✓   ✓ ✓ 

Efftype Whether the main line road was affected  ✓   ✓ ✓ 
Information Source of information  ✓   ✓ ✓ 
Image Location of accident includes traffic monitoring, 

yes or no  
✓   ✓ ✓ 

Struck Small truck involved in accident, yes or no  ✓   ✓ ✓ 
Ltruck Large truck involved in accident, yes or no  ✓   ✓ ✓ 
Estimatedtime Estimated duration of accident at time of 

discovery  
✓   ✓ ✓ 

Control Traffic control is involved in accident, yes or no  ✓   ✓ ✓ 
Diversion Traffic diversion measures are involved in 

accident, yes or no  
✓   ✓ ✓ 

Rep_num Number of accidents reported  ✓   ✓ ✓ 
Text features Pre-trained word 

vectors 
Text vectorization matrix   ✓ ✓ ✓ ✓  

Table 3 
Weighted F1 scores obtained by different prediction models when employing only 
structured data (Mode 1) and both the structured data and the newly established 
structured features (Mode 2).   

Mode 2 Mode 1 

Decision tree 0.315 0.371 
Random forest 0.347 0.359 
Adaboost 0.310 0.426 
GBDT 0.318 0.385 
Catboost 0.340 0.396 
Extra tree 0.345 0.368 
XGBoost 0.304 0.362 
BiGRU 0.386 0.326 
BiGRU-CNN 0.527 0.316 

GBDT, gradient-boosted decision tree; XGBoost, eXtreme Gradient Boosting; BiGRU, 
bidirectional gated recurrent unit; BiGRU-CNN, bidirectional gated recurrent unit- 
convolutional neural network. 
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methods. These methods were applied because hybrid deep learning networks based on LSTM and GRU have been demonstrated to be 
suitable for use with text data, while conventional machine learning methods are not effective in processing high dimensional sparse 
text vectors. We note here that decision tree, random forest, adaboost, GBDT, catboost, extra tree, and XGBoost are not applicable to 
text data, and could therefore not be applied for evaluating Modes 3–4. Finally, the benefits of employing a fusion of all feature 
variables (Mode 5–6) were evaluated for the proposed BiGRU and BiGRU-CNN methods. Accordingly, the results also provided a 
detailed evaluation of the advantages of the various prediction models considered. In order to obtain convincing results, each model 
was trained for five times. The mean weighted F1 score was used as the model performance in case of experimental bias. 

3.3.1. Predictions obtained using structured features 
The weighted F1 scores obtained by the different prediction models (decision tree, random forest, adaboost, GBDT, catboost, extra 

tree, XGBoost, BiGRU, and BiGRU-CNN) when employing data in Mode 1 and Mode 2 are listed in Table 3. In addition, the results in 
Table 3 are presented graphically in Fig. 5. (a) and Fig. 5(b). 

As can be seen in Fig. 5. (a), the gradient boosting models (adaboost, GBDT, catboost, and XGBoost) performed best for Mode 1, the 
BiGRU and BiGRU-CNN models exhibit similar and relatively poor performance, while the predictions of the tree and RF models 
(decision tree, random forest, and extra tree) were intermediate. These results are not surprising when restricting the data employed to 
structured data only. However, the conditions are altered significantly when combining the structured data with the newly established 
structured feature variables in Mode 2, as shown in Fig. 5. (b), where we note that the prediction performances of the BiGRU and 

Fig. 5. Weighted F1 scores obtained by various prediction models when employing the data for (a) Mode 1 and (b) Mode 2.  
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BiGRU-CNN models were best overall, and that of the BiGRU-CNN model was 24% greater than the prediction performance obtained 
by adaboost for Mode 1. This benefit arises owing to the distinct advantages of the deep learning algorithms for addressing the 
complexity and higher dimensions arising when including the additional structured features in Mode 2. 

3.3.2. Predictions obtained using text features 
The weighted F1 scores obtained by the different deep-learning-based prediction models when employing only the text features 

extracted using each of the Word2Vec, RoBERTa, and BERT pre-trained models in Mode 3 are listed in Table 4. In addition, the results 
in Table 4 are presented graphically in Fig. 6. 

These results present two distinct features of interest. Firstly, we note that using the Word2Vec pre-trained model resulted in very 
stable performance metrics for all deep-learning-based algorithms considered. In contrast, the RoBERTa and BERT pre-trained models 
provided wildly varying prediction performances depending on the prediction algorithm applied. Secondly, we note that all prediction 
algorithms provided their highest average weighted F1 values when extracting text features using the Word2Vec pre-trained model, 
and that the proposed BiGRU-CNN model obtained the highest average weighted F1 values of all algorithms considered. The result 
shows that Word2Vec-BiGRU-CNN is a suitable and better model using text features for traffic accident duration prediction. 

3.3.3. Predictions obtained using fused features 
Table 5 lists the weighted F1 scores obtained by the different deep-learning-based prediction models when fusing the text features 

extracted using each of the Word2Vec, RoBERTa, and BERT pre-trained models in Mode 3 with the standard structured features in 
Mode 1 and the newly established structured features. In addition, the results in Table 5 are presented graphically in Fig. 7. 

As was observed in Table 5 with respect to Mode 3 data, we note that using the Word2Vec pre-trained model again resulted in much 
more stable performance metrics for all deep-learning-based algorithms considered than obtained when using the RoBERTa and BERT 
pre-trained models. We further note that BiGRU-CNN model provided their highest mean weighted F1 values when extracting text 
features using the pre-trained model. In fact, the BiGRU-CNN model was outperformed by the BiLSTM, LSTM-CNN, BiLSTM-CNN, 
BiGRU, and GRU-CNN models as well. This indicates that the relationship between the features of text vectors and structured labels can 
be recognized effectively by the BiGRU-CNN model. 

Both Mode 4 and Mode 5 obtained the higher mean weighted F1 score than Mode 3. This indicates that the feature fusion is 
meaningful in prediction performance. In this case, we note that Mode 5 obtained the highest mean weighted F1 score of all algorithms 
considered and was about 5% greater than that obtained by Mode 3. In this case, we note that Mode 5 obtained the highest mean 
weighted F1 score of all algorithms considered and was about 5% greater than that obtained by Mode 3. This implies that the newly 
established structured features in Mode 5 exhibited significant differences. However, the lowest mean weighted F1 score was obtained 
in Mode 6. Accordingly, better results were not depend on more features. 

3.3.4. BiGRU-CNN model predictions obtained using multimodal features 
The weighted F1 scores obtained by the proposed BiGRU-CNN model for each of the six data modes are presented in Fig. 8, where 

the Word2Vec pre-trained model has been applied uniformly for extracting the data in Mode 3. As can be seen, the highest F1 value is 
0.5270, which obtained from Mode 2 by the proposed prediction model. In other words, text feature extracted by the one-hot model 
provided the best prediction performances based on BiGRU-CNN. However, any inclusion of unstructured text features in either Mode 
3, 4, 5 or 6 results in prediction performances that are more or less on par with those obtained when employing only standard 
structured feature variables in Mode 1. This suggests that the advantage of the BiGRU-CNN model for capturing local features of the 
experimental dataset is not exploited in the text vectors obtained by the pre-trained Word2Vec model because the one-hot model 
prediction performance is slightly better even though the pre-trained model provides a more scientific text vectorization method. 

4. Discussion 

As detailed in Table 3 and Fig. 5, the marked observation to emerge from the data comparison was deep learning algorithms have a 
greater advantage in prediction accuracy based on Mode 2. Therefore the BiGRU-CNN has the highest F1 value of 0.527. This finding is 
consistent with Shang et al. [33] who have reported the importance of deep learning algorithms in the duration prediction of traffic 
accidents by text data. In addition, this study confirms that the newly established structured features extracted from text data by the 

Table 4 
Weighted F1 scores obtained by different prediction models when employing only the text features extracted by text vectorization using the three pre- 
trained models (Mode 3).  

Model BiLSTM LSTM-CNN BiLSTM-CNN BiGRU GRU-CNN BiGRU-CNN Mean 

Word2vec 0.3371 0.3285 0.3666 0.3332 0.3207 0.3648 0.3418 
RoBERTa 0.2122 0.3556 0.3448 0.2660 0.3556 0.3795 0.3189 
BERT 0.2122 0.3300 0.3349 0.3052 0.2578 0.3500 0.2984 
Mean 0.2538 0.3380 0.3488 0.3015 0.3113 0.3648 – 

LSTM, long short-term memory; BiLSTM, bidirectional LSTM; LSTM-CNN, long short-term memory convolutional neural network; GRU, gated 
recurrent unit; GRU-CNN, gated recurrent unit convolutional neural network; RoBERTa, robustly optimized BERT approach; BERT, bidirectional 
encoder representation from transformers. 
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Fig. 6. Weighted F1 scores obtained by various prediction models when employing the data in Mode 3 extracted using different pre-trained models.  

Table 5 
Weighted F1 scores obtained by different prediction models using fused features.    

BiLSTM LSTM-CNN BiLSTM-CNN BiGRU GRU-CNN BiGRU-CNN Mean 

Mode 3 Word2vec 0.3371 0.3285 0.3666 0.3332 0.3207 0.3648 0.3197 
RoBERTa 0.2122 0.3556 0.3448 0.2660 0.3556 0.3795 
BERT 0.2122 0.3300 0.3349 0.3052 0.2578 0.3500 

Mode 4 Word2vec 0.3501 0.3384 0.3562 0.3373 0.3630 0.3492 0.3223 
RoBERTa 0.3268 0.3957 0.3786 0.3178 0.3893 0.3768 
BERT 0.3440 0.2202 0.2122 0.3224 0.2122 0.2122 

Mode 5 Word2vec 0.3597 0.3536 0.3611 0.3458 0.3230 0.3548 0.3370 
RoBERTa 0.3067 0.4094 0.4213 0.3037 0.4143 0.3868 
BERT 0.2780 0.2122 0.2656 0.3194 0.3628 0.2879 

Mode 6 Word2vec 0.3513 0.3425 0.3727 0.3548 0.3639 0.3426 0.2661 
RoBERTa 0.3246 0.1893 0.1893 0.2968 0.1893 0.1893 
BERT 0.1922 0.2570 0.1893 0.2673 0.1893 0.1893 

Mean 0.2996 0.3110 0.3160 0.3141 0.3118 0.3153 –  

Fig. 7. Weighted F1 scores obtained by various prediction models when employing the data with text data extracted using different pre- 
trained models. 
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one-hot model substantially enhance the prediction effects of deep learning algorithms. However, these new features were a detriment 
to the prediction effects of conventional machine learning algorithms. These results corroborate that deep learning algorithms have 
been demonstrated to perform more effectively than conventional machine learning algorithms when working with complex, 
high-dimensional, and random data. Furthermore, meaningful features can be captured by deep learning models when working with 
multi-mode data. 

As discussed, one of the important parameters of the current study was to assess the importance of text vectorization when working 
with unstructured text data. In Table 4, from the comparison of the mean F1 value, it can be seen that the Word2Vec performs better 
than the RoBERTa and BERT base on multiple deep learning models, which has highest F1 value of 0.3418. The most obvious finding to 
emerge from the analysis is that the Word2Vec pre-trained model provides text vectorization results that best support the performances 
of various deep-learning-based prediction algorithms operating downstream. This finding was also reported by Chen et al. [35]. In 
addition, as shown in Table 4, the highest mean F1 value for three pre-trained models is 0.3648, which obtained by the BiGRU-CNN. 
We can concluded that the proposed BiGRU-CNN model provided the best prediction performance when working with text data in term 
of Mode 3. 

The results reported herein also broadly support the work of other studies demonstrating that the processing and extraction of text 
features is a complex issue in the field of traffic accident duration prediction [11,30,32]. This follows from the surprising results 
demonstrating that the prediction performances obtained by deep-learning-based models when employing data modes that included 
unstructured text data extracted using pre-trained models (i.e., Modes 3–6) were generally not better than the performances of 
conventional machine learning methods using only standard structured feature variables (i.e., Modes 1 and 2). Therefore, deep 
learning is more like a balance between accuracy, efficiency and interpretability. An inspection of the data in Table 5 reveals that more 
features do not benefit for prediction performance directly. Several factors could explain this observation. Firstly, the consistency 
between structured data and textual data has not been assessed. Thus it is necessary to evaluate the quality and consistency among 
multimodal data. Secondly, the introduction of too many input features will increase the complexity of the system. This F1 value is 
slightly lower than the value we expected and there is certainly room for improvement. However, this result has further strengthened 
our confidence in evaluating the prediction accuracy under different set of input features. Our study was successful in proving that the 
duration prediction of traffic accident can be improved using data fusion and deep learning models. 

That the newly established structured features extracted from text data by the one-hot model substantially enhanced the prediction 
effects of deep learning algorithms may be explained by the fact that the textual descriptions of accidents given in the traffic man-
agement system are simple and regularized. As a result, the strengths of the more advanced RoBERTa and BERT pre-trained models 
were not utilized effectively in the vectorization of unstructured text data. This suggests that the text descriptions of traffic accidents 
employed by traffic management systems should be more diversified to record and capture potential influencing factors. 

5. Conclusion 

The present work proposed a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of 
predictions for traffic accident durations on expressways. Multi-modal features was created by combining standard structured data 
with unstructured text data related to traffic accidents. In addition, the influence of multi-mode data on the accident prediction 
performances of deep learning models was evaluated rigorously. The proposed method was evaluated using survey data collected from 
an expressway monitoring system in Shaanxi Province, China. The results confirmed that the newly established structured features 
extracted from text data substantially enhance the prediction effects of deep learning algorithms, but these new features were a 
detriment to the prediction effects of conventional machine learning algorithms. The results further demonstrated that the pre-trained 
Word2Vec model provides numerical text results that best support the performances of the deep-learning-based prediction algorithms 
considered. Moreover, the proposed BiGRU-CNN model provided the best prediction performance with the highest mean-F1 value 
when working with text data. Our results clearly augment the rapidly expanding field of traffic safety. Furthermore, the results 
demonstrated that the processing and extraction of text features is a complex issue in the field of traffic accident duration prediction. 
Finally, the present work considered only simple concatenation as the fusion method. Future work will investigate the impact of multi- 
mode data formed using additional multimodal data fusion methods on prediction accuracy. 

Fig. 8. Weighted F1 scores obtained by BiGRU-CNN model for different data modes, where the Word2Vec pre-trained model has been applied 
uniformly for extracting the data in Mode 3. 
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