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The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines
have been generated using existing technologies that have been applied for developing vaccines against
other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been
gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appro-
priate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vac-
cines. Updated information about immunological features from individuals who have or have not been
exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review high-
lights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine devel-
opment and clinical trials.
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1. Features of SARS-CoV-2

Coronaviruses belong to the family of Coronaviridae (https://
talk.ictvonline.org/). They are divided into four classes: alpha-
coronavirus and beta-coronavirus which infect mammals, and
gamma-coronavirus and delta-coronavirus which primarily infect
birds [1]. Currently, seven types of coronaviruses have been iden-
tified as infectious in humans (https://www.cdc.gov/coron-
avirus/types.html). Four of these types (HCoV-229E, HCoV-OC43,
HCoV-NL63, and HCoV-HKU1) have been defined as common
human coronaviruses and have infected individuals around the
world. The other three types (MERS-CoV, SARS-CoV, and SARS-
CoV-2) cause acute respiratory diseases known as MERS, SARS,
and COVID-19, respectively. Due to the circulation of common
coronaviruses in the human population, pre-existing SARS-CoV-
2-reactive T cells are observed in 40%–60% of unexposed individu-
als [2].

Coronaviruses have a large (~30 kb), single-stranded positive-
sense RNA genome encoding several open reading frames [3]. Virus
structures consist of spike proteins (S), membrane glycoproteins
(M), nucleocapsid proteins (N), hemagglutinin-esterase dimer pro-
teins (HE), and envelope proteins (E). S protein is a class I virus
fusion protein that mediates attachment of the virus to cell surface
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receptors, which is then followed by uptake into endosomes [4–7].
Proteolytic cleavage of the S protein and fusion of viral and endo-
somal membranes trigger the release of viral RNA into the cytosol
[8]. Cell entry of SARS-CoV-2 virus depends on binding of the viral
S protein to the ACE2 receptor and the priming of S protein by ser-
ine protease TMPRSS2 [9,10]. The S proteins of SARS-CoV-2 and
SARS-CoV have an amino acid sequence similarity of ~ 77% and
can bind the same ACE2 receptor and cell protease TMPRSS2 [9,11].

Rapid bioinformatics techniques have been used to analyze the
mutation dynamics of SARS-CoV-2, revealing how the virus has
spread. The mutation rate of RNA viruses, such as influenza virus
and HIV-1, is higher than that of DNA viruses [12]. However,
genetic diversity analysis of the SARS-CoV-2 genome shows a nota-
bly lower rate of mutation than that in other RNA viruses. Regard-
ing the S protein genome of SARS-CoV-2, a hotspot mutation was
identified only at position D614 [13]. This is promising for vaccine
development, which promotes vaccine-induced immunity target-
ing the receptor-binding domain of the S protein.
2. Candidate SARS-CoV-2 vaccines

Currently, there are over 100 candidate SARS-CoV-2 vaccines
under development. The WHO is publishing a regularly updated
list of vaccines in development (https://www.who.int/publica-
tions/m/item/draft-landscape-of-covid-19-candidate-vaccines).
Platforms used to generate candidate vaccines are summarized in
Table 1. Most candidate vaccines target surface membrane S pro-
tein, which is involved in receptor binding, membrane fusion,
and entry into host cells.

Inactivated vaccines are a traditional method of manufacturing
vaccines that are purified from virally infected cells [14]. Large-
scale manufacturing methods established in the 1940s used
embryonated eggs from hens to generate inactivated influenza
vaccines [15]. Since then, many genetic engineering-based vaccine
platforms have been developed to improve vaccine production
[16]. Cell culture-based manufacturing technologies were devel-
oped in 2001 [14]. Since the manufacturing process is well estab-
lished, inactivated SARS-CoV-2 vaccines have been developed
rapidly, and six candidate vaccines are in clinical trials. A common
technical issue for producing inactivated vaccines is the selection
of suitable virus strains. An inactivated candidate vaccine, termed
CoronaVac, derived from the CN2 strain with alum adjuvant
showed broad neutralization ability against SARS-CoV-2 in pre-
clinical studies [17]. At present, three of the inactivated vaccines
are currently in phase III clinical trials (Table 1).

Compared to other vaccine platforms, the mRNA-based SARS-
CoV-2 vaccine is more attractive because of its rapid and low-
cost manufacturing process. Two mRNA candidate vaccines,
mRNA-1273 and BNT162b1, are already in phase III clinical trials
(Table 1). The mRNA-1273-encoded prefusion stabilizes the S pro-
tein, consisting of the SARS-CoV-2 glycoprotein with a transmem-
brane anchor and an intact S1–S2 cleavage site. This mRNA-1273
vaccine induced both humoral and cellular immunity in animal
models and induced anti–SARS-CoV-2 immune responses in phase
I clinical trials. Two immunizations of mRNA-1273 showed a well-
tolerated safety profile and dose-dependent mild-to-moderate
adverse events after the second immunization [18–21].

These mRNA-based vaccine platforms have been used to
develop vaccines against infectious diseases, such as respiratory
syncytial virus (RSV), Zika virus, influenza virus, Ebola virus, and
HIV [22–24]. mRNA-based vaccines have favorable safety profiles,
and there is no risk of infection since the virus does not need to
be handled during manufacturing. mRNA has no risk of insertional
mutagenesis because it does not need to enter the cellular nucleus
to express the antigen. Repeated immunization with mRNA-based
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vaccines revealed long-term safety in murine models [25]. How-
ever, mRNA-based vaccines sometimes have issues with stability
and translational efficiency. Improvements in mRNA-based vacci-
nes have therefore been investigated [26]. For example, converting
optimal codons enables an increase in mRNA stability. This codon
optimization tool decreases the degradation of mRNA-based vacci-
nes and increases the expression of encoded antigens [27]. Modifi-
cation of the mRNA cap with synthesized anti-reverse cap analogs
(ARCAs) improves translation efficiency by ensuring proper orien-
tation [28]. ARCA-capped mRNAs also prolong protein expression
and half-life in cells [29]. Self-amplifying mRNA can potentially
improve vaccine efficiency, since lower doses are needed [30].
While no mRNA-based vaccines have been licensed for commercial
use, there is a chance that one will be approved for the first time as
a SARS-CoV-2 vaccine.

Viral vector-based candidate SARS-CoV-2 vaccines are also
under development. These vaccines induce robust immune
responses and can increase both humoral and cellular immunity
[31]. An adenovirus type 5 (Ad5) vector-based SARS-CoV-2 vaccine,
which encodes the S protein as a transgene antigen, showed toler-
ance and immunogenicity in phase I and is now in phase III clinical
trials [32]. The concept of viral vectors was introduced with recom-
binant DNA from the SV40 virus in 1972 [33]. The vaccinia virus
was subsequently used as a transient gene expression vector in
1982 [34]. Adenovirus vectors are easily grown to high titers in cell
lines, have high transduction efficiency, have high transgene
expression, and possess a broad range of viral tropism.
Replication-defective Ad5 vectors can be created by deleting E1A
and E1B viral gene regions, which have been well studied for can-
didate HIV-1 vaccines [35–37]. However, an Ad5 vector-based HIV-
1 vaccine candidate failed during clinical trials due to pre-existing
immunity against the Ad5 vector itself [38]. Therefore, developers
of viral-vector-based SARS-CoV-2 vaccines should consider pre-
existing immunity to the vectors. A phase I trial of an Ad5-nCoV
(CanSino Biological Inc.) confirmed the result of diminishing vac-
cine efficiency in individuals with high pre-existing Ad5 immunity
[32]. To induce a high and persistent immune response against
SARS-CoV-2, investigation of prime-boost strategies with heterolo-
gous viral vectors, such as vaccinia virus, VSV, and alternated Ad,
may be promising [39–42]. Using alternative Ad vectors, such as
Ad26, Ad35, and nonhuman Ad-derived vectors that have low sero-
prevalence in humans may circumvent anti-vector immunity [43–
45]. S protein-expressing chimpanzee adenovirus-based vaccine
(ChAdOx1 nCoV-19) [46,47] and an Ad26 vector-based vaccine
(Ad26.COV2-S) have initiated phase III clinical trials [48]. In phase
I/II trials, a homologous ChAdOx1-nCoV-19 prime-boost regimen
was safe, and even a single dose vaccination could induce both
humoral and cellular immune responses [47]. Recombinant vesic-
ular stomatitis virus (VSV) is also an attractive vector for SARS-
CoV-2 vaccine development [49,50]. VSV vector-based vaccines
are well studied, particularly VSVDG-ZEBOV-GP, a vaccine against
Ebola virus that was tested in clinical trials with 20,000 partici-
pants and licensed by the FDA in 2019 [51,52]. VSV vectors have
low viral pathogenicity and rarely have pre-existing anti-vector
immunity in humans. A live-attenuated, replication-competent,
viral vector-based vaccine was developed where the VSV G gene
was replaced with the S gene of SARS-CoV-2 (VSV-DG-spike). A
single-dose vaccination of VSV-DG-spike was able to protect
against SARS-CoV-2 in an animal model [53].

Plasmid DNA vaccine platforms have also been used to design
SARS-CoV-2 candidate vaccines that have entered phase I/II clinical
trials (Table 1). Similar to mRNA-based vaccines, DNA-based vacci-
nes have low translational efficiency and weak immunogenicity
compared to viral vector-based vaccines [54,55]. INO-4800
expresses S protein as an antigenusing a novel electroporationmed-
ical device and showed protective immunity in animal models [56].

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
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Table 1
Overview of technological platforms in candidate vaccines against SARS-CoV-2.

Platform Advantage Vaccine type Vaccine name Developers Stage Reference

Inactivated Well established
manufacturing process

Purified whole SARS-
CoV-2 components

CoronaVac
(PiCoVacc)

Sinovac Phase III [17]

New Crown
COVID-19

Wuhan Institute of Biological Products/
Sinopharm

Phase III [80]

BBIBP-CorV Beijing Institute of Biological Products/
Sinopharm

Phase III [81]

Nucleic acid Rapid and low cost
manufacturing

Lipid-encapsulated
mRNA

mRNA1273 Moderna / NIAID Phase III [18–21]

BNT162b1 BioNTech/Fosun Pharma/Pfizer Phase III [62,82]
Self-amplifying mRNA LNP-

nCoVsaRNA
Imperial College London Phase I [30]

Plasmid DNA with
medical device

INO-4800 Inovio Pharmaceuticals / International
Vaccine Institute

Phase I/II [56]

Viral vector Robust cellular and
humoral vaccine
immunity

Human adenovirus
type5 (Ad5)

Ad5-nCoV CanSino Biological Inc. / Beijing Institute
of Biotechnology

Phase III [32]

Chimpanzee
adenovirus (ChAd)

ChAdOx1 nCoV-
19

AstraZeneca /University of Oxford Phase III [46,47]

Human adenovirus
type 26 (Ad26)

Ad26.COV2-S Janssen Pharmaceutical companies Phase III [48,63,83]

Vesicular stomatitis
virus (VSV)

– Merck / IAVI Pre-clinical [53]
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3. Vaccine efficacy and safety in clinical trials

Immunological features that have been reported in individuals
infected with SARS-CoV-2 have been useful for guiding vaccine
development [4,57–59]. In COVID-19 patients given convalescent
plasma from recovered patients, the immune response to S protein
was robust and SARS-CoV-2-specific CD8+ T cell responses to struc-
tural antigens, such as M and N, were also detected. Furthermore,
SARS-CoV-2-specific CD4+ T cell reactivity was observed in 40%–
60% of unexposed individuals [2].

Classical vaccine development is based on adaptive defense
mechanisms against viral infections. This information is critical
for evaluating vaccine efficacy based on the immunological end-
points outlined for that particular vaccine. For example, if the pur-
pose of a vaccine is to prevent absolute SARS-CoV-2 infection by
robust induction of antiviral immunity, clinical trials should have
appropriate endpoints based on the magnitude of humoral and/
or cellular immunity. Appropriate endpoints do not only mean
higher induction of antiviral protective immunity in certain human
populations but should also consider the conversion rate of vacci-
nated populations. Since some vaccine efficacy is weaker in certain
populations known as ‘‘low-responders” or ‘‘non-responders”, the
conversion rate of vaccinated populations provides useful informa-
tion to estimate the variety of vaccine responses [60]. Although the
magnitude of immune response sufficient to protect against SARS-
CoV-2 infection remains unknown, immunogenicity is a key factor
for vaccine development. In order to enhance vaccine immuno-
genicity, the number of doses, dosage amount, and time intervals
need to be optimized. Subunit and peptide vaccines, in particular,
have weak immunogenicity; therefore, these types of SARS-CoV-
2 vaccines are often developed with novel adjuvant and delivery
systems.

Second, if a vaccine is aimed at preventing infection from vari-
ants of SARS-CoV-2, clinical trials should have appropriate end-
points to evaluate cross-reactivity. Due to mutations in the viral
genome, SARS-CoV-2 retains the potential to evade vaccine-
induced antiviral immune responses. Some licensed vaccines
(e.g., influenza) evaluate only neutralizing antibody production,
and CD4+ and CD8+ T cell responses are not considered [61]. Some
candidate vaccines have assessed antibody production as well as
cellular T cell responses in their clinical trials [18–20,47,62,63].
CD8+ T cell-mediated cellular immunity provides different antiviral
responses from the neutralizing antibody, which plays a crucial
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role in viral clearance [64]. The protective role of pre-existing
SARS-CoV-2 immunity is not yet clear, but vaccination may con-
tribute to less severe symptoms upon SARS-CoV-2 infection. Dur-
ing the 2009 H1N1 influenza pandemic, pre-existing cross-
reactive T cells in the adult population helped prevent severe dis-
ease [65]. It is difficult to evaluate the efficacy of vaccines focused
on pathogenicity upon infection, but incorporating endpoints for T
cell reactivity in response to SARS-CoV-2 proteins can demonstrate
cross-reactivity of the vaccine. Viral genome sequencing identified
fourteen mutation hotspot sites and predicted epitopes containing
S genes [13]. Variants in S protein-encoding D614G increased
infectivity in human lung epithelial cells. Although susceptibility
to antisera neutralization may not be influenced, the D614G
mutated variant has spread all over the world [66].

The tolerance and safety of candidate vaccines are evaluated in
the early stages of clinical trials. In general, higher immunogenicity
is associated with a higher frequency of adverse side effects, which
is attributed to the use of a whole virion or adjuvant approach [67].
In some cases, virus-specific antibodies can enhance infection and
replication, which is known as antibody-dependent enhancement
(ADE) [68]. ADE depends on Fc receptors in host cells and con-
tributes to clinical symptoms, such as acute respiratory injury,
acute respiratory distress syndrome, and inflammation-based
sequelae. Since ADE has been observed in the infection of dengue
virus [69], Zika virus [70], Ebola virus [71], and coronaviruses
[72,73] including SARS-CoV [74] and MERS-CoV [7568], the poten-
tial risk of vaccine-induced ADE should be evaluated in SARS-CoV-
2 vaccine clinical trials.

Finally, clinical trial data regarding the persistence of vaccine-
induced immune responses are important when evaluating effec-
tiveness [76,77]. This will influence administration dosage and
immunization schedules for the vaccine. Clinical features in
COVID-19 patients suggest that asymptomatic individuals have a
weaker immune response to SARS-CoV-2 infection and reduced
neutralizing antibody levels within a few months [78,79]. During
the pandemic, long-lasting protective immunity by single and
low-dose administration will contribute to a prolonged availability
of vaccine supply.

4. Conclusion

Each approach to developing SARS-CoV-2 vaccines has been
challenging. Scientists are collaborating on a global scale and shar-
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ing information and data promptly. During the pandemic, author-
ities are approving candidate vaccines faster and shortening licens-
ing processes, which can normally take several years. In harmony
with this, pharmaceutical companies are conducting clinical trials
faster, focusing on large-scale and cost-effective manufacturing.
In the near future, some candidate vaccines will be licensed and
evaluated for their efficacy and safety in the global market. The
experiences of COVID-19 provide helpful clues to combat the
threat of emerging infectious diseases.
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