
ARTICLE

LIS1 regulates cargo-adapter–mediated activation of
dynein by overcoming its autoinhibition in vivo
Rongde Qiu, Jun Zhang, and Xin Xiang

Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule
motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action
remains unclear. Here, we revealed its function in cargo-adapter–mediated dynein activation in the model organism
Aspergillus nidulans. Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-
binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus
ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be
bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the
motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes
the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.

Introduction
Cytoplasmic dynein-1 (called dynein hereafter) is a microtubule
(MT) motor that transports a variety of cargos in eukaryotic
cells, and defects in dynein-mediated transport are linked to
devastating neurodegenerative diseases and brain develop-
mental disorders (Maday et al., 2014; Jaarsma and Hoogenraad,
2015; Bertipaglia et al., 2018). The dynein–cargo interaction re-
quires the multicomponent dynactin complex as well as specific
cargo adapters (Schroer, 2004; Akhmanova and Hammer, 2010;
Fu and Holzbaur, 2014; Reck-Peterson et al., 2018; Olenick and
Holzbaur, 2019). Importantly, dynactin and cargo adapters also
activate the motility of cytoplasmic dynein in vitro (McKenney
et al., 2014; Schlager et al., 2014; Reck-Peterson et al., 2018;
Olenick and Holzbaur, 2019). The mechanism underlying this
activation was suggested by a recent cryo-EM analysis (Zhang
et al., 2017a). Specifically, the two motor domains of the dynein
heavy chain (HC) dimer are held together in an inactive “phi”
conformation (Torisawa et al., 2014; Zhang et al., 2017a), which
is in equilibrium with an “open” conformation in which the two
domains are separated. While dynein in the “open” conforma-
tion is still not configured properly to move directionally along
MTs by itself, its binding to dynactin and cargo adapter causes
the HC dimer to become parallel for directional movement along
MTs (Zhang et al., 2017a). Moreover, some cargo adapters fa-
cilitate the recruitment of a second dynein dimer to dynactin
(Grotjahn et al., 2018; Urnavicius et al., 2018), further enhancing
dynein force and speed (Urnavicius et al., 2018). While these

are important steps toward understanding dynein regulatory
mechanisms, the cargo-adapter-mediated dynein activation has
never been analyzed in vivo, and it is especially unclear whether
this process is regulated by other proteins in vivo.

Two of the most well-known yet enigmatic dynein regulators
are LIS1 and its binding partner, NudE (Kardon and Vale, 2009;
Vallee et al., 2012; Reck-Peterson et al., 2018; Olenick and
Holzbaur, 2019). LIS1 is encoded by the lis1 gene, whose defi-
ciency causes type I lissencephaly, a human brain develop-
mental disorder (Reiner et al., 1993). Fungal genetic studies first
linked LIS1 to dynein function (Xiang et al., 1995a; Geiser et al.,
1997; Willins et al., 1997). In the filamentous fungus Aspergillus
nidulans, the LIS1 homologue NudF is critical for dynein-
mediated nuclear distribution (Xiang et al., 1995a). A. nidulans
genetics also led to the identification of NudE, a NudF/LIS1-
binding protein (Efimov and Morris, 2000; Feng et al., 2000;
Niethammer et al., 2000; Sasaki et al., 2000), whose homo-
logues participate in dynein function in various systems (Minke
et al., 1999; Liang et al., 2004, 2007; Li et al., 2005a; Stehman
et al., 2007; Yamada et al., 2008; Kardon and Vale, 2009; Ma
et al., 2009; Zhang et al., 2009; Lam et al., 2010; Pandey and
Smith, 2011; Wang and Zheng, 2011; Zyłkiewicz et al., 2011;
Vallee et al., 2012; Raaijmakers et al., 2013; Wang et al., 2013;
Klinman and Holzbaur, 2015; Kuijpers et al., 2016; Simões et al.,
2018; Olenick and Holzbaur, 2019). The mechanism by which
these two proteins regulate dynein remains unclear. The dynein

.............................................................................................................................................................................
Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD.
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HC contains six AAA domains in its motor ring (King, 2000; Asai
and Koonce, 2001), and LIS1 binds AAA3/AAA4 and the stalk
leading to the MT-binding domain (Huang et al., 2012; Toropova
et al., 2014; DeSantis et al., 2017). Intriguingly, purified LIS1
inhibits dynein motility in vitro (Yamada et al., 2008;
McKenney et al., 2010; Huang et al., 2012), unless ATP hydrol-
ysis at AAA3 is blocked (DeSantis et al., 2017). NudE/Nudel (also
called NDEL1) relieves the inhibitory effect of LIS1 (Yamada
et al., 2008; Torisawa et al., 2011), and the NudE–LIS1 complex
enhances dynein force production (McKenney et al., 2010;
Reddy et al., 2016). Moreover, dynactin partially relieves the
inhibition of LIS1 on dynein motility (Wang et al., 2013), and
when both dynactin and cargo adapter are present, LIS1 no
longer inhibits but mildly enhances the dynein movement
(Baumbach et al., 2017; Gutierrez et al., 2017; Jha et al., 2017).
However, the exact molecular mechanism of LIS1 action on
dynein regulation is not known (Reck-Peterson et al., 2018;
Olenick and Holzbaur, 2019).

We have been using the fungal model organism A. nidulans to
investigate dynein regulation in vivo. Unlike budding yeast,
where dynein is required almost exclusively for nuclear mi-
gration/spindle orientation (Eshel et al., 1993; Li et al., 1993),
dynein, dynactin, and LIS1 in filamentous fungi are required not
only for nuclear distribution (Plamann et al., 1994; Xiang et al.,
1994, 1995a) but also for transporting a variety of other cargos,
including early endosomes and their hitchhiking partners
(Wedlich-Söldner et al., 2002; Lenz et al., 2006; Abenza et al.,
2009; Zekert and Fischer, 2009; Baumann et al., 2012; Bielska
et al., 2014a; Higuchi et al., 2014; Egan et al., 2015; Guimaraes
et al., 2015; Pohlmann et al., 2015; Salogiannis et al., 2016;
Peñalva et al., 2017; Otamendi et al., 2019). In filamentous fungi
and budding yeast, dynein, dynactin, and LIS1–NudE all accu-
mulate at the MT plus ends (Han et al., 2001; Efimov, 2003; Lee
et al., 2003; Sheeman et al., 2003; Zhang et al., 2003; Li et al.,
2005a; Lenz et al., 2006; Moore et al., 2008; Callejas-Negrete
et al., 2015). The MT plus-end accumulation of dynein is im-
portant for spindle-orientation/nuclear migration and for early
endosome transport (Lee et al., 2003; Sheeman et al., 2003; Lenz
et al., 2006; Omer et al., 2018; Xiang, 2018). In A. nidulans and
Ustilago maydis, plus end dynein accumulation depends on dy-
nactin and kinesin-1, but not NudF/LIS1 (Zhang et al., 2003,
2010; Lenz et al., 2006; Egan et al., 2012; Yao et al., 2012). This
differs from the situation in budding yeast, where LIS1 is critical
for dynein’s plus-end accumulation, and in mammalian cells,
where both LIS1 and dynactin are critical (Lee et al., 2003;
Sheeman et al., 2003; Splinter et al., 2012). Recently, the inter-
action between fungal dynein and early endosome has been
found to be mediated by dynactin as well as the Fhip–Hook–Fts
complex (Walenta et al., 2001; Xu et al., 2008; Zhang et al., 2011,
2014; Bielska et al., 2014b). Within the Fhip–Hook–Fts complex,
Hook (HookA in A. nidulans and Hok1 in U. maydis) interacts
with dynein–dynactin and Fhip interacts with early endosome
(Bielska et al., 2014b; Yao et al., 2014; Zhang et al., 2014; Guo
et al., 2016; Schroeder and Vale, 2016). The function of dynactin
and the Hook complex in early endosome transport is evolu-
tionarily conserved (although multiple Hook proteins in mam-
malian cells participate in even more functions of dynein; Yeh

et al., 2012; Guo et al., 2016; Dwivedi et al., 2019; Olenick et al.,
2019), and importantly, mammalian Hook proteins activate
dynein in vitro (McKenney et al., 2014; Olenick et al., 2016;
Schroeder and Vale, 2016).

Here, we developed a new assay to examine HookA-mediated
dynein activation in A. nidulans and revealed the role of LIS1 in
this context. Specifically, we overexpressed HookA lacking the
C-terminal early endosome-binding site (ΔC-HookA), which
binds dynein–dynactin, but not early endosome (Zhang et al.,
2014). In contrast to the MT plus-end accumulation of dynein–
dynactin in wild-type cells, ΔC-HookA overexpression shifts the
accumulation to the MT minus ends. LIS1 and its binding pro-
tein, NudE, are both required for this cargo-adapter–mediated
dynein relocation in vivo. Interestingly, dynein mutations that
open up the autoinhibited phi conformation of dynein allow the
requirement of LIS1 or NudE to be bypassed to a significant
extent in vivo. We suggest that the function of LIS1 is linked to a
key step of dynein activation: shifting from the autoinhibited phi
conformation to an open conformation that allows dynein to be
fully activated.

Results
Dynein and dynactin are relocated from the MT plus ends to
the minus ends upon overexpression of ΔC-HookA
To examine cargo-adapter–mediated dynein activation in vivo,
we sought to create A. nidulans cells where dynein and dynactin
are occupied by cytosolic cargo adapters. To do that, we replaced
the wild-type hookA allele with the gpdA-ΔC-hookA-S allele so
that ΔC-HookA (missing its cargo-binding site) is overexpressed
under the constitutive gpdA promoter (Fig. 1, A and B; and Fig.
S1, A and B; Pantazopoulou and Peñalva, 2009; Zhang et al.,
2011). Overexpression of ΔC-HookA did not inhibit colony
growth significantly (Fig. 1 C) but caused a partial nuclear-
distribution defect (Fig. S1, C and D), possibly due to a loss of
dynein’s MT plus-end accumulation (see below; Xiang, 2018). In
wild-type strains, GFP-labeled dynein and dynactin (p150 sub-
unit) formed comet-like structures near the hyphal tip, repre-
senting their MT plus-end accumulation (Han et al., 2001; Zhang
et al., 2003; Fig. 1, D–F). Upon overexpression of ΔC-HookA, the
plus-end comets of dynein or dynactin disappeared from almost
all hyphal tips (Fig. 1, D–F), although signals along MT-like
tracks were seen in some hyphae (Figs. 1 D and S2 A). This
was not caused by a defect in MT organization, because
mCherry-labeled ClipA/Clip170 (Zeng et al., 2014) formed plus-
end comets in the same cells (Fig. 1 D). A dominant feature in
these cells is the accumulation of dynein and dynactin at septa,
which are structures known to contain active MT-organizing
centers (MTOCs; Konzack et al., 2005; Xiong and Oakley,
2009; Zekert et al., 2010; Zhang et al., 2017b; Fig. 1, E and F).
In some of these cells, movement of GFP-dynein toward a sep-
tum can be observed (Fig. S2 A and Video 1). Dynein at septa was
found in wild-type cells (Liu et al., 2003), but the signals were
much less obvious compared with the strong accumulation upon
ΔC-HookA overexpression (Fig. 1 E). Besides septal MTOCs, the
nuclear envelope–associated spindle-pole body (SPB) represents
the earliest-discovered MTOC (Oakley et al., 1990). Previously,
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we were only able to detect dynein signals at the mitotic spindle
poles during anaphase (Li et al., 2005b). To determine if dynein
or dynactin is at the interphase SPBs in ΔC-HookA–overexpressed
cells, we used the NLS-DsRed fusion that labels nuclei during
interphase (Shen and Osmani, 2013). We found clear SPB-like
signals of dynein and dynactin on interphase nuclei in some
ΔC-HookA–overexpressed cells (Figs. 1 G and S2 B), which were
never observed in wild-type cells. However, the septal signals of
dynein–dynactin in the gpdA-ΔC-hookA-S cells were brighter and
more consistently observed than the SPB signals (Fig. S2 C), and
thus, we used the septal signals to indicate MT minus-end accu-
mulation in the rest of the work.

The plus-end to minus-end (MTOC) relocation of dynein–
dynactin is fully consistent with cargo-adapter–mediated dynein
activation observed in vitro (McKenney et al., 2014; Schlager
et al., 2014; Olenick et al., 2016; Schroeder and Vale, 2016;
Baumbach et al., 2017; Jha et al., 2017). In the budding yeast,
dynein also uses its motor activity to move from the plus end
toward the minus end upon overexpression of the coiled-coil
domain of the cortical dynein anchor Num1 (Lammers and
Markus, 2015). Despite these consistent data, we sought to fur-
ther confirm that the relocation from the plus end to the minus
end needs functional dynein in A. nidulans. To do that, we

examined the effect of a previously identified dynein loss-of-
function mutation, nudAF208V. The nudAF208V mutation in the
dynein tail impairs dynein-mediated nuclear distribution and
early endosome transport but does not affect dynein–dynactin
interaction or dynein–early-endosome interaction (Qiu et al.,
2013), consistent with the importance of the tail in dynein mo-
tor activity (Ori-McKenney et al., 2010; Rao et al., 2013; Hoang
et al., 2017). Upon overexpression of ΔC-HookA, plus-end com-
ets formed by GFP-dynein with the nudAF208V mutation were
still detected (Fig. 1 H), confirming that functional dynein is
needed for this relocation.

NudF/LIS1 is required for ΔC-HookA–activated relocation of
dynein from the MT plus ends to the minus ends
To examine the role of NudF/LIS1 in ΔC-HookA–mediated dynein
activation in vivo, we used the temperature-sensitive nudF6
mutant in which the NudF/LIS1 protein is unstable at its restric-
tive temperature (Xiang et al., 1995a). The nudF6 mutation
(identified as nudFL304S in this work) caused a significant defect in
ΔC-HookA–activated relocation of dynein and dynactin from the
MT plus ends to the septa. Specifically, while the MT plus-end
comets formed by dynein or dynactin disappeared and were
replaced by the septal accumulation of these proteins in gpd

Figure 1. Overexpression of ΔC-HookA by the gpdA promoter drives dynein–dynactin relocation from the MT plus ends to the minus ends. (A) A
diagram showing the wild-type hookA allele, the ΔC-hookA-S allele, and the gpdA-ΔC-hookA-S allele. (B)Western blots showing the ΔC-HookA-S protein being
overexpressed by the gpdA promoter. GFP-histone H1was used as a loading control. (C) Colony phenotype of a gpdA-ΔC-hookA-S strain in comparison to that of
a wild-type control and a ΔC-hookA-S strain. (D) Images of GFP-dynein in wild-type and gpdA-ΔC-hookA-S strains. Plus-end dynein comets near the hyphal tip
(arrowheads) are present in wild-type, but not in a gpdA-ΔC-hookA-S hypha, although the plus-end comets of mCherry-ClipA/CLIP-170 are present in the same
gpdA-ΔC-hookA-S hypha. Brightness is increased by 30% for all three images. (E) Accumulation of GFP-dynein as plus-end comets in a wild-type control and on
a septum (arrows) in a gpdA-ΔC-hookA-S strain. Bright-field images are shown below to indicate hyphal shape and position of the septum. (F) Accumulation of
p150-dynactin-GFP as plus-end comets in a wild-type control and on a septum in a gpdA-ΔC-hookA-S strain. (G) The localization of GFP-dynein on nuclei
labeled with NLS-DsRed in the gpdA-ΔC-hookA-S strain. A wild-type control is presented. Brightness is increased by 50% for both images. (H) Plus-end dynein
comets in the nudAF208V, gpdA-ΔC-hookA-S strain. Bars, 5 µm.
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A-ΔC-hookA-S cells, introducing the nudF6 allele into this
background caused dynein and dynactin to form plus-end com-
ets instead of the septal accumulation (Fig. 2, A–C). Similar to nudF6,
another temperature-sensitivemutation, nudF7 (Xiang et al., 1995a),
and a conditional-nullmutation, alcA-nudF, which allowsNudF/LIS1
expression to be shut off by glucose-mediated repression at the alcA
promoter (Xiang et al., 1995a), also retained dynein at the MT plus
ends upon overexpression of ΔC-HookA (Fig. 2 D). Together, these
results indicate that NudF/LIS1 is critically required for ΔC-
HookA–mediated dynein activation in A. nidulans.

NudF/LIS1 does not accumulate at the MT minus ends upon
overexpression of ΔC-HookA
Unlike dynein or dynactin, NudF/LIS1-GFP did not accumulate
at septa upon overexpression of ΔC-HookA (Fig. 3 A). Instead,
the plus-end comets formed by NudF/LIS1-GFP were still ob-
served upon overexpression of ΔC-HookA. However, the comet
intensity was significantly lower than that in wild-type cells,
although the NudF/LIS1-GFP protein level was not decreased
apparently (Fig. 3, A–C). Thus, ΔC-HookA may drive some
NudF/LIS1 proteins to leave the MT plus end with dynein–
dynactin, but the association is not maintained. This is consis-
tent with previous studies showing that dynein and dynactin
associate with the early endosome undergoing dynein-mediated
transport but that LIS1 dissociates from it after the initiation of
transport (Lenz et al., 2006; Egan et al., 2012).

Dynein along MTs can be activated by ΔC-HookA to relocate
to the minus ends, and NudF/LIS1 is also important for
this process
We next sought to address whether dynein can undergo cargo-
adapter–mediated activation only at theMT plus ends. In hyphae
of U. maydis, although many early endosomes start their
dynein–dynactin–LIS1–dependent minus-end–directed trans-
port from the MT plus end after being delivered there by
kinesin-3 (Lenz et al., 2006), dynein-dependent early endosome
transport often initiates in the middle of a MT before the early
endosome reaches the plus end (Schuster et al., 2011). In
fungi and higher eukaryotic cells, including neurons, plus-
end–directed kinesins are required for the accumulation of
dynein at the MT plus ends (Zhang et al., 2003; Carvalho et al.,
2004; Lenz et al., 2006; Arimoto et al., 2011; Roberts et al., 2014;
Twelvetrees et al., 2016). In the ΔkinA (Kinesin-1) mutant of A.
nidulans (Requena et al., 2001), dynein fails to arrive at the MT
plus ends but locates along MTs (Zhang et al., 2003, 2010; Egan
et al., 2012). We found that GFP-dynein in cells with the ΔkinA
and gpdA-ΔC-hookA-S alleles accumulated at septa (Fig. 4 A),
suggesting that dynein along MTs can be activated before
arriving at the plus ends as long as cargo adapters are available
globally. However, adding the nudF6 mutation to the genetic
background with the ΔkinA and gpdA-ΔC-hookA-S alleles caused
the septal accumulation of dynein to be significantly decreased
and dynein along MTs to be more obvious (Fig. 4, A and B).

Figure 2. NudF/LIS1 is required for the relocation of dynein and dynactin from the MT plus ends to the minus ends upon ΔC-HookA overexpression.
(A) GFP-dynein in wild type, a gpdA-ΔC-hookA-S strain, and a nudF6, gpdA-ΔC-hookA-S strain. Note that GFP-dynein accumulates as MT plus-end comets, but
not at the septum, in the nudF6, gpdA-ΔC-hookA-S hypha. Bright-field images are shown below to indicate hyphal shape and position of the septum. Hyphal tips
are indicated by arrowheads and septa by arrows. (B) A quantitative analysis on dynein comet intensity in the nudF6, gpdA-ΔC-HookA-S strain (n = 61) in
comparison to those in wild type (n = 61) and the gpdA-ΔC-HookA-S strain (n = 10). The average wild-type value is set as 1. Scatterplots with mean and SD
values were generated by Prism 8. ****, P < 0.0001; **, P < 0.01 (Kruskal–Wallis ANOVA test with Dunn’s multiple comparisons test, unpaired). (C) p150-
dynactin-GFP in wild type, a gpdA-ΔC-hookA-S strain, and a nudF6, gpdA-ΔC-hookA-S strain. Note that GFP-dynactin accumulates as plus-end comets, but not at
the septum, in the nudF6, gpdA-ΔC-hookA-S strain. (D) GFP-dynein in a nudF7, gpdA-ΔC-hookA-S strain and an alcA-nudF, gpdA-ΔC-hookA-S strain. Note that
GFP-dynein plus-end comets are present in these cells. Bars, 5 µm.
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Thus, NudF/LIS1 is important for cargo-adapter–mediated
dynein activation even when dynein is not at the MT plus
ends. This is consistent with the finding that neuronal LIS1 is
important for transport initiation not only in the distal axon
containing dynamic MT plus ends but also in the midaxon with
much more stable MTs (Moughamian et al., 2013).

The dynein–dynactin–ΔC-HookA complex is still formed
without NudF/LIS1
We next used a biochemical pull-down assay to determine if the
defect in dynein activation in cells lacking NudF/LIS1 is caused
by a defect in the formation of the dynein–dynactin–ΔC-HookA
complex. For this assay, we combined the ΔC-HookA-GFP fusion

Figure 3. NudF/LIS1 proteins do not relocate toMT
minus ends upon overexpression of ΔC-HookA.
(A) NudF/LIS1-GFP signals accumulate as plus-end
comets, but not at the septum, in a gpdA-ΔC-hookA-S
strain. Hyphal tips are indicated by arrowheads and
septa by arrows. Bars, 5 µm. (B) A quantitative analysis
of the NudF/LIS1-GFP comet intensity in wild-type (n =
57) and gpdA-ΔC-hookA-S (n = 55) strains. Two sets of
GFP-dynein data (used in Fig. 2 B) were shown for
comparison, but only the wild type (n = 61) was in-
cluded in the statistical analysis. The average wild-type
value for GFP-dynein is set as 1. Scatterplots with
mean and SD values were generated by Prism 8. ****,
P < 0.0001 (Kruskal-Wallis ANOVA test with Dunn’s
multiple comparisons test, unpaired). (C) A Western
blot showing that the protein level of NudF/LIS1-GFP
(arrow) is not changed apparently upon ΔC-HookA
overexpression in the gpdA-ΔC-hookA-S strain. A
strain without the NudF/LIS1-GFP fusion is used as a
negative control for the anti-GFP antibody. Note that a
nonspecific band slightly above the 50-kD marker
helps to show equal loading in the three lanes.

Figure 4. Dynein along MTs in the ΔkinA
mutant relocates to the minus ends upon ΔC-
HookA overexpression, and NudF/LIS1 plays
an important role in this process. (A) Images
of GFP-dynein in wild type, a ΔkinA strain, a
ΔkinA, gpdA-ΔC-hookA-S strain, and a nudF6,
ΔkinA, gpdA-ΔC-hookA-S strain. Hyphal tips are
indicated by arrowheads and septa by brown
arrows. Bars, 5 µm. (B) A quantitative analysis of
septal GFP-dynein signal intensity in ΔkinA,
gpdA-ΔC-hookA-S (n = 74) and nudF6, ΔkinA,
gpdA-ΔC-hookA-S (n = 62) strains. The average
value for the ΔkinA, gpdA-ΔC-hookA-S strain is
set as 1. Scatterplots with mean and SD values
were generated by Prism 8. ****, P < 0.0001
(Student’s t test, two-tailed, unpaired). (C) West-
ern blots showing that dynein HC and dynactin
p150 are pulled down with ΔC-HookA-GFP in wild
type and the alcA-nudF mutant in which the ex-
pression of NudF/LIS1 is shut off. The Δp25 mu-
tant was used as a negative control. (D) A
quantitative analysis on the ratio of pulled-down
dynein HC to ΔC-HookA-GFP (dynein/ΔC-HookA)
and that of pulled-down dynactin p150 to ΔC-
HookA-GFP (dynactin/ΔC-HookA). The values
were generated from western analyses of four
independent pull-down experiments (n = 4 for all).
Thewild-type values are set as 1. Scatterplots with
mean and SD values were generated by Prism 8.
**, P < 0.01 (Student’s t test, two tailed, unpaired).
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under the control of the endogenous hookA promoter (Zhang
et al., 2014) with the alcA-nudF mutant in which NudF/LIS1
expression is shut off by glucose-mediated repression at the alcA
promoter (Xiang et al., 1995a). The Δp25 mutant was used as a
negative control, because p25 of dynactin is important for the
formation of the dynein–dynactin–ΔC-HookA complex (Zhang
et al., 2014; Qiu et al., 2018). In the alcA-nudF mutant, where
NudF/LIS1 is undetectable, both dynactin and dynein were still
pulled down with ΔC-HookA-GFP, and only a very mild reduc-
tion in the ratio of pulled-down dynein to ΔC-HookA compared
with that of the wild type was detected (Fig. 4, C and D). Thus,
the role of NudF/LIS1 in dynein activation cannot be simply
explained by its involvement in the formation of the dynein-
dynactin-cargo adapter complex in vivo, suggesting that NudF/
LIS1 must be critical for another step of dynein activation.

The phi-opening mutations allow the requirement of NudF/
LIS1 to be bypassed to a significant extent
A key step of dynein activation is the switch of dynein from the
autoinhibited phi–dynein conformation (Torisawa et al., 2014;
Zhang et al., 2017a) to an open conformation that can undergo
further activation by dynactin and cargo adapter in vitro to
become a processive motor (Zhang et al., 2017a). Formation of
phi–dynein depends on interactions between the two dynein
HCs, including the ionic interactions between the linker domain
and AAA4, and mutating two linker residues opens up phi–
dynein (Zhang et al., 2017a). In mammalian cells, dynein with
these phi-opening mutations is enriched at centrosomes/spindle
poles together with dynactin (Zhang et al., 2017a). To investigate
the relationship between phi–dynein and LIS1 function, we
constructed an A. nidulans strain containing the two analogous
phi-opening mutations nudAR1602E, K1645E (Fig. 5 A). In addition,
we also obtained the nudAR1602E mutant containing only one of
the two phi-opening mutations due to a homologous recombi-
nation between the two sites. In either case, the wild-type nudA
allele is replaced by the mutant allele (confirmed by sequencing
of the genomic DNA). The nudAR1602E, K1645E mutant showed a
partial defect in nuclear distribution (Fig. S3, A and B), and it
formed a colony smaller than wild type, especially at a higher
temperature, such as 37°C or 42°C, but the colony phenotype of
the nudAR1602E mutant was not as obvious (Figs. 5 B and S3 C).
We also found that combining gpdA-ΔC-hookA-Swith nudAR1602E,
K1645E made the colony almost inviable (Fig. S3 D).

The nudAR1602E, K1645E mutant exhibited a striking accumula-
tion of GFP-dynein at septa together with mCherry-RabA–labeled
early endosomes (Figs. 5 C and S4 A). Interestingly, GFP-dynein
with the nudAR1602E single mutation also accumulated at septa
together with early endosomes (Fig. 5 C), suggesting that this
mutation must have opened the phi–dynein at least partially.

As the full-length HookA is associated with early endosome, it
is most likely that HookA and dynactin activate the open dynein, a
notion consistent with the in vitro result that open dynein by itself
is not able to walk along the MT processively without dynactin
and cargo adapter (Zhang et al., 2017a). By using the ΔhookA
mutant, we showed that the open dynein is able to localize to the
MT plus end. Specifically, we introduced the ΔhookA allele into the
strain containing nudAR1602E, K1645E and found bright plus-end

dynein comets in this strain (Fig. S4 B). It is also interesting to
note that loss of hookA did not fully eliminate the septal dynein
accumulation, although it abolished the dynein–early endosome
colocalization (Fig. S4 B), consistent with the previously observed
movement of early-endosome–free dynein (Schuster et al., 2011).
It needs to be addressed in the future whether these septal dynein
molecules have been activated by other dynein cargoes whose
transport is Hook independent and mediated by adapters waiting
to be identified (Peñalva et al., 2017).

To determine if the phi-opening mutations can bypass NudF/
LIS1 function in vivo, we introduced these mutations into the
ΔnudF (nudF-deletion) mutant background. Amazingly, both the
nudAR1602E and nudAR1602E, K1645E mutations enhanced growth of
the ΔnudF mutant colony (Fig. 5 B). Moreover, the nudAR1602E,
K1645E mutations allowed dynein and early endosomes to be seen
at septa of the ΔnudFmutant (Fig. 5 D). Thus, artificially opening
phi–dynein allows the requirement of NudF/LIS1 to be partially
bypassed. We then performed a more detailed imaging analysis
using the temperature-sensitive nudF6 mutant containing either
nudAR1602E or nudAR1602E, K1645E (note that the nudF6 mutant is
much healthier than ΔnudF at a lower temperature, allowing us
to obtain enough spores for quantitative imaging). In the nudF6
mutant grown at its restrictive temperature, GFP-dynein with
nudAR1602E mainly formed plus-end comets, but GFP-dynein
with nudAR1602E, K1645E accumulated at septa together with
early endosomes, even though plus-end comets did not com-
pletely disappear (Fig. 6, A–C). This result suggests that the
nudAR1602E single mutation must have only opened phi–dynein
partially and is not able to compensate for the loss of NudF/LIS1
as effectively as the nudAR1602E, K1645E allele.

It was found previously that phi opening enhances the for-
mation of the mammalian dynein–dynactin–cargo-adapter
complex in vitro (Zhang et al., 2017a). To determine if this
happens in A. nidulans, we performed a biochemical pull-down
assay using strains carrying GFP-dynein with the phi-opening
mutations and the ΔC-HookA-S fusion expressed under the
control of the endogenous hookA promoter. Interestingly, both
nudAR1602E and nudAR1602E, K1645E caused an increase in the
amount of ΔC-HookA pulled down with GFP-dynein, although
the increase caused by nudAR1602E is slightly less significant than
that caused by nudAR1602E, K1645E (Fig. 6, D and E). In addition,
nudAR1602E, K1645E caused a mild increase in the amount of dy-
nactin pulled down with GFP-dynein, but no significant change
in the amount of NudF/LIS1 pulled down was detected (Fig. 6, D
and E).

Importantly, upon overexpression of ΔC-HookA, GFP-dynein
with nudAR1602 accumulated at septa in the nudF6 background,
which is in sharp contrast to the plus-end accumulation of wild-
type dynein in the same genetic background (Fig. 7, A and B).
This result suggests that the cargo adapter works synergistically
with the partial phi-opening mutation to overcome the inhibi-
tion in dynein activation caused by loss of NudF/LIS1.

NudE is required for dynein activation and its loss is partially
compensated by the phi-opening mutations
Previous studies have suggested a role of NudE in enhancing
LIS1 function by recruiting LIS1 to dynein (Efimov, 2003; Shu
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et al., 2004; Li et al., 2005a; McKenney et al., 2010; Zyłkiewicz
et al., 2011; Wang et al., 2013). However, NudE was also thought
to relieve the inhibition of LIS1 on dynein motility (Yamada
et al., 2008). More interestingly, NudE and the p150 subunit
of dynactin both bind to the N-terminus of dynein intermediate
chain andmay compete for the binding site (Karki and Holzbaur,
1995; Vaughan and Vallee, 1995; King et al., 2003; McKenney
et al., 2011; Wang et al., 2013; Jie et al., 2017). The role of NudE
in cargo-adapter–mediated dynein activation has never been
addressed in vivo or in vitro. To address this, we first introduced
GFP-dynein and the gpdA-ΔC-hookA-S allele into the ΔnudE
background. We found that although overexpression of ΔC-
HookA drives dynein relocation from the MT plus ends to the
minus ends, this does not happen in the ΔnudEmutant (Fig. 8 A).
Thus, just like NudF/LIS1, NudE is also required for cargo-
adapter–mediated dynein activation.

Furthermore, we found that the phi-opening mutations of
dynein allow the function of NudE to be bypassed to a significant
extent. In the ΔnudEmutant, dynein accumulates at the MT plus
end as shown previously (Efimov, 2003), and mCherry-
RabA–labeled early endosomes accumulate abnormally at the
hyphal tip (Fig. 8 B), as similarly observed upon loss of NudF/
LIS1 (Lenz et al., 2006; Zhang et al., 2010; Egan et al., 2012).
Importantly, the presence of the phi-openingmutations caused a
significant (although not complete) relocation of dynein and

early endosome to the septa in the ΔnudE mutant (Fig. 8 B and
Fig. S5, A–C). The result that the nudAR1602E single mutation
allowed a significant septal accumulation of dynein in the ΔnudE
mutant (Figs. 8 B and S5 C), but not in the nudF6 mutant (Fig. 6,
A and C), is consistent with the notion that the function of NudF/
LIS1 is only partially lost upon loss of NudE in fungi (Efimov and
Morris, 2000; Li et al., 2005a; Efimov et al., 2006).

Discussion
In this study, we developed a robust in vivo assay for cargo-
adapter–mediated dynein activation, which allowed us to dis-
sect the function and mechanism of the dynein regulator NudF/
LIS1 (called LIS1 hereafter). We found that both LIS1 and its
binding protein, NudE, are critical for cargo-adapter–mediated
dynein activation in vivo. Remarkably, the requirement for LIS1
or NudE in vivo is bypassed to a significant extent if the auto-
inhibited phi–dynein is opened up artificially. Our results
provide the in vivo evidence to suggest that LIS1–NudE
may promote the opening of phi–dynein, a key step of dynein
activation.

LIS1 is required for cytoplasmic dynein function in many
different cell types (Kardon and Vale, 2009; Vallee et al., 2012;
Olenick and Holzbaur, 2019). Possibly, it also regulates dynein
inside cilia/flagella, where dynactin is absent, since LIS1 is

Figure 5. Phi opening allows NudF/LIS1 function to be partially bypassed. (A) A cartoon showing the phi-opening mutations (Zhang et al., 2017a) and a
sequence alignment of corresponding dynein HC regions from human (H.s.) and A. nidulans (A.n.). (B) Colony phenotypes of phi-opening mutants and sup-
pression of the ΔnudF growth defect by the phi-opening mutations at 32°C and 37°C. (C) GFP-dynein with nudAR1602E or nudAR1602E, K1645E accumulates at septa
with early endosomes (mCherry-RabA), while GFP-dynein in the wild-type nudA background forms MT plus-end comets. Hyphal tips are indicated by
arrowheads and septa by arrows. (D) Images of GFP-dynein and mCherry-RabA in ΔnudF and ΔnudF, nudAR1602E, K1645E strains. Note that GFP-dynein with
nudAR1602E, K1645E is able to accumulate at septa with mCherry-RabA in the absence of NudF/LIS1. Bars, 5 µm.
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associated with outer-arm dynein required for flagellar beating,
and the intraflagella transport dynein-2 is regulated by a phi-
like autoinhibited state (Pedersen et al., 2007; Rompolas et al.,
2012; Toropova et al., 2017; Roberts, 2018). Our results on the
positive role of LIS1 in dynein activation are consistent with the
results that LIS1 enhances the speed and/or frequency of dynein
motility to varying extents in different in vitro motility assays in
the presence of dynactin and the N-terminal portion of the cargo
adapter BicD2 (Baumbach et al., 2017; Gutierrez et al., 2017; Jha
et al., 2017). Nevertheless, the results from A. nidulans are more
striking. While the dynein–dynactin–cargo-adapter complex
moves robustly toward the MTminus end in the absence of LIS1
in vitro (McKenney et al., 2014; Schlager et al., 2014), LIS1 is
critical for the ΔC-HookA–activated dynein relocation in vivo.
We postulate that the intracellular environment may require
dynein to operate under higher tension and with more compli-
cated regulations. For example, tension applied to the dynein
linker domain in vitro alters the regulatory requirement for

dynein motility (Nicholas et al., 2015), as revealed during ana-
lyzing the AAA3 domain of dynein (Bhabha et al., 2014; DeWitt
et al., 2015; Nicholas et al., 2015).

In A. nidulans, dynein carrying the phi-opening mutations
dramatically accumulates at septal MTOCs with early endo-
somes, suggesting that opening the phi–dynein must have al-
lowed dynein to bind more robustly to dynactin and cargo
adapter (Fig. 6, D and E; Zhang et al., 2017a) and/or switch to the
active conformation more effectively after cargo binding. In-
terestingly, only the two mutations that open phi–dynein more
completely can partially bypass the requirement of LIS1 function
to allow dynein to be accumulated at the septa. However, the
single nudAR1602E mutation, which presumably opens phi–
dynein incompletely, also allows the requirement of LIS1 for
dynein activation to be partially bypassed when ΔC-HookA is
overexpressed. Thus, binding of cargo adapter can further pro-
mote the open state of dynein to compensate for LIS1 loss. This is
consistent with the model that dynactin and cargo adapter

Figure 6. Phi opening partially compensates for NudF/LIS1 deficiency and mildly enhances the formation of the dynein–dynein–ΔC-HookA complex.
(A) Images of GFP-dynein and mCherry-RabA in a nudF6 strain, a nudF6, nudAR1602E strain, and a nudF6, nudAR1602E, K1645E strain. Hyphal tips are indicated by
arrowheads and septa by arrows. Note that GFP-dynein with nudAR1602E, K1645E accumulates at a septum with early endosomes (mCherry-RabA) in the nudF6
mutant. (B) A quantitative analysis on GFP-dynein comet intensity in wild-type (n = 35), nudAR1602E (n = 71), nudAR1602E, K1645E (n = 49), nudF6, nudAR1602E (n =
62), and nudF6, nudAR1602E, K1645E (n = 33) strains. The average value for wild type is set as 1. (C) A quantitative analysis on septal dynein intensity in wild-type
(n = 55), nudAR1602E (n = 62), nudAR1602E, K1645E (n = 42), nudF6, nudAR1602E (n = 32), and nudF6, nudAR1602E, K1645E (n = 30) strains. The average value for the
nudAR1602E, K1645E strain is set as 1. For both B and C, scatterplots with mean and SD values were generated by Prism 8. ****, P < 0.0001; ***, P < 0.001; **, P <
0.01 (Kruskal–Wallis ANOVA testwith Dunn’s multiple comparisons test, unpaired). (D)Western blots showing the effects of the nudAR1602E and nudAR1602E, K1645E

mutations on dynein–dynein–ΔC-HookA complex formation. A ΔC-hookA-S strain without GFP-dynein was used as a negative control. (E) A quantitative analysis
on the ratios of pulled-down dynactin p150, ΔC-HookA-S, and NudF/LIS1 to GFP-dynein HC, indicated as Dynactin/Dynein, ΔC-HookA/Dynein, and LIS1/Dynein,
respectively. The values were generated from western analyses of three independent pull-down experiments (n = 3 for all). The wild-type values are set as 1.
Scatterplots with mean and SD values were generated by Prism 8. ***, P < 0.001; **, P < 0.01; *, P < 0.05 (one-way ANOVA, unpaired).
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further switch dynein to the active state, thereby preventing the
equilibrium from being shifted toward the phi state (Zhang
et al., 2017a). Without dynactin and cargo adapter, LIS1 may
still promote the open state, but dynein would not be fully
functional to move along MTs (Zhang et al., 2017a). Both phi
opening and LIS1 promote the dynein–dynactin–cargo-adapter
complex formation in vitro (Baumbach et al., 2017; Zhang et al.,
2017a), and LIS1 also enhances the dynein–dynactin interaction
in Drosophila melanogaster and Xenopus laevis egg extracts (Dix
et al., 2013; Wang et al., 2013). However, this role of LIS1 is not
obvious in A. nidulans in the presence of the cytosolic ΔC-HookA
expressed under the control of hookA’s endogenous promoter
(Fig. 4, C and D). It is possible that the concentrations of ΔC-
HookA, the dynein complex, and the dynactin complex in A.
nidulans are high enough to allow the formation of the
dynein–dynactin–ΔC-HookA complex without LIS1. Together,
our results suggest that promoting the switch from the auto-
inhibited phi–dynein to open dynein rather than enhancing the
dynein–dynactin–cargo-adapter complex formation per se is one
key function of LIS1 in A. nidulans (Fig. 9).

Recently, LIS1’s role in promoting the switch from phi–
dynein to open dynein has also been supported by results from
in vitro and yeast genetic studies, and structural studies further
suggest that the binding of LIS1 to the dynein motor domain at
AAA3/AAA4 and/or stalk stabilizes the open dynein (Huang
et al., 2012; Toropova et al., 2014; DeSantis et al., 2017; Zhang
et al., 2017a; Elshenawy et al., 2019 Preprint; Olenick and
Holzbaur, 2019; Htet et al., 2019 Preprint; Marzo et al., 2019
Preprint). This function of LIS1 would in turn facilitate the
cargo-adapter–dynactin–mediated switch of dynein to a fully
functional state with the two dynein HCs being in a parallel
configuration (Zhang et al., 2017a). Interestingly, the LIS1-
binding protein NudE is also required for dynein activation
in vivo, and the requirement of NudE is also bypassed to a sig-
nificant extent by the phi-opening mutations. This is consistent
with the notion that NudE enhances LIS1 function. NudE binds
to the dynein intermediate chain in the dynein tail, a site also

required for dynactin binding (McKenney et al., 2011; Wang
et al., 2013; Jie et al., 2017). As the two dynein tails are held to-
gether at several positions in the phi–dynein conformation
(Fig. 9; Zhang et al., 2017a), it cannot be excluded that NudEmay
participate in phi opening from the tail side to promote LIS1
function. However, because overexpression of LIS1 totally
compensates for the loss of NudE (Efimov, 2003), we favor the
possibility that NudE is not directly involved in phi opening but
simply helps bring LIS1 close to its site of action.

Since the two phi-opening mutations allow LIS1 function to
be bypassed to a significant extent, but not completely, we
would not rule out the possibility that LIS1 has additional roles in
dynein regulation besides shifting phi–dynein toward an open
conformation. This is agreeable with recent data from other
laboratories, which are consistent with LIS1’s role in promoting
the open conformation of dynein but show that the function of
LIS1 is not fully mimicked by the phi-opening mutations
(Elshenawy et al., 2019 Preprint; Htet et al., 2019 Preprint; Marzo
et al., 2019 Preprint). We should also point out that constitutively
opening up phi–dynein as achieved by the phi-opening muta-
tions has a clear negative effect inside cells, as it causes mitotic
defects in mammalian cells (Zhang et al., 2017a) and a defect in
nuclear distribution in A. nidulans (Fig. S3, A and B). Thus, phi
opening must be regulated for normal dynein function in vivo,
and identification of the regulatory factors will be an important
task in the future.

One important issue is the spatial regulation of dynein acti-
vation mediated by dynactin, cargo adapter, and LIS1 in cells. In
fungal hyphae, dynein and dynactin accumulate at the MT plus
end before interacting with cargo adapters, and the plus-end
accumulation of LIS1 should facilitate dynein activation at the
plus end. However, although the MT plus end has been con-
sidered as a cargo-loading site in various cell types (Vaughan
et al., 2002; Lenz et al., 2006; Lomakin et al., 2009; Moughamian
et al., 2013), dynein molecules along a MT may also be involved
in cargo-adapter–mediated dynein activation that needs dy-
nactin and LIS1 (Schuster et al., 2011; Moughamian et al., 2013).

Figure 7. The nudAR1602E mutation causes GFP-dynein to accumulate at the septa in gpdA-ΔC-hookA-S cells regardless of NudF/LIS1 function.
(A) GFP-dynein with the nudAR1602E mutation accumulates at the septa in gpdA-ΔC-hookA-S cells with or without the nudF6 mutation. Hyphal tips are indicated
by arrowheads and septa by arrows. (B) A quantitative analysis on dynein comet intensity in nudF6, gpdA-ΔC-hookA-S (n = 58), nudF6, nudAR1602E, gpdA-ΔC-
hookA-S (n = 47), and nudAR1602E, gpdA-ΔC-hookA-S (n = 30) strains. The average value for the nudF6, gpdA-ΔC-hookA-S strain is set as 1. Scatterplots with mean
and SD values were generated by Prism 8. ****, P < 0.0001; **, P < 0.01 (Kruskal-Wallis ANOVA test with Dunn’s multiple comparisons test, unpaired).
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In this study, we show that the LIS1-involved dynein activation
may also occur before dynein and dynactin are transported to
the MT plus end by kinesin-1 when cytosolic cargo adapters are
globally available (Fig. 4, A and B). In this scenario, some dynein
or dynein-dynactin complexes may be bound to LIS1 before
reaching the plus end. The interaction between LIS1 and
dynein appears quite dynamic. LIS1 could fall off the motile
dynein–dynactin–cargo-adapter complex as suggested by pre-
vious studies (Lenz et al., 2006; Egan et al., 2012; Jha et al., 2017)
and recent data (Fig. 3, A-C; Elshenawy et al., 2019 Preprint; Htet
et al., 2019 Preprint), although a more stable association with the
motile complex has also been observed (Baumbach et al., 2017;
Gutierrez et al., 2017). What regulates LIS1’s interaction with
dynein during its movement needs to be further addressed.

During this work, we found an intriguing phenomenon that
the septal MTOCs in A. nidulans are more consistently occupied
with activated dynein than the SPBs. A previous study has
suggested that the SPB-generated MTs in A. nidulans are ty-
rosinated and unstable during mitosis whereas the detyrosi-
nated MTs are stable and possibly generated from the septal

MTOCs (Zekert and Fischer, 2009). It would be worthwhile to
further determine whether MTs from these MTOCs are modi-
fied differently, which may potentially affect MT length/stabil-
ity and/or the interaction with dynein at the minus ends.
Indeed, tyrosination/detyrosination affects the interaction of
dynein–dynactin or kinesin-3 with MTs, although the mecha-
nisms may not be conserved and the details differ in different
organisms (Zekert and Fischer, 2009; Seidel et al., 2013;
Steinberg, 2015; McKenney et al., 2016; Nirschl et al., 2016; Tas
et al., 2017).

Materials and methods
Strains, media, and live-cell imaging
A. nidulans strains used in this study are listed in Table 1. Genetic
crosses were done by standard methods, and progeny with de-
sired genotypes were selected based on colony phenotype,
imaging analysis, Western analysis, diagnostic PCR, and/or se-
quencing of specific regions of the genomic DNA. All images
were captured using an Olympus IX73 inverted fluorescence
microscope linked to a PCO/Cooke Corporation Sensicam QE
cooled charge coupled device camera. A UPlanSApo 100× ob-
jective lens (oil) with a 1.40 numerical aperture was used. A
filter-wheel system with GFP/mCherry-ET Sputtered series
with high transmission (Biovision Technologies) was used.
IPLab software was used for image acquisition and analysis.
Image labeling was done using Microsoft PowerPoint and/or
Adobe Photoshop. Quantitation of signal intensity was done as

Figure 8. NudE is required for dynein activation, and phi opening allows
the function of NudE to be partially bypassed. (A) GFP-dynein in gpdA-ΔC-
hookA-S and ΔnudE, gpdA-ΔC-hookA-S strains. Note that GFP-dynein accu-
mulates as MT plus-end comets near the hyphal tip (yellow arrowheads), but
not at the septum (arrows), in the ΔnudE, gpdA-ΔC-hookA-S strain. (B) GFP-
dynein and mCherry-RabA in a ΔnudE strain, a ΔnudE, nudAR1602E strain, and a
ΔnudE, nudAR1602E, K1645E strain. Note that GFP-dynein with nudAR1602E or
nudAR1602E, K1645E accumulates at the septum with early endosomes
(mCherry-RabA) in the absence of NudE. Bars, 5 µm.

Figure 9. A model of LIS1 function in cargo-adapter-mediated dynein
activation. Based on our result that the dynein–dynactin–ΔC-HookA com-
plex is still formed without LIS1, we propose that between the fully closed
(phi) and open states of dynein, there is an intermediate state in which the
dynein tails are partially separated to allow the interactions with dynactin
and cargo adapters. However, this complex is not functional in vivo without
LIS1. Based on our result that the phi-opening mutations mimic LIS1 function
to a significant extent, we propose that LIS1 shifts the equilibria toward the
open state and then the fully functional state where the two HCs within the
dimer are parallel to each other (Zhang et al., 2017a). This functional state
may have a relatively weak affinity for LIS1 to allow its dissociation from the
complex at some point during the minus-end–directed movement.
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Table 1. A. nidulans strains used in this study

Strain Genotype Source

RQ2 GFP-nudAHC; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pyrG89; pyroA4; yA2 Qiu et al., 2013

RQ54 argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pyrG89; pyroA4; wA2 Qiu et al., 2013

RQ128 ΔC-hookA-S-AfpyrG; argB2::[argB*-alcA(p)::mCherry-RabA]; pyrG89; ΔnkuA::argB pyroA4; wA2 Qiu et al., 2018

RQ137 GFP-nudAHC; ΔC-hookA-S-AfpyrG; argB2::[argB*-alcA(p)::mCherry-RabA]; possibly pyrG89; possibly ΔnkuA::argB; pabaA1 Qiu et al., 2018

JZ569 ΔC-hookA-GFP-AfpyrG; argB2::[argB*-alcA(p)::mCherry-RabA]; ΔnkuA::argB; pyrG89; pyroA4; wA2 Zhang et al., 2014

XY13 p150-GFP-AfpyrG; ΔnkuA::argB; pyrG89; pyroA4 Yao et al., 2012

JZ383 ΔnudF-pyr4; GFP-nudAHC; argB2::[argB*-alcAp::mCherry-RabA] This work

JZ641 Δp25-AfpyrG; ΔC-hookA-GFP-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; possibly pyrG89; possibly ΔnkuA::argB; wA2 This work

JZ878 alcA(p)::nudF-pyr4, chaA1; ΔC-hookA-GFP-AfpyrG; argB2::[argB*-alcA(p)::mCherry-RabA]; possibly ΔnkuA::argB; pyrG89 This work

RQ165 NudF-GFP-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pyrG89; pyroA4; yA2 This work

RQ247 gpdA-ΔC-hookA-S-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pantoB100; yA2 This work

RQ231 gpdA-ΔC-hookA-S-AfpyrG; hhoA-GFP-AfriboB; argB2::[argB*-alcAp::mCherry-RabA]; pyrG89; pantoB100; ΔnkuA::argB This work

RQ232 ΔC-hookA-S-AfpyrG; hhoA-GFP-AfriboB; argB2::[argB*-alcAp::mCherry-RabA]; pyrG89; pantoB100; ΔnkuA::argB This work

RQ265 p150-GFP-AfpyrG; ΔyA::NLS-DsRed; gpdA-ΔC-hookA-S-AfpyrG; possibly pyrG89; possibly ΔnkuA::argB This work

RQ270 gpdA-ΔC-hookA-S-AfpyrG; ΔyA::NLS-DsRed This work

RQ271 ΔC-hookA-S-AfpyrG; ΔyA::NLS-DsRed This work

RQ274 nudF6; GFP-nudAHC; pyrG89; yA2; possibly ΔnkuA::argB This work

RQ275 nudF6; gpdA-ΔC-hookA-S-AfpyrG; GFP-nudAHC; pyrG89; yA2; possibly ΔnkuA::argB This work

RQ276 gpdA-ΔC-hookA-S-AfpyrG; GFP-nudAHC; ΔyA::NLS-DsRed This work

RQ278 gpdA-ΔC-hookA-S-AfpyrG; p150-GFP-AfpyrG; ΔnkuA::argB; pyrG89 This work

RQ285 GFP-nudAHC; ΔkinA::pyr4; gpdA-ΔC-hookA-S-AfpyrG; yA2 This work

RQ286 GFP-nudAHC; ΔkinA::pyr4; yA2 This work

RQ287 GFP-nudAHC; gpdA-ΔC-hookA-S-AfpyrG; yA2 This work

RQ288 hookA-S-AfpyrG; hhoA-GFP-AfriboB; argB2::[argB*-alcAp::mCherry-RabA]; pyrG89; pantoB100; ΔnkuA::argB This work

RQ290 GFP-nudAR1602E; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pyroA4; yA2 This work

RQ294 GFP-nudAR1602E, K1645E; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB; pyroA4; yA2 This work

XX357 hhoA-GFP-AfriboB; argB2::[argB*-alcAp::mCherry-RabA]; pyrG89; pantoB100; ΔnkuA::argB This work

XX358 ΔyA::NLS-DsRed; pyrG89; pryoA4; possibly ΔnkuA::argB This work

XX483 p150-GFP-AfpyrG; ΔyA::NLS-DsRed; possibly pyrG89; possibly ΔnkuA::argB This work

XX491 nudF6; gpdA-ΔC-hookA-S-AfpyrG; p150-GFP-AfpyrG; possibly pyrG89; possibly ΔnkuA::argB This work

XX509 nudF7; gpdA-ΔC-hookA-S-AfpyrG; GFP-nudAHC; pyrG89; yA2; possibly ΔnkuA::argB This work

XX514 GFP-nudAHC; ΔyA::NLS-DsRed; possibly ΔnkuA::argB This work

XX536 gpdA-ΔC-hookA-S-AfpyrG; ΔyA::NLS-DsRed; pantoB100 This work

XX546 alcAp-nudF-pyr4, gpdA-ΔC-hookA-S-AfpyrG; GFP-nudAHC; yA2; possibly pyrG89; possibly ΔnkuA::argB This work

XX551 clipA-mCherry::AfpyroA; gpdA-ΔC-hookA-S-AfpyrG; GFP-nudAHC; possibly pyrG89; possibly ΔnkuA::argB This work

XX565 GFP-nudAF208V; gpdA-ΔC-hookA-S-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; pyrG89; possibly wA2; possibly yA2;
possibly ΔnkuA::argB

This work

XX566 nudF-GFP-AfpyrG; gpdA-ΔC-hookA-S-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; wA2 This work

XX571 ΔnudE::argB; GFP-nudAHC; pyrG89; yA2 This work

XX572 ΔnudE::argB; GFP-nudAHC; gpdA-ΔC-hookA-S-AfpyrG; pyrG89; possibly ΔnkuA::argB This work

XX579 nudF6; GFP-nudAHC; ΔkinA::pyr4; gpdA-ΔC-hookA-S-AfpyrG; possibly pyrG89; possibly ΔnkuA::argB This work

XX581 nudF6; GFP-nudAR1602E; argB2::[argB*-alcAp::mCherry-RabA]; yA2; possibly ΔnkuA::argB This work

XX597 nudF6; GFP-nudAHC; argB2::[argB*-alcAp::mCherry-RabA]; yA2; possibly ΔnkuA::argB This work

XX598 nudF6; GFP-nudAR1602E; gpdA-ΔC-hookA-S-AfpyrG; possibly pyrG89; possibly ΔnkuA::argB This work
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described previously (Zhang et al., 2014). Specifically, a region of
interest (ROI) was selected and the Max/Min tool of the IPLab
program was used to measure the maximal intensity within the
ROI. The ROI box was then dragged outside of the cell to take the
background value, which was then subtracted from the intensity
value. Hyphae were chosen randomly from images acquired
under the same experimental conditions. For measuring the
signal intensity of a MT plus-end comet formed by GFP-dynein
or NudF/LIS1-GFP proteins, only the comet closest to hyphal tip
was measured. For measuring GFP-dynein signal intensity at
septa, usually only the septum most proximal to the hyphal tip
was measured, although sometimes, two septa close to each
other in the same hypha were present, in which case both were
measured. Images were taken at room temperature immediately
after the cells were taken out of the incubators. Cells were cul-
tured overnight in minimal medium with 1% glycerol and sup-
plements at 32°C or 37°C (all experiments using nudF6 strains
and controls were done at 37°C). Note that the nudF6 mutant is
temperature sensitive; it forms a tiny colony lacking asexual
spores at a higher temperature (typical of a nud mutant), but
some spores are produced at its semipermissive temperature
of 32°C. Thus, for experiments involving nudF6, we harvested
spores at 32°C and cultured them at 37°C for imaging analysis.
The nudF6 mutant is much better than ΔnudF for imaging
analysis, because we can harvest enough spores from the
nudF6 mutant at 32°C, whereas the ΔnudF mutant is sick and
does not produce spores at any temperature. For a few ex-
periments using strains containing the alcA-nudF (conditional
null) allele, we harvest spores from the solid minimal medium
containing 1% glycerol and cultured them in liquid minimal
medium containing 0.1% glucose for imaging analysis. Yeast
extract and glucose–rich medium was used for growing cells
for protein pull-down experiments.

Constructing the gpdA-ΔC-hookA-S strain
For constructing the gpdA-ΔC-hookA-S strain, we cotransformed
into the A. nidulans strain XX357 the fragment containing ΔC-
hookA-S-AfpyrG (Zhang et al., 2018) with another fragment
containing the ∼1.2-kb gpdA promoter inserted in between the

N-terminal HookA coding sequence and its upstream sequence.
The gpdA promoter was inserted in this region using fusion
PCR with primers 41U (59-CATGCTTGCTTCCTCTTGC-39),
HKpr2 (59-GGATATGTCCAAGTAATCGCTG-39), gpdAF2 (59-
CAGCGATTACTTGGACATATCCGACTCGAGTACCATTTAATT
CTAT-39), gpdAR2 (59-ACGGTACGCTCCGACTCCATTGTG
ATGTCTGCTCAAGC-39; these four primers were described
previously; Zhang et al., 2014), HKN2 (59-AGTCGGAGCGTA
CCGT-39), and HKgR (59-TCAGCCTCAAGGTTTTGGTTC-39).
Primers 41U and HKgR were also used for PCR to confirm the
correct integration of the gpdA promoter in the selected
transformants, and overexpression of the ΔC-HookA-S pro-
tein was confirmed by western analyses (Figs. 1 B and S1 B).

Constructing the nudAR1602E and the nudAR1602E, K1645E dynein
HC phi-opening mutants
We used fusion PCR tomake a DNA fragment of nudA containing
both the R1602E and the K1645E mutations using the following
primers: 1602F (59-CGAGCGAGTTCCAGAATATCAACTCAGAAT
TCTTCG-39), 1602R (59-AGTTGATATTCTGGAACTCGCTCGATT
CCAGGGGAAGAA-39), 1645F (59-GCTGCTTAACGAAATCCAGAA
AGCTCTCGGTGAATAC-39), 1645R (59-GCTTTCTGGATTTCGTTA
AGCAGCTCGGCCAG-39), NudA54 (59-GTGGATGAACTCATTCCA
AGA-39), and NudA36 (59-TTGGATCTACCAGCATAGCCA-39).
The fragment was cotransformed with a selective marker pyrG
fragment into the RQ2 strain containing GFP-dynein HC (NudA)
and mCherry-RabA. More than 200 pyrG+ transformants were
examined under the microscope, and several of them were se-
lected because they exhibited clear septal enrichment of both the
GFP and mCherry signals. Our sequencing analysis indicated
that several strains contain both mutations (nudAR1602E, K1645E),
but one strain contains only the nudAR1602E mutation due to
homologous recombination between the two sites.

Constructing the nudF-GFP strain
The following oligos were used for fusion PCR to create the
gpdA-nudF-GFP-AfpyrG fragment: F5F (59-ATCAGACTGGACGAA
GCC-39), F5R (59-CAAATAGAATTAAATGGTACTCGAGTCGGT
TGTTTGTGTTCGCAAAT-39), gpdF (59-GACTCGAGTACCATT

Table 1. A. nidulans strains used in this study (Continued)

Strain Genotype Source

XX599 GFP-nudAR1602E; gpdA-ΔC-hookA-S-AfpyrG; possibly pyrG89; possibly ΔnkuA::argB This work

XX609 nudF6, GFP-nudAR1602E, K1645E; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB; yA2 This work

XX614 GFP-nudAR1602E, K1645E; ΔhookA-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB; yA2 This work

XX620 ΔnudE::argB; GFP-nudAR1602E, K1645E; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB; yA2 This work

XX623 ΔnudE::argB; GFP-nudAR1602E; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB This work

XX634 ΔnudF-pyr4; GFP-nudAR1602E, K1645E; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB This work

XX635 ΔnudE::argB; GFP-nudAHC; argB2::[argB*-alcAp::mCherry-RabA]; yA2; possibly ΔnkuA::argB This work

XX653 ΔnudF-pyr4; GFP-nudAR1602E; argB2::[argB*-alcAp::mCherry-RabA]; possibly ΔnkuA::argB This work

XX655 GFP-nudAR1602E, K1645E; ΔC-hookA-S-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; possibly pyrG89; possibly ΔnkuA::argB; wA2 This work

XX656 GFP-nudAR1602E; ΔC-hookA-S-AfpyrG; argB2::[argB*-alcAp::mCherry-RabA]; possibly pyrG89; possibly ΔnkuA::argB; wA2 This work

XX658 GFP-nudAR1602E, K1645E; hhoA-GFP-AfriboB; argB2::[argB*-alcAp::mCherry-RabA]; ΔnkuA::argB This work
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TAATTCTATTTG-39), gpdR (59-TGTGATGTCTGCTCAAGCG-39),
FF (59-CGCTTGAGCAGACATCACAATGAGCCAAATATTGAC
AGCTCC-39), FR (59-GCCTGCACCAGCTCCGCTGAACACCCGTAC
AGAGTT-39), GFPF (59-GGAGCTGGTGCAGGC-39), GFPR (59-CTG
TCTGAGAGGAGGCACTG-39), F3F (59-CAGTGCCTCCTCTCAGAC
AGGTCGCGATCTTCATCACAGTT-39), and F3R (59-CGACAGAAT
GGAACGGGAAA-39). This fragment was transformed into the
RQ54 strain, and progeny with MT plus-end comets formed by
NudF/LIS1-GFP were selected. For this study, we only used a
transformant (RQ165) containing NudF-GFP, but not the gpdA-
NudF-GFP fusion protein.

Biochemical pull-down assays and western analysis
The μMACS GFP-tagged protein isolation kit (Miltenyi Biotec)
was used to pull down proteins associated with the GFP-tagged
protein. This was done as described previously (Zhang et al.,
2014). Specifically, ∼0.4 g of hyphal mass was harvested from
overnight culture for each sample, and cell extracts were pre-
pared using a lysis buffer containing 50 mM Tris-HCl, pH 8.0,
and 10 µg/ml of a protease inhibitor cocktail (Sigma-Aldrich).
Cell extracts were centrifuged at 8,000 g for 15 min and then
16,000 g for 15 min at 4°C, and supernatant was used for the
pull-down experiment. To pull down GFP-tagged proteins, 25 µl
anti-GFP MicroBeads was added into the cell extracts for each
sample and incubated at 4°C for 30–40min. TheMicroBeads/cell
extracts mixture was then applied to the μColumn followed by
gentle wash with the lysis buffer used above for protein ex-
traction (Miltenyi Biotec). Preheated (95°C) SDS-PAGE sample
buffer was used as elution buffer. Western analyses were per-
formed using the alkaline phosphatase system, and blots were
developed using AP color development reagents (Bio-Rad).
Quantitation of the protein band intensity was done using IPLab
software as described previously (Qiu et al., 2013). Specifically,
an area containing the whole bandwas selected as a ROI, and the
intensity sum within the ROI was measured. Then, the ROI box
was dragged to the equivalent region of the negative control lane
or a blank region without any band on the same blot to take the
background value, which was then subtracted from the intensity
sum. The rabbit polyclonal antibody against GFP (used for
Western blots presented in Figs. 3 C, 4 C, and 6 D) was purchased
from Takara Bio (catalog number 632592). The rabbit mono-
clonal antibody against the S-tag (used for Western blots pre-
sented in Figs. 1 B, S1 B, and 6 D) was from Cell Signaling
Technology (catalog number 12774S). Polyclonal antibodies
against dynein HC (Fig. 4 C), dynactin p150 (Figs. 4 C and 6 D),
and NudF/LIS1 (Figs. 4 C and 6 D) were generated in previous
studies by injecting proteins produced in bacteria into rabbits
followed by affinity purification of the antibodies (Xiang et al.,
1995a,b; Zhang et al., 2008).

Statistical analysis
All statistical analyses were done using GraphPad Prism 8 for
Mac (version 8.0.0, 2018). The D’Agostino and Pearson nor-
mality test was performed on all datasets except Western blot
datasets with small n (n = 3 or n = 4). For Western blot data
quantitation presented in Fig. 4 D and Fig. 6 E, data distri-
bution was assumed to be normal, but this was not formally

tested. A Student’s t test (unpaired, two tailed) was used to
analyze data in Fig. 4 D, and an ordinary one-way ANOVA
(unpaired) was used to analyze data in Fig. 6 E. The datasets
presented in Fig. 4 B passed the D’Agostino and Pearson nor-
mality test (α = 0.05), and thus, they were analyzed using a
Student’s t test (unpaired, two tailed). For all other datasets,
nonparametric tests were used without assuming Gaussian dis-
tribution. Specifically, the Kruskal–Wallis ANOVA test (un-
paired) with Dunn’s multiple comparisons test was used for
analyzingmultiple datasets presented in Fig. 2 B; Fig. 3 B; Fig. 6, B
and C; Fig. 7 B; Fig. S1 D; and Fig. S5, B and C. TheMann–Whitney
test (unpaired, two tailed) was used to analyze the two datasets
presented in Fig. S3 B. Note that adjusted P values were gener-
ated from either the ordinary one-way ANOVA test or the
Kruskal–Wallis ANOVA test with Dunn’s multiple comparisons
test. In all figures, **** indicates P < 0.0001, *** indicates P <
0.001, ** indicates P < 0.01, and * indicates P < 0.05. If the P value
is >0.05, the difference is considered not significant, which is not
indicated in any figure.

Online supplemental material
Fig. S1 shows a western analysis of the HookA-S and ΔC-HookA-S
proteins as well as the partial defect in nuclear distribution
caused by ΔC-HookA-S overexpression. Fig. S2 shows the
movement of GFP-dynein toward a septum and dynactin locali-
zation at the SPBs, with the accumulation of dynein being more
obvious at septa than at the SPBs upon ΔC-HookA-S over-
expression. Fig. S3 shows the nuclear-distribution and colony-
growth phenotypes of the phi-opening mutants of dynein. Fig.
S4 shows the accumulation of early endosomes at septa, but not
on nuclei, in the phi-opening mutant as well as the localization of
open dynein in the ΔhookA mutant. Fig. S5 shows a quantitative
image analysis on the localization of open dynein in the ΔnudE
mutant. Video 1 shows the movement of GFP-dynein toward a
septum upon ΔC-HookA overexpression.
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