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Abstract—Motivated by the evidence that the onset and
progression of the aneurysm of the ascending aorta (AAo) is
intertwined with an adverse hemodynamic environment, the
present study characterized in vivo the hemodynamic spa-
tiotemporal complexity and organization in human aortas,
with and without dilated AAo, exploring the relations with
clinically relevant hemodynamic and geometric parameters.
The Complex Networks (CNs) theory was applied for the
first time to 4D flow magnetic resonance imaging (MRI)
velocity data of ten patients, five of them presenting with
AAo dilation. The time-histories along the cardiac cycle of
velocity-based quantities were used to build correlation-
based CNs. The CNs approach succeeded in capturing large-
scale coherent flow features, delimiting flow separation and
recirculation regions. CNs metrics highlighted that an
increasing AAo dilation (expressed in terms of the ratio
between the maximum AAo and aortic root diameter)
disrupts the correlation in forward flow reducing the corre-
lation persistence length, while preserving the spatiotemporal
homogeneity of secondary flows. The application of CNs to
in vivo 4D MRI data holds promise for a mechanistic
understanding of the spatiotemporal complexity and organi-
zation of aortic flows, opening possibilities for the integration
of in vivo quantitative hemodynamic information into risk
stratification and classification criteria.

Keywords—Ascending aorta aneurysm, Aortic dilation,

Magnetic resonance imaging, Network science, Spatiotem-

poral analysis.

INTRODUCTION

Ascending aorta (AAo) aneurysm is a dilation of the
segment of the aorta proximal to the brachiocephalic
trunk. To avoid life-threatening complications such as
dissection and rupture, AAo aneurysms are repaired
by elective surgery, recommended mainly on the basis
of the maximum diameter (with a fixed threshold of
5.5 cm in the vast majority of cases).10,38 However,
surgical repair is associated with significant mortality
rates (3–5%) 27 and aortic diameter alone has proved
to be an ineffective predictor of events.15,38 These as-
pects have motivated research on mechanisms behind
AAo aneurysm evolution as well as on new criteria for
risk stratification. Although AAo dilation is the result
of a multifactorial process involving genetics expres-
sions, biological and structural factors,15,48 there is
evidence of the role played by local adverse hemody-
namics in flow-mediated mechanisms leading to ad-
verse vascular remodeling.24,39 In particular,
hemodynamics in dilated AAo is characterized by
abnormal blood flow that reflects in near-wall flow
disturbances3,6,43,44 leading to mechanical alterations
in the aortic wall.6,11,13,23,26 Furthermore, hemody-
namic disturbances are intertwined with and exacer-
bated by concomitant AAo dilation and aortic valve
abnormalities, such as bicuspid aortic valve (BAV) or
deficient tricuspid aortic valves (TAV).14,28,36,46
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In recent years, 4D flow magnetic resonance imag-
ing (MRI) has been increasingly used to obtain infor-
mation on both aortic morphology and hemodynamics
5,14,31,35,43—in particular in the presence of aortic
vascular/valve pathologies4,16,23,31—providing risk
markers of AAo wall degeneration.14,25,43

With the objective of providing a comprehensive
characterization of the spatiotemporal heterogeneity of
large-scale aortic flow features and of their possible
links with AAo dilation, a recently proposed approach
integrating computational hemodynamics with Com-
plex Networks (CNs) theory7,8,13,37 is here extended for
the first time to 4D flow MRI in patients with and
without aortic dilation. In this study we explored the
capability of CNs to characterize in vivo the dynamics
of dominant aortic flow features using the time-histo-
ries of the measured velocity data along the cardiac
cycle. Patient-specific CNs were built with MRI voxels
belonging to the aortic fluid domain as nodes of the
networks, which were connected by links based on the
strength of the pairwise correlation between velocity
time-histories. CNs metrics allowed for the evaluation
of the anatomical and topological length of correlation
persistence of velocity time-histories within the aorta
and its association with clinically relevant hemody-
namic and geometric parameters. In prospect, the
application of CNs can lead to a deeper understanding
of the factors and basic mechanisms influencing the
spatiotemporal complexity of aortic flows. The im-
proved characterization of the disease has the potential
to strengthen the clinical utility of blood flow visual-
izations, enhance diagnostic strategies and tools in
terms of possible application to risk stratification and
classification criteria, and inform clinical decision-
making.

MATERIALS AND METHODS

Ten patients were enrolled for this study, five of
them presenting with AAo dilation (one of them with
bicuspid aortic valve, BAV), and five without AAo
dilation (one with BAV).14 Ascending aortic dilation
was diagnosed according to the protocol proposed
elsewhere.9 Briefly, ascending aortic dilation was de-
fined as at least 1.96 standard deviations above the
normal diameter for a specific patient either at the
aortic root or at the AAo, at the level of the pulmonary
artery bifurcation, using previously proposed reference
values.9 All patients presented with mild to severe
aortic valve dysfunction (Table 1). The study was ap-
proved by the ethics committee of the Vall d’Hebron
Hospital and informed consent was obtained from all
participants.

4D FLOW MRI ACQUISITION AND DATA

PROCESSING

All patients underwent 4D flow MRI acquisitions of
the entire thoracic aorta with retrospective ECG gating
during free-breathing and no endovenous contrast
agent. Briefly, a radially undersampled acquisition
with five-point balanced velocity encoding29 was used.
Phase-contrast MRI acquisitions were set according to
the following scheme: velocity encoding in the range of
150–400 cm s21, field of view 400 9 400 9 400 mm,
scan matrix 160 9 160 9 160, voxel size
2.5 9 2.5 9 2.5 mm, and number of cardiac frames in
the range of 30–46. Full details on the adopted 4D flow
MRI acquisition protocol are reported in previous
studies.14,29

Lumen segmentation of the thoracic aortas was
performed on phase-contrast enhanced MR angiogram
using ITK-Snap and used for a centerline-based
reconstruction of 3D aortic geometries in VMTK 1 (-
www.vmtk.org). Anatomic landmarks were identified
from co-registered 2D cine images and used to ensure a
consistent spatial extent across all patients,8,21 defining
the AAo, the aortic arch, and the descending aorta
(DAo) portions used for the CNs analysis (Fig. 1). The
reconstructed 3D geometries were used as masks for
the acquired velocity data.47

Quantitative Hemodynamic Descriptors

The acquired phase-velocity data were used to de-
scribe the spatiotemporal heterogeneity of large-scale
dominant aortic flow features. The time-histories along
the cardiac cycle of three intravascular hemodynamic
quantities (Fig. 1) were derived from in vivo data: (1)
the local velocity magnitude|V|; (2) the axial compo-
nent Vax of the local velocity vector V (or local
‘‘through-plane’’ velocity), defined as the projection of
V along the direction of the tangent to the local vessel
centerline8,33; (3) the secondary component Vsc of the
local velocity vector (or local ‘‘in-plane’’ velocity),
orthogonal to the local axial direction and related to
secondary flows.33 A positive value of Vax indicates
forward flow (along the main, i.e., proximal-to-distal,
flow direction), whereas a negative value is represen-
tative of retrograde flow.8 Similarly, positive and
negative values of Vsc indicate in-plane right- and left-
handed direction, respectively, when viewed in the
direction of the forward movement.33

Geometric and hemodynamic quantities measurable
in a clinical framework were also evaluated from 4D
flow MRI data (Fig. 1) and will be referred to as
‘‘clinical parameters’’ from now on. In detail, the ratio
between the maximum AAo diameter Dmax (distal to
the aortic root), a largely adopted clinical indicator of
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aortic dilation,17 and the aortic root maximum diam-
eter Droot was measured and indicated with Dratio.
Moreover, the acquired phase-velocity data were used
to quantify the AAo systolic flow eccentricity ex-
pressed in terms of flow jet angle (FJA) and normal-
ized flow displacement (FD), as defined elsewhere.45

Pulse wave velocity (PWV), considered the gold stan-
dard for measuring arterial stiffness,17 was non-inva-
sively quantified from 4D flow MRI data in the AAo
using a wavelet-based method described elsewhere.2,23

As a measure of the energy associated with the large-
scale aortic flow features, cycle-average and peak
blood flow kinetic energy (KE) were computed as:
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respectively. Both KEavg and KEpeak quantities are
averaged over the aortic volume V. In Eqs. (1) and (2),
q is the blood density, jVjavg is the cycle-average

magnitude of the velocity vector V(t), T is the period of
the cardiac cycle, and Vj jpeak is the magnitude of the

velocity vector at peak systole.
Finally, a centerline-based analysis was also carried

out to obtain aortic mean curvature (j) and torsion
ðsÞ.41

In Vivo CNs Analysis

The spatiotemporal heterogeneity of the aortic
intravascular flow was investigated by using 4D flow
MRI data to build patient-specific correlation-based
CNs, according to the scheme recently applied to in
silico data.7,8,13 For each patient, three CNs were built

from |V|, Vax and Vsc time-histories along the cardiac
cycle. Each node of a CN was defined by the voxel
belonging to the aortic fluid domain where the time-
history of the considered hemodynamic quantity was
acquired. Two nodes i and j were considered to be
connected by a topological link {i, j} if the Pearson
correlation coefficient Rij between time-histories at

those nodes was greater than a threshold value R̂
(Fig. 1). In this study, the threshold values adopted for
the construction of the three CNs were selected based
on a dataset of computational hemodynamic models of
healthy human aortas.13,20,33,34 In detail, the median
values of the distributions of the correlation coeffi-
cients among simulated time-histories were adopted as
threshold values for in vivo CNs construction, resulting

in R̂ = 0.87 for |V|, R̂ = 0.82 for Vax, and R̂ = 0.03
for Vsc (Vsc correlation coefficients symmetrically dis-
tributed around zero). Based on these thresholds, each
correlation matrix was converted into an adjacency
matrix according to the criterion:

Aij ¼
0; ifRij � R̂ or i ¼ j;

1; ifRij>R̂:

�
ð3Þ

Matrix Aij contains the information on nodes con-
nections: Aij = 1 (i.e., nodes i and j are connected by a

link) if Rij > R̂, and Aij = 0 elsewhere (Fig. 1). For

each patient, CNs metrics were applied to characterize
the topological structure of |V|, Vax and Vsc networks
(Fig. 1). The first metric, the hemodynamic degree
centrality hDCi is defined as:

hDCi ¼
1

N

XN
i¼1

Aij; ð4Þ

where N is the number of voxels in the aorta. The
quantity hDCi measures the degree of homogeneity/
heterogeneity of the velocity time-histories acquired at
each voxel belonging to the CN with respect to the
whole investigated fluid domain. Technically, it repre-
sents the number of nodes of the CN connected to

TABLE 1. Aortic dilation and valve type and functional classification of the included patients.

Patient TAV/BAV Aortic valve insufficiency Aortic valve stenosis

Non-dilated AAo A BAV Severe Absent

B TAV Moderate Severe

C TAV Absent Moderate

D TAV Severe Absent

E TAV Mild Severe

Dilated AAo F TAV Mild Absent

G TAV Mild Absent

H BAV Mild Severe

J TAV Mild Absent

K TAV Severe Absent
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node i (the so-called nearest neighbors of i), expressed
as the percentage of the N voxels of the considered
domain. Voxels where hDCi= 0 were not considered
as CNs nodes because they had no connections with
the rest of the network.

The other two CNs metrics provide a quantitative
measure of the length of persistence of the correlation
between velocity data time-histories.8,13 The hemody-
namic normalized average Euclidean distance hAEDi

(Fig. 1) is defined as:

hAEDi ¼
1

D

PN
j¼1 AijlijPN
j¼1 Aij

; ð5Þ

where lij is the Euclidean distance between node i
and its neighbor j. To account for aortic geometric

variability, hAEDi was normalized with respect to a
reference diameter D (Table S1 of the Supplementary
Data) identified for each patient as the AAo diameter
of a representative healthy subject with the same age,
gender and BSA.12 High hAEDi values indicate that
the correlation between the phase velocity-based time-
history at node (voxel) i and time-histories at its
nearest neighbors persists for a large anatomical dis-
tance, while low hAEDi values indicate that all the
connections of node i are confined to nodes in a small
neighborhood. The shortest path length dij, i.e. the
minimum number of links separating two generic
nodes i and j of the network, was used to calculate the
topological distance metric average shortest path length
ASPL of the network8,37 (Fig. 1), defined as:

FIGURE 1. Schematic diagram of the methodology used to apply the Complex Networks theory to in vivo velocity data. a: Image
acquisition and anatomic landmarks identification from 4D flow MRI: STJ: sinotubular junction; BCA brachiocephalic artery; LSA
left subclavian artery. b: Lumen 3D geometry reconstruction. C: Definition of hemodynamic descriptors and complex networks
analysis. Hemodynamic descriptors panel: Vx, Vy and Vz: cartesian components of the velocity vector V; C(S): vessel centerline; C’:
vector tangent to the centerline; R: vector orthogonal to C’ directed from the centerline to a generic voxel; S: vector orthogonal to
vectors R and C’. The investigated clinical and geometric parameters are also listed, with a schematic representation of flow jet
angle (FJA), flow displacement (FD), the AAo maximum diameter Dmax and the aortic root maximum diameter Droot, the latter used
to compute Dratio. Complex Networks panel: N: number of voxels in the aortic domain; lij: Euclidean distance between voxels i and
j; NLC: number of nodes of the network’s largest connected component, i.e., the maximal set of nodes such that each pair of nodes
is connected by a path. An explanatory example of a network is shown, where node 1 is characterized by high hemodynamic
degree centrality, the shortest path between nodes 3 and 4 is in green while the other links in blue.
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ASPL ¼ 1

NLC NLC � 1ð Þ
X

j2NLC;i6¼j

dij; ð6Þ

where NLC is the number of nodes of the network’s
largest connected component, i.e., the maximal set of
nodes such that each pair of nodes is connected by a
path. Based on Eq. (6), ASPL is the average length of
the shortest paths (i.e., sequence of consecutive links)
in the largest connected network component. High
ASPL values indicate that the connections inside the
CN are sparse and that the correlation between the
phase velocity-based time-histories persists for a short
topological distance.

Linear regressions were used to identify relation-
ships between clinical parameters and CN metrics. The
quality of the regression was evaluated with the Pear-
son’s correlation coefficient R. Significance was
assumed for p < 0.05.

RESULTS

In Vivo Hemodynamic Analysis

An overview of the large-scale aortic flow patterns
in the ten patients object of this study is presented in
Fig. 2 by means of instantaneous streamlines at peak
systole. Streamlines visualization highlights a more
intricate hemodynamics in dilated patients. Patients
with BAV (A and H), those affected by valvular dys-
functions (B, C, D, E and K), and dilated AAo patient
J exhibit an eccentric valvular outflow jet impinging on
the outer curvature of the AAo (Fig. 2).

The patient-specific analysis of the correlation

coefficients R
Vj j
ij , Rax

ij and Rsc
ij between all pairs of the

three velocity-based hemodynamic quantities |V|, Vax

and Vsc time-histories, respectively, is presented in
Figure S1 of the Supplementary Data. The strongest
correlations are registered between |V| time-histories,
whereas Vax correlation coefficients present lower
median values due to the presence of anti-correlated
waveforms (i.e., negative Rax

ij values). The correlation

between Vsc time-histories is symmetrically distributed
around the median, which is close to zero for all the
patients. Overall, no marked differences can be
appreciated between AAo non-dilated and dilated
patients (Figure S1 of the Supplementary Data).

In Vivo Complex Networks Analysis

Volumetric maps of hDC (Fig. 3) highlight the
spatiotemporal heterogeneity of the aortic blood flow.
Most patients present with scarcely connected net-
works (low hDC), reflecting from scarce (as in dilated
patients H, J and K, Fig. 3) to moderate homogeneity

of |V| and Vax time-histories. On the other hand, in
patient A (Fig. 3) a dense pattern of connections
between nodes (voxels) can be observed in the entire
aortic domain (hDC values around 50%), indicating an
overall high degree of similarity of velocity-based
waveforms. In general, the aortic fluid domain is more
connected in terms of Vax than |V| and two dynami-
cally-distinct regions in terms of Vax waveforms can be
identified: the first one in the DAo, where Vax wave-
forms present moderate hDC values, and the second
one at the AAo inner wall and aortic arch, where Vax

waveforms present low hDC values. The topologically
isolated flow structure identified at the AAo inner wall
by close-to-zero hDC values (Fig. 3) highlights the
capability of the CNs approach in capturing large-scale
blood flow disturbances: at the AAo inner wall the
shape of Vax time-histories along the cardiac cycle is
markedly different from the overall aortic hemody-
namics. This is the consequence of the combined effect
of AAo curvature and aortic valve flow eccentricity,
concurring to generate flow separation and recircula-
tion at the inner wall, which in turn interact at the
interface with the valve jet shear layer.

Denser patterns of connection between voxels
characterize Vsc with respect to |V| and Vax time-his-
tories, indicating that Vsc CNs are more spatiotempo-
rally compact than |V| and Vax CNs and are
characterized by the absence of topologically isolated
regions (hDC higher than 40% in general, Fig. 3). No
marked differences emerged between dilated and non-
dilated patients (Fig. 3).

By visual inspection of the volumetric maps of
hAED, quantifying the length of persistence of the
correlation in the fluid domain (Fig. 4), in all patients
|V| and Vax time-histories located close to the AAo
inner wall, where typically flow reversal occurs, are
characterized by low hAED values. In the outer region
of the AAo and in the Dao, |V| and Vax networks are
characterized by a neighborhood expanding on longer
anatomical distances, confirming the persistence of
more correlated flow structures in those regions
(Fig. 4).

Figure 5 quantitatively confirms the observation
that in general the anatomical length of correlation
persistence: (1) is longer in Vax networks than in |V|
networks; (2) in Vax and |V| networks it is shorter in
dilated compared to non-dilated patients; (3) in both
Vax and |V| networks it is shorter than two reference
diameters D (|V| median values = 1.74 D and 0.89 D,
and Vax median values = 1.95 D and 1.65 D, for non-
dilated and dilated patients, respectively). On the
opposite, both dilated and non-dilated Vsc networks
are characterized by an anatomical length of correla-
tion persistence longer than two reference diameters D
(median values = 2.13 D and 2.41 D, for non-dilated
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and dilated patients, respectively). Moreover, non-di-
lated patients present with median hAED shorter than
dilated ones (Fig. 5), suggesting a major contribution
for AAo dilation in shaping secondary blood flow
patterns.

The analysis of the topological separation of the
largest connected fluid structures in the aortic fluid
domain, as quantified by the metric ASPL (Table 2),
confirms the findings of the anatomy-based investiga-

tion summarized in Figs. 4 and 5. In detail, it emerges
that in general two generic voxels of the largest com-
ponent of the |V| networks are separated by a median
of 3.05-links path in non-dilated patients, and by a
4.83-links path in dilated patients (Table 2), suggesting
a role for AAo dilation in breaking up topological
links. Although with a less marked difference, median
ASPL values in the largest connected components of
the Vax networks reflect the results of the |V| networks

FIGURE 2. Visualizations of instantaneous streamlines at peak systole in patients with (bottom row) and without (top row)
ascending aortic dilation. Colors represent velocity magnitude.

FIGURE 3. Volumetric maps of hDC for |V| (top row), Vax (middle row) and Vsc (bottom row) CNs.
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(3.73- and 3.63-links path, in dilated and non-dilated
patients, respectively, Table 2). Overall, the topologi-
cal separation of the Vsc networks is not sensitive to
AAo dilation (1.53- and 1.51-links path, in dilated and
non-dilated patients, respectively, Table 2).

Relationships Between Complex Networks Metrics
and Clinical Parameters

Significant associations emerge between the geo-
metric clinical parameter Dratio and the CNs metrics. In
detail, Dratio is negatively associated with hAED med-

ian values characterizing both |V| and Vax networks
(p = 0.020 and p = 0.004, respectively), suggesting a
role for Dratio in disrupting the spatiotemporal hemo-
dynamic similarity of |V| and Vax waveforms (Fig. 6).
The results obtained considering the anatomical dis-
tances in the networks are confirmed by the topological
analysis: a positive association emerges between Dratio

and ASPL values characterizing both |V| and Vax

networks (p = 0.020 and p = 0.002, respectively),
suggesting that the aortic dilation breaks the correla-
tion between |V| and Vax time-histories, increasing
topological separation between the measured voxel-
based velocity quantities.

No significant associations emerge between Dratio

and the hDC median values of the |V|, and Vax net-
works (Fig. 6). No significant associations emerge

FIGURE 4. Volumetric maps of hAED for |V| (top row), Vax (middle row) and Vsc (bottom row) CNs.

FIGURE 5. Effect of AAo dilation on the distributions of
hAED values for |V|, Vax and Vsc CNs. The median is indicated
by the red line, the box indicates the interquartile range and
the whiskers indicate the extreme values of the distribution.

TABLE 2. ASPL values for |V|, Vax and Vsc CNs.

Patient |V| ASPL Vax ASPL Vsc ASPL

Non-dilated AAo A 1.94 1.97 1.49

B 3.05 3.96 1.51

C 3.01 3.63 1.54

D 3.41 2.83 1.47

E 3.33 3.66 1.51

Median 3.05 3.63 1.51

Dilated AAo F 2.97 2.97 1.55

G 3.30 3.03 1.53

H 4.83 4.76 1.42

J 5.78 5.17 1.53

K 5.75 3.73 1.54

Median 4.83 3.73 1.53
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between Dratio and Vsc network metrics, a consequence
of the low dispersion of the latter (median hDC
range = [44.9%, 66.0%], ASPL range = [1.42, 1.55],
median hAED range = [2.02 D, 2.56 D], Fig. 6).

When considering the hemodynamic clinical
parameters, a significant (albeit moderate) positive
association emerges between blood flow KE at peak
systole and hDC median values characterizing the |V|
networks (p = 0.04), likely driven by the high hDC
median value of patient A (rightmost point in Fig. 7,
upper panel, resulting from the high hDC values in the
whole domain as depicted in the hDC volumetric map
of Fig. 3). A negative (albeit moderate) association
emerges between KE at peak systole and ASPL values
characterizing the |V| networks (p = 0.04, Fig. 7).
Taken together, these results suggest that high KEpeak

values might contribute to increase the spatiotemporal
homogeneity and topological length of correlation
persistence of the velocity vector field, in aorta. Neither
the other investigated hemodynamic clinical parame-
ters nor the centerline-based aortic geometric attri-
butes j and s impact the spatiotemporal heterogeneity
of phase velocity data, as no significant correlations
emerge with CNs metrics (Figures S2–S7 of the Sup-
plementary Data).

DISCUSSION

The onset/progression of AAo wall dilation is the
result of a complex multifactorial process in which
local disturbed aortic hemodynamics plays a relevant
role.6,13,43 In recent years, 4D flow MRI has been
frequently employed for aortic flow visualization and/
or characterization, aiming at elucidating the link

FIGURE 6. Associations between the geometric clinical indicator Dratio and CNs metrics hDC (left column), hAED (middle
column), and ASPL (right column) for |V| (top row), Vax (middle row) and Vsc (bottom row) CNs. For each CN, hDC and hAED are
expressed as the median value of all voxels. R: Pearson’s correlation coefficient (*p < 0.05, �p < 0.01).

FIGURE 7. Associations of blood flow kinetic energy at the
systolic peak (KEpeak) with hDC (top) and ASPL (bottom) for
|V| CNs. Here hDC is expressed as the median value of all
voxels. R Pearson’s correlation coefficient (*p < 0.05, �

p < 0.01).
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between hemodynamic alterations and AAo disease
in vivo.14,25,43

Stimulated by the need for interpretation of the
intricate 4D aortic hemodynamics, and the identifica-
tion of hemodynamic indicators/predictors of vascular
disease to be adopted in a clinical framework, the
current approach does not limit its focus on instanta-
neous snapshots or time- and space-average quantities,
but takes into account the information embedded in
the dynamical evolution of the aortic hemodynamics.
To extend and deepen the in vivo characterization of
hemodynamic complexity in the human aorta, the
present study aims at investigating the spatiotemporal
heterogeneity of large-scale aortic fluid structures by
applying for the first time the Complex Networks
theory to in vivo measured velocity data belonging to a
4D flow MRI dataset of human aortas with and
without AAo dilation. In doing that, the CNs
approach captures the large-scale ‘‘coherent flow
structures’’ by implementing their definition as struc-
tures over which one fundamental macroscopic quan-
tity (in this case, a velocity component or its
magnitude) exhibits significant correlation with itself
over a range of space and/or time significantly larger
than the smallest scales of flow.42 The here-proposed
CNs approach has the advantage of adding quantita-
tive information to the detected coherent flow struc-
tures, represented by the anatomic and topological
length of persistence of the correlation between the
dynamical evolutions of the investigated quantities.

CNs-Based Analysis of Aortic Flow Spatiotemporal
Heterogeneity

Among the main findings, it is here reported that
most of the patients (with the exception of non-dilated
patient A) present with large spatiotemporal hetero-
geneity of both |V| and Vax time-histories along the
cardiac cycle, as the corresponding networks are
characterized by very sparse connections and low de-
gree of similarity (low hDC) between waveforms
(Fig. 3). The distinguishable topologically isolated
flow structures (hDC close to zero) identifiable by vi-
sual inspection at the AAo inner wall in the Vax net-
works of all investigated patients (Fig. 3) can be
explained by the presence of large-scale flow recircu-
lation patterns.19,31,46 Such flow features have been
associated to (1) intimal lipid accumulation22 in murine
and rabbit thoracic aorta, and (2) atherosclerotic and
thrombotic biological markers in an arterial replica-
tion platform.32 As explained in Fig. 8 for a repre-
sentative case, the marked flow reversal is highlighted
by Vax waveforms with negative values, which are
likely to be anti-correlated with Vax waveforms mainly
aligned with the forward flow direction, resulting in

negative Rax
ij values (Figure S1). Interestingly, the

symmetry of the Vsc correlation distribution around
zero for all patients (Figure S1 of the Supplementary
Data), taken together with the dense patterns of con-
nections (higher hDC) in Vsc CNs, hints at the presence
of a Dean-like secondary flow organization.35 These
findings, while preliminary, suggest that the aortic
secondary flow patterns are more homogeneous than
velocity magnitude and axial flow.

The Impact of AAo Dilation on the Persistence Length
of Correlation in Velocity Data

The analysis of the spatial persistence of the corre-
lation of aortic large-scale flow structures confirms the
spatiotemporal heterogeneity of velocity data high-
lighted by hDC (Fig. 3). Of relevance, the anatomic
length of persistence of the correlation hAED in Vsc

networks is higher than |V| and Vax networks (Figs. 4
and 5). In detail, the shape of Vsc time-histories pre-
sents with a high level of similarity at anatomical dis-
tances longer than 2D, a feature common both to
dilated and non-dilated patients, while the similarity
between |V| and Vax time-histories is bounded below
2D (Fig. 5). The topological length of persistence of
the correlation is also longer for Vsc than |V| and Vax

networks (as highlighted by ASPL values in Table 2).
The combined picture provided by the calculation of

hAED and ASPL metrics suggests a different action
for the AAo dilation on aortic velocity: a larger AAo
dilation disrupts the (anatomical and topological)
length of persistence of the similarity of both |V| and
Vax waveforms, while preserving more the spatiotem-
poral similarity of Vsc waveforms. These findings are in
line with a recent study conducted on a dataset of
computational hemodynamics models of healthy
human carotid bifurcations,8 where a similar relation
between the spatiotemporal heterogeneity of helical
flow structures and a geometric indicator of carotid
bulb expansion was reported.

The regression analysis conducted on CNs distance
metrics and the geometric clinically measurable
parameter Dratio corroborates the hypothesis of an
impact of AAo dilation on blood velocity. As for the
Vsc networks, no significant association emerges
between the aortic Dratio and the network distance
metrics hAED and ASPL. In other terms, the Vsc

networks are more compact, less sensitive to AAo
dilation than |V| and Vax networks.

On the contrary, from the analysis of |V| and Vax

networks it emerges that the aortic Dratio is negatively
correlated with hAED (R = -0.72, p < 0.05 and
R = 2 0.82, p < 0.01, respectively, Fig. 6) and posi-
tively correlated with ASPL (R = 0.71, p < 0.05 and
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R = 0.84, p < 0.01, respectively, Fig. 6). From a fluid
mechanics viewpoint, the present analysis demon-
strates that AAo dilation, promoting the development
of flow disturbances, has a detrimental effect on the
spatiotemporal coherence of |V| and Vax waveforms in
the aorta. What emerges from the in vivo CNs-based
quantitative analysis agrees with previous semi-quan-
titative studies reporting of an association (1) between
age, AAo diameter and the presence of large vortices in
aorta,18 and (2) between the presence and strength of
vortical and helical flow patterns and AAo diameter
and AAo/DAo diameter ratio.6 Interestingly, and
consistently with the findings of this in vivo analysis, a
very recent study integrating CNs with computational
hemodynamics simulations suggests that the length of
correlation persistence in forward flow could be
shorter in the presence of AAo dilation, compared to
the healthy ascending aorta.13 The emergent picture
leads to presume that the physiological spatiotemporal
coherence of large-scale forward flow could be pro-
gressively compromised in the presence of increasing
AAo dilation. The capability of the CNs analysis to
underscore intravascular flow spatiotemporal hetero-
geneity and disturbed flow features like flow separation
and recirculation, increased velocity jets, highly rota-
tional flow, allows a deeper understanding of the
interaction of these intravascular fluid structures with

the vascular wall, and ultimately near-wall biological
transport and endothelial-cell mediated pathways
involved in vascular remodeling and dila-
tion.30,33,35,40,49 In addition to that, given the impor-
tance of intravascular flow features in terms of flow
energetics, the correlation persistence, measured by
CNs, as well as the amount of spatiotemporal hetero-
geneity in the flow field, is expected to have an impact
in the ventricular work.

A main limitation that could potentially weaken the
findings of this study is the choice of the correlation
threshold used to build the CNs. Consistently with
previous CNs-based in silico studies,7,8,13 the CNs
threshold for a specific hemodynamic quantity was set
equal to the median value of the correlation coeffi-
cients distribution obtained from a dataset of compu-
tational hemodynamic models of healthy aortas.
Further studies on a 4D flow MRI dataset of healthy
subjects could be useful to investigate the robustness of
the selected thresholds. Although the noise typically
affecting 4D flow MRI acquisitions could cause an
underestimation of the correlations between velocity
waveforms, the pattern of connection between nodes
resulting from the threshold-based approach adopted
in this study to build the CN is expected to be mar-
ginally influenced by the use of in vivo data as acquired.
In addition to that, the systolic phase, which is ex-

FIGURE 8. Explanatory example of differently correlated pairs of Vax time-histories in a representative case. Regions of flow
reversal, like the inner AAo, are characterized by Vax waveforms with negative values (Vax,j in the Figure), which are anti-correlated
(negative Rax values) with Vax,j waveforms mainly aligned with the forward flow direction (Vax,i, Vax,m and Vax,n in the Figure). Vax

waveforms shown in the Figure were interpolated using a higher number of time points for visualization purposes.
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pected to drive the correlations, is characterized by a
higher signal-to-noise ratio than the diastolic phase,
therefore dampening the impact of noise on the cor-
relation distribution. Another limitation of this study
lies in its cross-sectional nature, which does not allow
to draw any conclusion about the potential of the
approach as an in vivo tool for risk prediction, for
which longitudinal studies are needed. However, this
was intended as an exploratory study aiming at testing
the ability of the CNs to characterize in vivo complex
aortic flows and their link to vascular disease. All
patients enrolled for this study presented with aortic
valvular dysfunctions (from mild to severe), and two of
them with BAV (Table 1), thus preventing a robust
comparison between valve-mediated hemodynamics in
BAV vs. TAV groups. Moreover, the scarce stratifi-
cation as well as the small sample size could have
polarized the regression analysis results involving hDC
and influenced the associations between CNs metrics
and the other investigated clinical hemodynamic
parameters and centerline-based geometric attributes.
In addition to that, based on the scatter plots in
Figs. 6, 7 and in the Supplementary Data, non-dilated
patient A appears as an outlier/leverage point in rela-
tion of the hDC metric for the |V| and Vax networks.
However, when removing patient A from the regres-
sion analysis, the observed statistical significance
(Fig. 6) of the associations between CNs distance
metrics and Dratio is preserved, whereas the correla-
tions with KEpeak in the |V| CNs (Fig. 7) become non
statistically relevant. Therefore, further investigations
with larger and better stratified datasets are needed to
confirm the present findings on the spatiotemporal
heterogeneity of large-scale flow features.

In conclusion, in this study the CNs theory was
applied to in vivo velocity data from a 4D flow MRI
dataset of human aortas to (1) investigate the spa-
tiotemporal heterogeneity of large-scale aortic flow
structures and (2) assess the existence of possible
associations between CNs metrics and ascending aortic
dilation. Results showed that velocity magnitude and
through-plane (axial) velocity structures are charac-
terized by a larger spatiotemporal heterogeneity than
in-plane (secondary) flow structures. Moreover, an
increasing AAo dilation disrupts the correlation in
forward flow reducing the correlation persistence
length, while preserving the spatiotemporal homo-
geneity of secondary flows. The here presented
approach for obtaining in vivo measurable information
on aortic hemodynamics by integrating 4D flow MRI
and CNs in a clinical framework shows a strong
potential as a tool for visualization and quantification
of complex cardiovascular flows, and the use of CNs
distance metrics may allow a finer risk stratification of
AAo disease.
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