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A B S T R A C T   

Accurate dosimetry of ultra-high dose-rate beams using diamond detectors remains challenging, primarily due to 
the elevated photocurrent peaks exceeding the input dynamics of precision electrometers. This work aimed at 
demonstrating the effectiveness of compact gated-integration electronics in conditioning the current peaks (>20 
mA) generated by a highly sensitive (S ≃ 26 nC/Gy) custom-made diamond photoconductor under electron 
FLASH irradiation, as well as in real-time monitoring of beam dose and dose-rate. For the emerging FLASH 
technology, this study provided a new perspective on using commercially available diamond dosimeters with 
high sensitivity, currently employed in conventional radiotherapy.   

1. Introduction 

In radiation therapy (RT), several preclinical and clinical studies 
demonstrated that the use of almost instantaneous (<200 ms) doses, 
delivered in a few pulses with very high dose-per-pulse (DPP) values 
(>1 Gy/pulse) at ultra-high dose-rates (UHDRs) (>40 Gy/s), reduced 
significantly the healthy tissue toxicity, while keeping the tumor 
response similar to that of conventional RT (i.e., with DPP < 1 mGy/ 
pulse and dose-rate in the order of 0.01 Gy/s) [1–4]. A growing interest 
within the scientific community was directed towards understanding the 
effects induced by radiation in UHDR conditions [5–7], with the aim of 
establishing reliable protocols for the emerging FLASH-RT [8,9]. 
Consequently, substantial efforts have been dedicated to optimize the 
dosimetry of UHDR FLASH-beams, making it one of the pivotal focuses 
in current scientific research endeavors [10–17]. 

High-performance dosimeters capable of monitoring the intense and 
short electron pulses generated by medical LINACs were crucial for safe 
and efficient clinical translation of the innovative FLASH-RT. Ionization 
chambers (ICs) provided a standard reference for dosimetry in conven-
tional RT. However, under intense electron pulses, the collection effi-
ciency of ICs decreases, and the necessary saturation correction factors 

have not been defined by standards [18]. In this context, detectors based 
on wide-bandgap semiconductors emerged as a valuable alternative 
[11,13]. Among them, diamond is extremely appealing, due to its high 
radiation hardness [19], tissue equivalence [20], fast response [21,22], 
and high volume sensitivity [23], just to mention a few properties 
meeting the challenging requirements for FLASH dosimetry. Some pre-
liminary experiments confirmed the effectiveness of diamond detectors 
in electron FLASH dosimetry [12]. However, the dosimeter response 
saturated at a few Gy/pulse, mainly due to spike currents out of the 
electrometer input range [24]. To meet the requirements of FLASH 
dosimetry, diamond devices were re-designed for UHDR. By reducing 
both the sensitivity and the active volume of detectors, a linear response 
was achieved up to ~20 Gy/pulse [12,25]. 

Here we proposed a prototypal detection system employing a syn-
chronous integration technique able to efficiently acquire the high 
photocurrent peaks (up to 24 mA) generated by a photoconductive 
diamond detector (active volume 3.5 mm3) irradiated by intense pulsed 
electron beams. Characterizations were performed at different DPP 
values, pulse widths, and pulse repetition frequencies (PRFs), demon-
strating the effectiveness of the proposed prototype in real-time FLASH 
dosimetry. 
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2. Materials and methods 

2.1. Detector fabrication 

As shown in Fig. 1(a), the dosimeter was based on a 4.5×4.5×0.5 
mm3 single crystal (100)-oriented CVD-diamond sample (Element Six) 
with two 200 nm-thick Ag dots (diameter 3 mm) deposited on the two 
sides of the sample by thermal evaporation. A 1.6 m-long triaxial cable 
was employed for the connection of detector contacts to the acquisition 
electronics. The device was encapsulated in a polymethyl methacrylate 
(PMMA) cylinder (diameter 1 cm, length 5 cm) filled with epoxy resin 
(Epotek, 301) (Fig. 1(b)). A detailed description of the device fabrication 
workflow was reported in [26]. 

2.2. Experimental setup 

Measurements under high DPP electrons were performed with an 
ElectronFlash (named eFlash in the following) research-dedicated 
LINAC (SIT-Sordina IORT Technologies S.p.A, Aprilia, Italy) with the 
setup shown in Fig. 1(c). The diamond dosimeter, biased at only 2 V, was 
placed into a PMMA phantom at a depth of 2.5 cm (Fig. 1(d)). The 
dosimeter head was positioned at the center of the end side of a PMMA 
cylindrical applicator (wall thickness 5 mm, inner diameter 10 cm, and 
length 100 cm), with the 4.5×4.5 mm2 diamond sides perpendicular to 
the beam direction. The eFlash console displayed and saved the DPP 
value for each electron pulse, evaluated by the pulsed current induced 
by the electron beam in the AC current transformer (ACCT, Bergoz 
Instrumentation) located immediately outside the beam exit window 
[27,28]. 

The dosimeter response as a function of the delivered DPP values, 
representing the dosimeter sensitivity, was measured in the range 
0.5–4.6 Gy/pulse at PRF = 10 Hz, for both 7 MeV and 9 MeV pulsed 
electrons. To evaluate the dose-rate dependence, the eFlash was set to 
deliver 9 MeV electron pulses (width 4 μs) at different PRFs in the range 

5–240 Hz (i.e. an effective dose-rate from 40 to 960 Gy/s). Conversely, 
to assess the real-time monitoring capability of the prototype, tests were 
carried out with the eFlash producing 5 pulses (4 μs wide) at 9 MeV, i.e. 
delivering a total dose of 20 Gy within ~17 ms (PRF = 240 Hz). 

2.3. Readout electronics 

At each electron pulse, the eFlash provided a trigger-out signal, 
exploited by a specifically developed gated-integrator (GI) [14,29,30] to 
perform synchronous integration of the photocurrent peaks generated 
by the diamond dosimeter. The eFlash was set to generate the trigger-out 
pulse 12 μs before the electron-packet emission. As outlined in the 
Supplementary material 1, at each trigger rising edge, the instrument 
acquired the charge induced by the incident pulse and collected by the 
detector. After a reset, the GI performed a second integration to assess 
potential contributions from leakage current, thereby improving the 
measurement accuracy. Finally, data were sent to a computer and the 
system waited for a new trigger. 

A feedback capacitor of 22 nF nominal value (22.15 nF of effective 
value as found by the calibration procedure described in the Supple-
mentary material 2) was used for the integrator in order to acquire the 
high photocurrent peaks generated by the dosimeter. In Fig. 1(e), an 
example of the front-end output voltage (blue trace) recorded for a 7 
MeV 3.5 µs-wide pulse is shown. The figure also reported the trigger-out 
(black trace) occurring 12 μs before the ACCT peak signal (red trace) of 
the eFlash. The output voltage of the integrator settled to a stable value 
few microseconds after the end of the electron pulse. In this example, the 
increase of the GI output was about 1.5 V, corresponding to a collected 
charge of ~33 nC (see y-axis on the right of Fig. 1(e)), i.e, an average 
photocurrent of ~10 mA. 

The GI was set to perform the signal integration in the period 5–20 μs 
after the trigger rising-edge. The implemented 12-bit analog-to-digital 
converter (ADC) then acquired the signal in the following 60 μs, 
recording 16 samples and then calculating both the mean value and the 

Fig. 1. (a) Picture of the diamond detector with contacts on the two sides before device encapsulation. (b) The dosimeter after the encapsulation in a hermetic PMMA 
enclosure. (c) ElectronFlash head with the cylindrical applicator (diameter 10 cm, length 100 cm). (d) Detail of the dosimeter immersed in a solid PMMA phantom at 
a depth of 2.5 cm. (e) GI output voltage (blue trace) and ACCT signal (red trace) as acquired by a digital oscilloscope. The origin of the time axis corresponds to the 
rising edge of the trigger signal (black trace). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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peak-to-peak dispersion of the charge collected by the detector at each 
eFlash pulse. Finally, for pulse-by-pulse monitoring, the GI was pro-
grammed to calculate the delivered DPP values using the detector 
sensitivity evaluated by preliminary characterizations. 

3. Results 

The characteristics of the charge collected by the dosimeter as a 
function of the delivered DPP values recorded by the eFlash are shown in 
Fig. 2(a) and (b). A very good linearity was found (R2 = 0.998), with 
sensitivities represented by the slopes equal to 13.97 nC/Gy for 7 MeV 
electrons and 23.15 nC/Gy for 9 MeV electrons. The photocurrent values 
as a function of the effective dose-rate (equal to DPP × PRF) are reported 
in Fig. 2(c). Data showed excellent linearity (R2 > 0.999) with a slope 
consistent with the results of Fig. 2(b). 

Considering the detector sensitivity (23.15 nC/Gy) evaluated from 
the data in Fig. 2(b), the recorded values reported in Fig. 2(d) for a 20 Gy 
dose delivered with 5 pulses at 9 MeV showed a difference of only 
±0.5% between the eFlash and the prototype. 

4. Discussion 

The results showed an excellent response linearity with a DPP up to 
~4.6 Gy/pulse for the implemented prototype, which is independent of 
the dose-rate in the investigated range from 40 to 960 Gy/s. In addition, 
the diamond photoresponse did not show any degradation during the 
measurement sessions, even after the absorption of a total dose > 2 kGy 
as recorded by the eFlash, thus highlighting excellent radiation 
hardness. 

The ratio between the slopes of linear best fits of data of Fig. 2(a) and 
(b) was consistent with the ratio between the percentage of depth-dose 
(PDD) values in the PMMA phantom at a depth of 25 mm for 7 MeV 
electrons (PDD ≃ 52%) and 9 MeV electrons (PDD ≃ 89%) [25]. 
Therefore, the sensitivity values were (26.9 ± 0.2) nC/Gy at 7 MeV and 
(26.3 ± 0.2) nC/Gy at 9 MeV, calculated as S = S(E) / PDD(d,E), with 
S(E) the sensitivity and PDD(E,d) the percentage of depth-dose for 
electrons with energy E at a depth d = 25 mm in the PMMA phantom. 
These findings highlighted the high sensitivity of the detector used in 
this study. In addition, such an investigation clearly confirmed the 
suitability of diamond photoconductors for FLASH dosimetry. The 

Fig. 2. Collected charge as a function of delivered DPP for (a) 7 MeV and (b) 9 MeV electrons. Each point indicates the signal averaged on ten pulses with error bars 
representing the standard deviation. The pulse width is reported near each point. Continuous lines are the linear best fits to data. (c) Photocurrent as a function of the 
effective dose-rate for 9 MeV electrons (4 µs) in the range 40–960 Gy/s (PRF ranging from 10 Hz to 240 Hz). Each point indicates the signal averaged on ten samples 
(error bars are smaller than symbols). Dashed line is the best linear fit to data. (d) Comparison between DPP values recorded by the ACCT of the eFlash (red circles) 
and by the prototypal detection system proposed in this work (blue circles). Blue circles are the mean value of the DPP calculated assuming a detector sensitivity of 
23.2 nC/Gy (see Fig. 2(b)), whereas the height of the gray rectangles represents the measurement uncertainty calculated as the peak-to-peak dispersion of the 16 
recorded samples of each pulse. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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technology for fabricating the diamond photoconductor was simpler and 
more cost-effective than that required for manufacturing a diamond 
Schottky-diode. Although a bias voltage was required for carrier 
collection, the high detector sensitivity enabled low bias-voltage oper-
ation (a few Volts) under the intense radiation beams in FLASH-RT. 

The designed front-end efficiently acquired input current peaks up to 
24 mA (see Fig. S4), a value thirty times higher than those recently re-
ported for an optimized diamond photodiode [13] under experimental 
conditions similar to those used in the present work. As a matter of fact, 
the proposed electronics featured a significantly wider input range 
compared to precision standard electrometers (typically operating in the 
range of a few hundred microamperes), thereby eliminating the need for 
attenuation stages [24]. 

It is worth highlighting that the proposed instrument enabled the use 
of a highly sensitive diamond device, making it particularly suitable for 
interfacing with both the established PTW-microDiamond dosimeter (S 
= 1 nC/Gy) [31], commonly employed in dosimetry for conventional 
RT, and the recently introduced PTW-flashDiamond for UHDR beams 
[32]. Indeed, the input dynamics of the GI can be tailored to the specific 
dosimeter’s sensitivity by selecting the proper integrating capacitance 
and gain factor of the front-end (see Tab. S1). This assures optimal signal 
conditioning that fully exploits the input dynamics of the readout elec-
tronics. In addition, it is important to stress here that the electronic 
prototype completed the acquisition phases (integration, analog-to- 
digital conversion, processing, and data transfer) within 580 μs (see 
Fig. S1(b)), thus allowing for pulse-by-pulse monitoring up to PRFs of 
1.7 kHz. The timing circuitry implemented by a microcontroller (Fig. S1) 
ensured high flexibility: integration may be indeed extended up to 
hundreds of milliseconds, therefore allowing for the acquisition of pul-
ses with duration in the ms range. The adopted synchronous detection 
technique, exploiting the beam pulse trigger signal from the LINAC, 
significantly improved the system accuracy at the expense of an 
increased connection complexity compared to the use of a standard 
electrometer. However, all experiments were carried out with the in-
strument located in the bunker where the LINAC was installed, limiting 
the length of the detector cable (i.e. its capacitance), thus ensuring the 
reliability of the detection system even at very-high PRFs. 

Two key upgrades for the comprehensive diagnostics of UHDR beams 
can be highlighted in the proposed prototype: (i) measuring the pulse 
duration to evaluate the instantaneous dose-rate of each pulse, and (ii) 
validating the instrument with commercial dosimeters (e.g., the PTW- 
microDiamond). Nevertheless, all-carbon detectors based on diamond 
samples [33–35], with sputter-deposited or laser-induced graphitic 
contacts better fulfill the tissue equivalence requirement for radio-
therapy dosimetry and would offer a valuable alternative to eliminate 
the possible spurious signals induced by secondary electrons emitted by 
metallic contacts [36]. Furthermore, we would like to emphasize that 
the implemented measurement method may mitigate the detrimental 
effects of non-linear conduction mechanisms induced by structural de-
fects distributed within the active volume of the detectors [37], as ex-
pected for laser-processed diamond samples [34,38]. 

In conclusion, our work marked the first implementation of gated- 
integration technique for the real-time monitoring of high current 
peaks generated by a diamond detector under intense electron beams. 
One notable advantage was restricting the measurement of the collected 
charge to the time period around the incident pulse, ensuring optimal 
signal-to-noise ratio. Additionally, the versatility of the proposed in-
strument should allow the use of established commercial diamond do-
simeters for conventional RT, even in the context of FLASH dosimetry. 
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