
*For correspondence:wh221@

cinj.rutgers.edu (WH); fengzh@

cinj.rutgers.edu (ZF)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 07 August 2015

Accepted: 06 December 2015

Published: 11 January 2016

Reviewing editor: Michael R

Green, Howard Hughes Medical

Institute, University of

Massachusetts Medical School,

United States

Copyright Zhang et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Glutaminase 2 is a novel negative
regulator of small GTPase Rac1 and
mediates p53 function in suppressing
metastasis
Cen Zhang1†, Juan Liu1†, Yuhan Zhao1, Xuetian Yue1, Yu Zhu1,2, Xiaolong Wang1,
Hao Wu1, Felix Blanco1, Shaohua Li3, Gyan Bhanot4, Bruce G Haffty1,
Wenwei Hu1*, Zhaohui Feng1*

1Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey,
Rutgers, The State University of New Jersey, New Brunswick, United States;
2Department of Neurosurgery, First Affiliated Hospital, Zhejiang University School
of Medicine, Hangzhou, China; 3Department of Surgery, Robert Wood Johnson
Medical School, Rutgers, The State University of New Jersey, New Brunswick,
United States; 4Department of Molecular Biology, Biochemistry & Physics, Rutgers,
The State University of New Jersey, Piscataway, United States

Abstract Glutaminase (GLS) isoenzymes GLS1 and GLS2 are key enzymes for glutamine

metabolism. Interestingly, GLS1 and GLS2 display contrasting functions in tumorigenesis with

elusive mechanism; GLS1 promotes tumorigenesis, whereas GLS2 exhibits a tumor-suppressive

function. In this study, we found that GLS2 but not GLS1 binds to small GTPase Rac1 and inhibits

its interaction with Rac1 activators guanine-nucleotide exchange factors, which in turn inhibits Rac1

to suppress cancer metastasis. This function of GLS2 is independent of GLS2 glutaminase activity.

Furthermore, decreased GLS2 expression is associated with enhanced metastasis in human cancer.

As a p53 target, GLS2 mediates p53’s function in metastasis suppression through inhibiting Rac1.

In summary, our results reveal that GLS2 is a novel negative regulator of Rac1, and uncover a novel

function and mechanism whereby GLS2 suppresses metastasis. Our results also elucidate a novel

mechanism that contributes to the contrasting functions of GLS1 and GLS2 in tumorigenesis.

DOI: 10.7554/eLife.10727.001

Introduction
Metabolic changes are a hallmark of cancer cells (Berkers et al., 2013; Cairns et al., 2011;

Ward and Thompson, 2012). Increased glutamine metabolism (glutaminolysis) has been recognized

as a key metabolic change in cancer cells, along with increased aerobic glycolysis (the Warburg

effect) (Berkers et al., 2013; Cairns et al., 2011; DeBerardinis et al., 2007; Hensley et al., 2013;

Ward and Thompson, 2012). Glutamine is the most abundant amino acid in human plasma

(Hensley et al., 2013). Glutamine catabolism starts with the conversion of glutamine to glutamate,

which is converted to a-ketoglutarate for further metabolism in the tricarboxylic acid (TCA) cycle.

Recent studies have shown that increased glutamine metabolism plays a critical role in supporting

the high proliferation and survival of cancer cells by providing pools of the TCA cycle intermediates,

as well as the biosynthesis of proteins, lipids, and nucleotides (Berkers et al., 2013; Cairns et al.,

2011; DeBerardinis et al., 2007; Hensley et al., 2013; Ward and Thompson, 2012).

Glutaminase (GLS) is the initial enzyme in glutamine metabolism, which catalyzes the hydrolysis of

glutamine to glutamate in cells. Two genes encode glutaminases in human cells: GLS1 (also known
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as kidney-type glutaminase), and GLS2 (also known as liver-type glutaminase). GLS1 and GLS2 pro-

teins exhibit a high degree of amino acid sequence similarity, particularly in their glutaminase core

domains. While GLS1 and GLS2 both function as glutaminase enzymes in glutamine metabolism,

recent studies show that they have very different functions in tumorigenesis. GLS1 is ubiquitously

expressed in various tissues, and its expression can be induced by the oncogene MYC (Gao et al.,

2009). GLS1 is frequently activated and/or overexpressed in various types of cancer, including hepa-

tocellular carcinoma (HCC) (Gao et al., 2009; Thangavelu et al., 2012; Wang et al., 2010;

Xiang et al., 2015). GLS1 has been reported to promote tumorigenesis in different types of cancer,

including HCC, which is mainly attributable to its glutaminase activity and role in promoting gluta-

mine metabolism (Gao et al., 2009; Thangavelu et al., 2012; Wang et al., 2010; Xiang et al.,

2015). By contrast, GLS2 is specifically expressed in only a few tissues, including the liver tissue.

Recent studies including ours have shown that GLS2 is a novel target gene of the tumor suppressor

p53. GLS2 is transcriptionally up-regulated by p53 and mediates p53’s regulation of mitochondrial

function and anti-oxidant defense in cells (Hu et al., 2010; Suzuki et al., 2010). Considering the crit-

ical role of p53 and its pathway in tumor suppression, the identification of GLS2 as a p53 target

gene strongly suggests a potentially important role of GLS2 in tumor suppression. Recent studies

have shown that, in contrast to the tumorigenic effect of GLS1, GLS2 displays a tumor suppressive

function (Hu et al., 2010; Liu et al., 2014a; Suzuki et al., 2010). GLS2 expression is frequently

reduced in HCC (Hu et al., 2010; Liu et al., 2014a; Suzuki et al., 2010; Xiang et al., 2015). Ectopic

expression of GLS2 greatly inhibited the growth and colony formation of HCC cells in vitro and the

growth of HCC xenograft tumors in vivo (Hu et al., 2010; Liu et al., 2014a; Suzuki et al., 2010).

Given that GLS1 and GLS2 both function as glutaminase enzymes, the mechanisms underlying their

contrasting roles in tumorigenesis remain unclear.

In this study, immunoprecipitation (IP) followed by liquid chromatography-tandem mass spec-

trometry (LC/MC-MS) analysis was employed to screen for potential proteins interacting with GLS2.

The small GTPase Rac1 was identified as a novel binding protein for GLS2. Rac1 cycles between

inactive guanosine 50-diphosphate (GDP)-bound and active guanosine 5’-triphosphate (GTP)-bound

forms in cells, and regulates a diverse array of cellular events, including actin dynamics. The Rac1 sig-

naling is frequently activated in various types of cancer, in which it plays a critical role in promoting

migration, invasion and metastasis of cancer cells (Bid et al., 2013; Heasman and Ridley, 2008). We

eLife digest Healthy cells in the body derive most of their energy from a sugar called glucose.

However, cancer cells grow and divide much more rapidly than normal cells and so require larger

amounts of energy to sustain themselves. Therefore, many cancer cells can alter their metabolism so

that they can obtain more energy from a molecule called glutamine or other alternative sources.

Cancer cells obtain glutamine from the blood and use an enzyme called glutaminase to convert it

into another type of molecule. Human cells produce two forms of glutaminase called GLS1 and

GLS2. Even though both enzymes share many common features, they have different effects on

cancer cells. GLS1 promotes tumor formation, while GLS2 has the opposite effect. However, it is not

clear why these enzymes behave so differently.

Zhang, Liu et al. now investigate how GLS2 suppresses the progression of tumors. The

experiments show that GLS2, but not GLS1, can directly bind to a protein called Rac1 that normally

promotes the spread of tumor cells around the body. GLS1 inhibits the activity of Rac1, but this

happens independently of the enzyme’s glutaminase activity. Zhang, Liu et al. altered the levels of

GLS2 in liver cancer cells and then injected these cells into mice. Cells that had low levels of GLS2

were able to spread and form tumors in distant sites like the lung. In contrast, smaller and fewer

lung tumors were observed in mice that had been injected with cells that produced high levels of

GLS2.

Zhang, Liu et al.’s findings reveal a new role for GLS2 that may help to explain why it affects

tumor progression differently from GLS1. Further work is now needed to explore whether targeting

Rac1 could be a potential therapy for cancers that have lost GLS2.

DOI: 10.7554/eLife.10727.002
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found that GLS2 binds to Rac1, and inhibits the interaction of Rac1 with its guanine-nucleotide

exchange factors (GEFs) such as Tiam1 and VAV1, which would normally activate Rac1. Thus, GLS2

inhibits Rac1 activity, which in turn inhibits migration, invasion and metastasis of cancer cells. This

function of GLS2 requires the C-terminus of GLS2 and is independent of its glutaminase activity. In

contrast, GLS1 does not interact with Rac1 to inhibit Rac1 activity, and consequently, cannot inhibit

cancer metastasis via this pathway. p53 plays a pivotal role in suppressing cancer metastasis, but its

underlying mechanism is not fully understood (Muller et al., 2011; Vousden and Prives, 2009). Our

results further show that, as a direct downstream target of p53, GLS2 mediates p53’s function in

metastasis suppression through inhibiting the Rac1 signaling. Taken together, our results demon-

strated that GLS2 is a novel negative regulator of Rac1, and plays a critical role in suppression of

metastasis through its negative regulation of Rac1 activity. Our results also revealed that GLS2 plays

an important role in mediating the function of p53 in suppression of cancer metastasis.

Results

Rac1 is a novel GLS2 interacting protein
GLS2 was reported to interact with several proteins although the biological functions of these inter-

actions remain unclear (Boisguerin et al., 2004; Olalla et al., 2001). These findings raised the possi-

bility that GLS2 may exert its function in tumor suppression through its interactions with other

proteins. Herein, we screened for potential GLS2-interacting proteins in human HCC Huh-1 cells sta-

bly transduced with pLPCX-GLS2-Flag retroviral vectors to express GLS2-Flag and control cells trans-

duced with control vectors. Co-IP assays using an anti-Flag antibody followed by LC-MS/MS assays

were employed. These assays identified the small GTPase Rac1 as a potential GLS2 interacting pro-

tein (Figure 1A). Rac1 is frequently activated or overexpressed in various types of cancer, including

HCC, and has been reported to play a critical role in promoting cancer cell migration, invasion and

metastasis mainly through its regulation of actin dynamics (Bid et al., 2013; Heasman and Ridley,

2008).

The interaction between GLS2 and Rac1 was confirmed by co-IP followed by western blot assays

in Huh-1 cells co-transduced with the vectors expressing GLS2-Flag and Myc-Rac1, respectively.

GLS2-Flag was co-precipitated by the anit-Myc antibody, and Myc-Rac1 was co-precipitated by the

anti-Flag antibody, indicating that GLS2-Flag interacted with Myc-Rac1 in cells (Figure 1B). In con-

trast, no interaction was observed between GLS1-Flag and Myc-Rac1 in Huh-1 cells (Figure 1C). The

interaction between endogenous Rac1 with endogenous GLS2 but not GLS1 was also observed in

Huh-1 and HepG2 cells (Figure 1D).

To identify the domain of GLS2 that interacts with Rac1, three Flag-tagged deletion mutants of

GLS2 were constructed, including DN163 (deletion of N-terminal amino acids (aa) 1–163), DC139

(deletion of C-terminal aa 464–602), and C139 (C-terminal aa 464–602 only) (Figure 1E). Co-IP

assays in Huh-1 cells showed that the GLS2-DN163 and GLS2-C139, but not GLS2-DC139, interacted

with Myc-Rac1, indicating that the C-terminus of GLS2 is necessary and sufficient for the interaction

between GLS2 and Rac1 (Figure 1F). Since the C-terminus of GLS2 (GLS2-C139) does not contain

the glutaminase core domain, which encodes the glutaminase catalytic domain (Figure 1E) and

hence lacks glutaminase activity (Figure 1G), these results demonstrate that the binding of GLS2 to

Rac1 is independent of its glutaminase activity.

GLS2 interacts with Rac1-GDP and inhibits the Rac1 activity
As a molecular switch, Rac1 cycles between inactive GDP-bound and active GTP-bound forms in

cells (Bid et al., 2013; Heasman and Ridley, 2008; Raftopoulou and Hall, 2004). It is well known

that constitutively active mutant Rac1 (CA Rac1-G12V) exists constitutively in the GTP-bound form in

cells, whereas the dominant negative Rac1 mutant (DN Rac1-T17N) exists constitutively in the GDP-

bound form in cells (Feig, 1999; Ridley et al., 1992). Rac1-GDP and Rac1-GTP display different con-

formations and interact with different proteins. For instance, GEFs specifically bind to Rac1-GDP to

catalyze the exchange of GDP to GTP and thereby activate Rac1, whereas GAPs (GTPase-activating

proteins) specifically bind to Rac1-GTP to hydrolyze GTP and thereby inactivate Rac1 (Cherfils and

Zeghouf, 2013; Vetter and Wittinghofer, 2001).
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Figure 1. Rac1 is a novel interacting protein for GLS2. (A) The potential GLS2-interacting proteins identified by co-IP followed by LC-MS/MS analysis.

Huh-1 cells expressing GLS2-Flag or cells transduced with control vectors were used for co-IP with the anti-Flag antibody followed by LC-MS/MS

analysis. The potential GLS2 interacting proteins are listed with the number of peptides identified by LC-MS/MS analysis. (B) GLS2-Flag interacted with

Myc-Rac1 in cells. Huh-1 cells were transduced with Myc-Rac1, GLS2-Flag and control vectors as indicated for co-IP assays using the anti-Myc (left

panels) and anti-Flag antibodies (right panels), respectively. (C) GLS1-Flag did not interact with Myc-Rac1 in cells. Huh-1 cells were transduced with

Myc-Rac1 and GLS1-Flag vectors for co-IP assays using the anti-Myc (left panels) and anti-Flag antibodies (right panels), respectively. (D) Endogenous

GLS2 but not GLS1 interacted with endogenous Rac1 in Huh-1 and HepG2 cells detected by co-IP assays. (E) Schematic representation of vectors

expressing Flag-tagged WT or serial deletion mutants of GLS2. (F) The C-terminus of GLS2, GLS2-C139, is necessary and sufficient for GLS2 to interact

with Rac1. Huh-1 cells were transduced with WT or different mutant GLS2-Flag vectors listed in Figure 1E together with Myc-Rac1 vectors for co-IP

assays. (G) The relative glutaminase activities of WT and different mutant GLS2. Huh-1 and HepG2 cells were transduced with WT and different mutant

GLS2 vectors. The relative glutaminase activities in cells transduced with WT GLS2 vectors were designated as 100. **: p<0.001. Student’s t-test. GLS,

glutaminase; IB: immunoblot; IP, immunoprecipitation; LC/MC-MS, liquid chromatography-tandem mass spectrometry; WT, wild-type.

DOI: 10.7554/eLife.10727.003
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To investigate the biological function of the interaction between GLS2 and Rac1, Huh-1 cells

were co-transfected with GLS2-Flag vectors and CA Myc-Rac1-G12V or DN Myc-Rac1-T17N vectors

for co-IP assays. We found that GLS2-Flag preferentially bound to Myc-Rac1-T17N but not Myc-

Rac1-G12V (Figure 2A). To confirm this result, lysates from Huh-1 cells co-transduced with GLS2-

Flag and Rac1-Myc were pretreated with GDP or GTPgS (a non-hydrolyzable analog of GTP) to con-

vert Rac1 in cell lysates into Rac1-GDP or Rac1-GTP form as previously described (Castillo-

Lluva et al., 2010; Fukata et al., 2002). Co-IP assays showed that GLS2-Flag preferentially bound

to Myc-Rac1 in cell lysates pretreated with GDP but not GTPgS (Figure 2B). These results showed

that GLS2 preferentially binds to Rac1-GDP, suggesting that GLS2 is involved in regulating Rac1

activity.

We further investigated whether GLS2 inhibits the Rac1 activity in different human HCC cell lines,

including Huh-1 and HepG2 (p53 wild type; WT), Hep3B (p53-null) and Huh-7 cells (p53 mutant).

PAK1 (p21-activated kinase 1) is a critical Rac1 effector protein. It has been well established that the

p21-binding domain of PAK1 binds specifically to the Rac1-GTP but not Rac1-GDP in cells

(Galic et al., 2014; Hayashi-Takagi et al., 2010; Palacios et al., 2002). Based on this fact, the GST-

p21-binding domain of PAK1 pull-down assays have been widely used to measure the levels of

Rac1-GTP in cells as a standard method to analyze the Rac1 activity in cells (Galic et al., 2014; Haya-

shi-Takagi et al., 2010; Palacios et al., 2002). We found that ectopic expression of GLS2-Flag

greatly decreased the levels of Rac1-GTP measured by p21-binding domain of PAK1 pull-down

assays in Huh-1 and HepG2 cells (Figure 2C), as well as Hep3B and Huh-7 cells (Figure 2C and Fig-

ure 2—figure supplement 1A). In contrast, the expression of GLS2-Flag did not affect the levels of

total Rac1 protein in these cells measured by western blot assays (Figure 2C and Figure 2—figure

supplement 1A), indicating that GLS2 inhibits Rac1 activity. Consistently, knockdown of GLS2

greatly increased the levels of Rac1-GTP but not total Rac1 in Huh-1 and HepG2 cells (Figure 2D) as

well as in Hep3B and Huh-7 cells (Figure 2D and Figure 2—figure supplement 1B,C). The endoge-

nous levels of GLS2 in these HCC cells and the levels of GLS2-Flag in HCC cells transduced with

GLS2-Flag expression vectors were shown in Figure 2—figure supplement 2A–D. It has been

known that Rac1 binds to PAK1 and results in the auto-phosphorylation of PAK1 at multiple sites,

including Ser199/204, leading to PAK1 activation (Chong et al., 2001; Heasman and Ridley, 2008).

Therefore, we further investigated the effect of GLS2 on Rac1 activity by detecting the Ser199/204

phosphorylation of PAK1 in cells. Ectopic expression of GLS2-Flag in Huh-1 and HepG2 cells greatly

reduced Ser199/204 phosphorylation of PAK1 (Figure 2E), whereas GLS2 knockdown enhanced

Ser199/204 phosphorylation of PAK1 (Figure 2F), which further indicates that GLS2 inhibits the Rac1

activity in HCC cells. In contrast, ectopic GLS1 expression or GLS1 knockdown did not affect the

Rac1 activity in HCC cells (Figure 2—figure supplement 1D,E).

Consistent with WT GLS2, the C-terminus of GLS2, GLS2-C139, specifically bound to the DN

Rac1-T17N but not CA Rac1-G12V in Huh-1 cells (Figure 2G). Furthermore, ectopic expression of

GLS2-C139 greatly inhibited the Rac1 activity in Huh-1 cells (Figure 2H). In contrast, GLS2-DC139,

which did not bind to Rac1 (Figure 1F), failed to inhibit the Rac1 activity (Figure 2H). This result indi-

cates that the interaction between GLS2 and Rac1 is critical for GLS2 to inhibit the Rac1 activity. Fur-

thermore, the function of GLS2 in binding to and inhibiting Rac1 is independent of its glutaminase

activity since the C-terminus of GLS2 (GLS2-C139) lacks the glutaminase activity (Figure 1G). Collec-

tively, these results revealed that GLS2 is a novel negative regulator of the Rac1 signaling; GLS2

inhibits the Rac1 activity through its interaction with Rac1-GDP, and furthermore, this function of

GLS2 requires the C-terminus of GLS2 and is independent of GLS2 glutaminase activity.

GLS2 inhibits the interaction of Rac1-GDP with Rac1 GEFs to negatively
regulate Rac1
We further investigated the mechanism by which GLS2 inhibits Rac1. Rac1 was reported to interact

with other proteins through its Switch I & II regions or its C-terminus, which contains the protein

transduction domain and GTPase C-termini (van Hennik et al., 2003; Vetter and Wittinghofer,

2001) (Figure 3A). To examine the domain involved in the interaction of Rac1 with GLS2, different

Myc-tagged deletion mutants of Rac1 were constructed, including the DC33 (deletion of aa 160–

192), the DN29 (deletion of aa 1–29), and the DSwitch (deletion of aa 30–74) (Figure 3A). Co-IP

assays showed that the Rac1-DC33 and Rac1-DN29, but not Rac1-DSwitch, interacted with GLS2-Flag

(Figure 3B), indicating that the Switch I & II regions are necessary for Rac1 to interact with GLS2.

Zhang et al. eLife 2015;5:e10727. DOI: 10.7554/eLife.10727 5 of 20

Research article Genes and chromosomes

http://dx.doi.org/10.7554/eLife.10727


Figure 2. GLS2 interacts with Rac1-GDP and negatively regulates the Rac1 activity. (A) GLS2-Flag preferentially interacted with the DN Myc-Rac1-T17N

but not the CA Myc-Rac1-G12V in Huh-1 cells. Cells were transduced with GLS2-Flag vectors together with Rac1-T17N or Rac1-G12V vectors for co-IP

assays. (B) GLS2-Flag preferentially bound to Rac1-GDP but not Rac1-GTP in cell lysates. Cell lysates from Huh-1 cells transduced with vectors

expressing Myc-Rac1 and GLS2-Flag were pretreated with GDP or GTPgS to convert Rac1 into Rac1-GDP or Rac1-GTP form before co-IP assays. (C)

Ectopic expression of GLS2 inhibited Rac1 activities represented by decreased levels of Rac1-GTP in HCC cells measured by the GST-p21-binding

domain of PAK1 pull-down assays. Left panels: Represented results of Rac1 activity analysis in Huh-1 and HepG2 cells. Right panels: relative Rac1-GTP/

total Rac1/Actin levels in Huh-1, HepG2, Hep3B and Huh-7 cells. Data present mean ± SD (n=3). *p<0.01; Student’s t-test. (D) Knockdown of GLS2 by

shRNA vectors increased Rac1 activities in HCC cells. Left panels: Represented results of Rac1 activity analysis in Huh-1 and HepG2 cells. Right panels:

relative Rac1-GTP/total Rac1 /Actin levels in Huh-1, HepG2, Hep3B and Huh-7 cells. Data present mean ± SD (n=3). *p<0.01; #p<0.05; Student’s t-test.

(E) Ectopic expression of GLS2-Flag decreased the levels of p-PAK1 at Ser199/204 in Huh-1 and HepG2 cells. (F) Knockdown of GLS2 by shRNA vectors

increased the levels of p-PAK1 at Ser199/204 in Huh-1 and HepG2 cells. (G) The C-terminus of GLS2, GLS2-C139, interacted with DN Myc-Rac1-T17N

but not CA Myc-Rac1-G12V in Huh-1 cells detected by co-IP assays. (H) The C-terminus of GLS2, GLS2-C139, inhibited the Rac1 activity in Huh-1 and

Figure 2 continued on next page
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It has been well-established that Rac1 GEFs can specifically bind to Rac1-GDP through the Switch

I & II regions to catalyze the exchange of GDP to GTP to activate Rac1 (Rossman et al., 2005;

Vetter and Wittinghofer, 2001). Tiam1 and VAV1 are two most common and critical GEFs of Rac1

(Heo et al., 2005; Worthylake et al., 2000). Consistent with previous reports, ectopically expressed

Tiam1-HA and VAV1-HA specifically bound to Rac1-GDP (shown by their preferential interactions

with Rac1-T17N but not Rac1-G12V; Figure 3—figure supplement 1A,B) through the Switch I & II

regions (Figure 3C), leading to the activation of Rac1 in Huh-1 cells (Figure 3D). Since both GLS2

and Rac1 GEFs, such as Tiam1 and VAV1, bind to Rac1-GDP through the Switch I & II regions, this

raised the possibility that GLS2 may inhibit Rac1 activity through competing with Rac1 GEFs for the

Switch I & II regions of Rac1-GDP. To test this possibility, co-IP assays were performed in Huh-1 cells

co-transduced with DN Myc-Rac1-T17N vectors and Tiam1-HA or VAV1-HA vectors, as well as

increasing amount of vectors expressing GLS2-Flag. Increasing amount of GLS2-Flag resulted in a

progressive reduction of Tiam1-HA or VAV1-HA bound to Myc-Rac1-T17N in cells (Figure 3E,F).

Consistently transducing Huh-1 and HepG2 cells with increasing amount of GLS2-Flag vectors

resulted in a progressive reduction of endogenous Tiam1 and VAV1 bound to endogenous Rac1

(Figure 3G). Furthermore, knockdown of endogenous GLS2 greatly promoted the interaction of

endogenous Tiam1 and VAV-1 with endogenous Rac1 in Huh-1 and HepG2 cells (Figure 3H). These

results suggest that GLS2 inhibits the Rac1 activation by interacting with Rac1-GDP to block its inter-

action with Rac1 GEFs, such as Tiam1 and VAV1.

GLS2 inhibits migration and invasion of HCC cells through negative
regulation of Rac1
GLS2 expression is frequently diminished in human HCC (Hu et al., 2010; Liu et al., 2014a;

Suzuki et al., 2010; Xiang et al., 2015). However, its role in HCC, especially HCC metastasis, is

poorly understood. The malignancy and poor prognosis of HCC has been related to the high meta-

static characteristic of HCC (El-Serag and Rudolph, 2007; Tang, 2001). Currently, the mechanism

underlying HCC metastasis is not well-understood. Rac1 is frequently activated or overexpressed in

various types of cancer, including HCC, which plays a critical role in promoting cancer cell migration,

invasion and metastasis (Bid et al., 2013; Heasman and Ridley, 2008). As shown in Figure 4—fig-

ure supplement 1A–C, ectopic expression of CA Myc-Rac1-G12V greatly promoted migration and

invasion of Huh-1 and HepG2 cells as determined by trans-well assays, whereas expression of DN

Myc-Rac1-T17N greatly inhibited migration and invasion of these cells. Therefore, our findings that

GLS2 binds to and inhibits Rac1 raised the possibility that GLS2 may play an important role in sup-

pressing cancer metastasis.

Here, we investigated the effects of GLS2 on the abilities of migration and invasion of different

HCC cells, including Huh-1, HepG2, Hep3B and Huh7 cells, by using chamber trans-well assays. Cells

were seeded into the upper chamber containing serum-free medium without or with matrigel for

migration and invasion assays, respectively. Compared with cells transduced with control vectors,

ectopic expression of GLS2 by GLS2-Flag retroviral vectors greatly reduced the migration and inva-

sion of above-mentioned different HCC cells (Figure 4A,B). Furthermore, knockdown of GLS2 by

short hairpin RNA (shRNA) vectors greatly promoted the migration and invasion of these cells

(Figure 4C,D). Serum-free medium was used in the upper chamber to minimize the effect of GLS2

on cell proliferation in the trans-well assays. As shown in Figure 4—figure supplement 2, no

Figure 2 continued

HepG2 cells. Left panels: Represented results of Rac1 activity analysis in Huh-1 cells transduced with different GLS2-Flag vectors. Right panels: relative

Rac1-GTP/total Rac1/Actin levels in Huh-1 and HepG2. Data present mean ± SD (n=3). *p<0.01; #p<0.05; Student’s t-test. GDP, guanosine 50-

diphosphate; GLS, glutaminase; GTP, guanosine 5’-triphosphate; HCC, hepatocellular carcinoma; IP, immunoprecipitation; shRNA, short hairpin RNA;

WT, wild type.

DOI: 10.7554/eLife.10727.004

The following figure supplements are available for figure 2:

Figure supplement 1. GLS2 inhibits Rac1 activity in HCC cells.

DOI: 10.7554/eLife.10727.005

Figure supplement 2. The expression of endogenous GLS2 and exogenous GLS2-Flag in HCC cells.

DOI: 10.7554/eLife.10727.006
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Figure 3. GLS2 inhibits the interaction of Rac1-GDP with Tiam1 and VAV1. (A) Schematic representation of Rac1 deletion mutants. Myc-tagged vectors

expressing WT Rac1 or serial deletion mutants were constructed. (B) GLS2 bound to Rac1 through its Switch I & II regions. Huh-1 cells were transduced

with different Myc-Rac1 vectors listed in Figure 3A together with GLS2-Flag vectors for co-IP assays. (C) Tiam1 (upper panels) and VAV1 (lower panels)

bound to Rac1 through its Switch I & II regions. Huh-1 cells were transduced with different Myc-Rac1 vectors listed in Figure 3A together with vectors

expressing Tiam1-HA or VAV1-HA for co-IP assays. (D) Ectopic expression of Tiam1 and VAV1 activated Rac1 in cells. Huh-1 cells were transduced with

vectors expressing Tiam1-HA and VAV1-HA, respectively, and Rac1 activity was analyzed. Data are presented as mean ± SD (n=3). *p<0.01; Student’s t-

test. (E, F) Ectopic expression of GLS2 inhibited the interaction of DN Myc-Rac1-T17N with ectopic Tiam1-HA (E) and VAV1-HA (F) in cells. Huh-1 cells

were transduced with Myc-Rac1-T17N vectors and Tiam1-HA (E) or VAV1-HA vectors (F) (2 mg), together with increasing amount of GLS2-Flag vectors (1,

3, 6 mg) for co-IP assays. (G) Ectopic expression of GLS2 inhibited the interaction of endogenous Rac1 with endogenous Tiam1 and VAV1 in cells. Huh-1

and HepG2 cells were transduced with increasing amount of GLS2-Flag expression vectors (1, 3, 6 mg) for co-IP assays. (H) Knockdown of endogenous

GLS2 by shRNA vectors in Huh-1 and HepG2 cells promoted the interaction of endogenous Rac1 with endogenous Tiam1 and VAV1 as measured by

co-IP assays. GLS, glutaminase; GTP, guanosine 5’-triphosphate; IP, immunoprecipitation; shRNA, short hairpin RNA; WT, wild type.

Figure 3 continued on next page
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significant difference in the viability and number of these cells among different groups was observed

after being cultured in serum-free medium for 36 hr at the end of trans-well assays. Contrary to the

role of GLS2 in suppressing migration and invasion, ectopic expression of GLS1-Flag significantly

promoted the migration and invasion of Huh-1 and HepG2 cells (Figure 4E), whereas knockdown of

endogenous GLS1 significantly reduced the migration and invasion of these cells (Figure 4F).

We further investigated whether GLS2 inhibits migration and invasion of HCC cells through its

negative regulation of Rac1. Ectopic expression of the DN Myc-Rac1-T17N significantly reduced the

migration and invasion of the above-mentioned four different HCC cells (Figure 4G,H). Notably, DN

Myc-Rac1-T17N largely abolished the promoting effects of GLS2 knockdown on migration and inva-

sion of these cells (Figure 4G,H). Consistently, knockdown of endogenous Rac1 significantly reduced

the migration and invasion of Huh-1 and HepG2 cells, and, furthermore, largely abolished the pro-

moting effects of GLS2 knockdown on migration and invasion (Figure 4—figure supplement 3A–C).

No significant difference in the viability and number of these cells among different groups was

observed after being cultured in serum-free medium for 36 hr at the end of trans-well assays (Fig-

ure 4—figure supplement 3D).

Consistent with WT GLS2, ectopic expression of the C-terminus of GLS2, GLS2-C139, which inter-

acted with Rac1-GDP and inhibited the Rac1 activity (Figure 2G,H), greatly inhibited the migration

and invasion of Huh-1 and HepG2 cells (Figure 4I,J). In contrast, deletion of the C-terminus of GLS2

(GLS2-DC139), which resulted in the loss of GLS2’s ability to interact with Rac1 and inhibit the Rac1

activity (Figure 2G,H), largely abolished the ability of GLS2 to inhibit the migration and invasion of

Huh-1 and HepG2 cells (Figure 4I,J). Taken together, these results demonstrate that the negative

regulation of the Rac1 activity by GLS2 is crucial for GLS2 to inhibit the migration and invasion of

cancer cells, and furthermore, this function of GLS2 requires the C-terminus of GLS2 and is indepen-

dent of the glutaminase activity of GLS2.

GLS2 inhibits lung metastasis of HCC cells in vivo through negative
regulation of Rac1
Lung metastasis is the most frequently observed distant metastasis in HCC patients (Kitano et al.,

2012; Uka et al., 2007). We investigated the effect of GLS2 on metastasis in vivo by employing the

lung metastasis model in mice. Huh-1 and HepG2 cells with ectopic GLS2-Flag expression or GLS2

knockdown and their control cells were transduced with luciferase-expressing lentiviral vectors and

injected into BALB/c athymic nude mice via the tail vein. The metastasis of HCC cells to lung was

monitored by in vivo bioluminescence imaging. Bioluminescence imaging results showed that

ectopic expression of GLS2-Flag in both Huh-1 and HepG2 cells significantly inhibited lung metasta-

sis (Figure 5A). Histological analysis confirmed that mice injected with cells with ectopic GLS2-Flag

expression had fewer and smaller metastatic tumors in the lung (Figure 5B). Furthermore, knock-

down of endogenous GLS2 led to significantly increased lung metastasis of both Huh-1 and HepG2

cells analyzed by in vivo imaging and histological analysis, respectively (Figure 5C,D).

We further investigated whether inhibition of Rac1 mediates GLS2’s function in suppression of

lung metastasis of HCC cells in vivo. As shown in Figure 5E,F, ectopic expression of the DN Rac1-

T17N greatly reduced lung metastasis of Huh-1 and HepG2 cells in nude mice. Notably, The DN

Rac1-T17N largely abolished the promoting effects of GLS2 knockdown on lung metastasis of Huh-1

and HepG2 cells. These results together suggest that GLS2 inhibits cancer metastasis through its

down-regulation of the Rac1 activity.

The decreased GLS2 expression is associated with enhanced human
HCC metastasis
Our results from cancer cell migration and invasion assays as well as lung metastasis models clearly

showed that GLS2 inhibited metastasis of different human HCC cells, which strongly suggests that

Figure 3 continued

DOI: 10.7554/eLife.10727.007

The following figure supplement is available for figure 3:

Figure supplement 1. Tiam1 and VAV1 preferentially bind to Rac1-GDP.

DOI: 10.7554/eLife.10727.008
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Figure 4. GLS2 inhibits migration and invasion of HCC cells through negative regulation of Rac1. (A, B) Ectopic GLS2 expression inhibited the

migration (A) and invasion (B) of different HCC cells as determined by trans-well assays. Upper panels: representative images of migrating (A) and

invading (B) Huh-1 cells transduced with control (con) or GLS2-Flag vectors. Scale bars: 200 mm. Lower panels: quantification of average number of

migrating (A) and invading (B) cells/field in different HCC cells transduced with control (con) or GLS2-Flag vectors. Data present mean ± SD (n=6).

**p<0.001; Student’s t-test. (C, D) Knockdown of GLS2 by shRNA vectors promoted the migration (C) and invasion (D) of different HCC cells. Upper

panels: representative images of migrating (C) and invading (D) Huh-1 cells with or without GLS2 knockdown. Scale bars, 200 mm. Data present mean ±

SD (n=6). **p<0.001; Student’s t-test. (E) Ectopic GLS1 expression promoted the migration (left) and invasion (right) of Huh-1 and HepG2 cells as

determined by trans-well assays. (F) Knockdown of GLS1 decreased the migration (left) and invasion (right) of Huh-1 and HepG2 cells. In E, F, data are

presented as mean ± SD (n=6). **p<0.001; Student’s t-test. (G, H) Ectopic expression of DN Rac1-T17N largely abolished the promoting effects of GLS2

knockdown on migration (G) and invasion (H) of different HCC cells as measured by trans-well assays. Cells with knockdown of GLS2 by shRNA vectors

were transduced with Rac1-T17N expression vectors for trans-well assays. Data present mean ± SD (n=6). **p<0.001; Student’s t-test. (I, J) Ectopic

expression of the C-terminus of GLS2, GLS2-C139, inhibited migration (I) and invasion (J) of Huh-1 and HepG2 cells as measured by trans-well assays.

Cells were transduced with different GLS2 expression vectors described in Figure 1E for assays. Upper panels in I: representative images of migrating

Huh-1 cells. Data present mean ± SD (n=6). **p<0.001; Student’s t-test. GLS, glutaminase; HCC, hepatocellular carcinoma; shRNA, short hairpin RNA;

WT, wild type.

DOI: 10.7554/eLife.10727.009
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decreased expression of GLS2 in human HCC could be an important mechanism contributing to the

high metastasis of human HCC. To this end, we investigated the association of decreased GLS2

expression with cancer metastasis in human HCC samples. We first queried the The Cancer Genome

Atlas (TCGA) database to compare GLS2 expression between HCC samples with or without vascular

invasion of HCC cells. As shown in Figure 5G, GLS2 expression was significantly lower in HCCs with

vascular invasion (n=57), compared with HCCs without vascular invasion (n=110) (decreased by 3.03-

fold; p=0.0066). Consistent results were also observed in another cohort from Gene Expression

Omnibus (GEO, GSE6764) by using Oncomine, a human genetic dataset analysis tool. GLS2 expres-

sion was significantly lower in HCCs with vascular invasion (n=18), compared with HCCs without vas-

cular invasion (n=15) (decreased by 4.62-fold; p=0.0198) (Figure 5H). These results indicated that

the decreased GLS2 expression is significantly associated with enhanced metastasis in human HCC.

GLS2 mediates p53’s function in suppressing HCC metastasis
p53 plays a critical role in inhibiting cancer metastasis. However, while extensive work has been

done on the mechanisms underlying p53-mediated apoptosis, cell cycle arrest and senescence, the

mechanism underlying p53’s function in suppressing cancer metastasis is much less well-understood

(Muller et al., 2011; Vousden and Prives, 2009). Previous reports including ours have shown that

as a direct p53 target, GLS2 is up-regulated by p53 in cells under both non-stressed and stressed

conditions (Hu et al., 2010; Suzuki et al., 2010). Consistently, p53 knockdown by shRNA greatly

reduced the mRNA and protein levels of GLS2 in Huh-1 and HepG2 cells which express WT p53

(Figure 6A). Considering the potent activity of GLS2 in inhibiting cancer cell metastasis, our findings

raised the possibility that GLS2 may be an important mediator of p53’s function in suppressing can-

cer metastasis.

Here, we tested this hypothesis. Knockdown of p53 significantly promoted the migration and

invasion of both Huh-1 and HepG2 cells measured by trans-well assays (Figure 6B,C). As shown in

Figure 6—figure supplement 1, no significant difference in the viability and number of these cells

among different groups was observed after being cultured in serum-free medium for 36 hr at the

end of trans-well assays. Notably, while individual knockdown of GLS2 or p53 dramatically promoted

the migration and invasion of Huh-1 and HepG2 cells, simultaneous knockdown of GLS2 and p53 did

not display a clear additive effect on the migration and invasion of these cells (Figure 6D,E). Consis-

tently, while individual knockdown of GLS2 or p53 dramatically promoted lung metastasis of Huh-1

and HepG2 cells in mice, simultaneous knockdown of GLS2 and p53 did not display an additive

effect on lung metastasis of these cells (Figure 6F,G). These results demonstrate that GLS2 is a novel

and important mediator of p53 in suppressing cancer metastasis.

GLS2 mediates p53’s function in metastasis suppression through Rac1
inhibition
It has been reported that p53 inhibits Rac1 activity, but its mechanism remains unclear (Bosco et al.,

2010; Guo and Zheng, 2004; Muller et al., 2011). As shown in Figure 7A,B, expression of DN

Rac1-T17N greatly abolished the promoting effects of p53 knockdown on migration and invasion of

Huh-1 and HepG2 cells. Consistently, Rac1 knockdown greatly abolished the promoting effects of

p53 knockdown on migration and invasion of Huh-1 and HepG2 cells (Figure 7—figure supplement

1A,B). These results suggest that Rac1 inhibition is an important mechanism for p53 to inhibit

metastasis.

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Rac1 promotes the migration and invasion of Huh-1 and HepG2 cells.

DOI: 10.7554/eLife.10727.010

Figure supplement 2. The viability and number of HCC cells with GLS2 overexpression or knockdown after being cultured in serum-free medium for 36

hr.

DOI: 10.7554/eLife.10727.011

Figure supplement 3. Knockdown of endogenous Rac1 largely abolishes the effect of GLS2 on migration and invasion of HCC cells.

DOI: 10.7554/eLife.10727.012
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Figure 5. GLS2 inhibits lung metastasis of HCC cells in mice, and GLS2 expression is associated with metastasis in

human HCC. (A, B) Ectopic expression of GLS2 inhibited lung metastasis of Huh-1 and HepG2 cells in nude mice.

Huh-1 and HepG2 cells with GLS2 ectopic expression were transduced with lentiviral vectors expressing luciferase

for lung metastasis assays. The lung metastasis was analyzed by in vivo bioluminescence imaging (A) and

histological analysis (B) at 7 weeks after inoculation of cells. Left panels in A: representative images of lung

metastasis of Huh-1 cells analyzed by in vivo imaging. Right panels in A: quantification of lung photon flux

(photons per second). Left panels in B: representative images of hematoxylin and eosin staining of lung metastasis

of Huh-1 cells. Right panels in B: The average number of tumors/lung. (C, D) Knockdown of endogenous GLS2 by

shRNA promoted lung metastasis of Huh-1 and HepG2 cells in nude mice. (E, F) Ectopic expression of DN Rac1-

T17N largely abolished the promoting effects of GLS2 knockdown on lung metastasis of HCC cells in vivo. Huh-1

and HepG2 cells with stable ectopic Rac1-T17N expression and GLS2 knockdown were used for lung metastasis

assays in mice. In A-F, data represent mean ± SD (n=8 mice/group). *p<0.01; **p<0.001; Student’s t-test. Scale

bars, 200 mm. Arrows indicate metastatic tumors. (G, H) GLS2 expression is significantly decreased in human HCCs

with metastasis compared with HCCs without metastasis. GLS2 mRNA expression in non-metastatic (without

Figure 5 continued on next page
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Our finding that GLS2 interacts with Rac1-GDP to inhibit Rac1 activity suggests that as a direct

p53 target, GLS2 could mediate p53’s function in inhibiting Rac1 activity. Notably, while individual

knockdown of GLS2 or p53 greatly activated Rac1, simultaneous knockdown of GLS2 and p53 did

not display an additive effect on the Rac1 activity in Huh-1 or HepG2 cells (Figure 7C). Furthermore,

GLS2-Flag overexpression largely abolished the promoting effect of p53 knockdown on the Rac1

activity in Huh-1 or HepG2 cells (Figure 7D). These results indicate that GLS2 mediates p53’s func-

tion in inhibiting Rac1 activity.

Our results have shown that GLS2 inhibited the interaction between Rac1 and its GEFs Tiam1 and

VAV1 to down-regulate the Rac1 activity (Figure 3E–H). Here, we investigated whether inhibition of

the interaction of Tiam1 and VAV1 with Rac1 is an important mechanism for p53 to down-regulate

the Rac1 activity. Knockdown of WT p53 in Huh-1 and HepG2 cells, which greatly decreased GLS2

protein levels (Figure 7C), clearly promoted the interaction of Tiam1 and VAV1 with Rac1

(Figure 7E). Notably, GLS2 knockdown in cells with p53 knockdown did not further promote the

interaction of Tiam1 and VAV1 with Rac1 (Figure 7E). Furthermore, GLS2 overexpression largely

abolished the promoting effect of p53 knockdown on the interaction of Tiam1 and VAV1 with Rac1

(Figure 7F). These results suggest that blocking the interaction of Tiam1 and VAV1 with Rac1-GDP

by GLS2 contributes greatly to p53’s function in inhibiting the Rac1 activity. Collectively, our results

strongly suggest that GLS2 mediates p53’s function in suppression of HCC metastasis by inhibiting

the interaction of Rac1 GEFs, such as Tiam1 and VAV1, with Rac1-GDP to down-regulate the Rac1

activity (Figure 7G).

Discussion
In this study, GLS2 was identified as a novel binding protein and negative regulator for Rac1. GLS2

bound to Rac1-GDP through its Switch I & II regions, which is also the binding domain for Rac1

GEFs Tiam1 and VAV1. Thus, GLS2 blocked the binding of Tiam1 and VAV1 to Rac1-GDP, and inhib-

ited the Rac1 activation by Tiam1 and VAV1. We found that GLS2 inhibited migration and invasion

of HCC cells in vitro and lung metastasis of HCC cells in vivo. Blocking the Rac1 signaling by expres-

sion of Rac1-T17N or knockdown of Rac1 largely abolished GLS2’s function in inhibiting metastasis.

These results demonstrate a novel and important role of GLS2 in suppressing cancer metastasis, and

also reveal that GLS2 binding to Rac1-GDP to inhibit Rac1 activity is a critical underlying mechanism

(Figure 7G).

GLS1 plays a critical role in promoting tumorigenesis through enhancing glutamine metabolism

(Gao et al., 2009; Thangavelu et al., 2012; Wang et al., 2010). It is unclear why GLS1 and GLS2

have contrasting roles in tumorigenesis, although they both function as the glutaminase enzymes.

While the glutaminase core domains of GLS1 and GLS2 show high homology, their C-termini show

relatively low homology. In this study, we found that GLS2 bound to Rac1 through its C-terminus

and inhibited the Rac1 activity to suppress migration and invasion of HCC cells. This effect requires

the C-terminus of GLS2 and is independent of its glutaminase activity. In contrast, GLS1 does not

bind to Rac1 or inhibit Rac1 activity. Considering the critical role of Rac1 in cancer, our results pro-

vide a novel mechanism for the different roles of GLS1 and GLS2 in tumorigenesis, particularly with

respect to cancer metastasis. In addition to Rac1, GLS2 may interact with other proteins to regulate

their functions, which in turn contributes to GLS2’s function in tumor suppression. Future studies

should shed light on the further mechanisms of GLS2 in tumor suppression.

p53 plays a critical role in suppressing cancer metastasis. While extensive work has been done on

the mechanisms underlying p53-mediated apoptosis, cell cycle arrest and senescence, the mecha-

nism underlying p53’s function in suppressing cancer metastasis is much less well understood

(Muller et al., 2011; Vousden and Prives, 2009). p53 has been reported to inhibit Rac1 activity,

however, the detailed mechanism is unclear (Bosco et al., 2010; Guo and Zheng, 2004;

Muller et al., 2011). Our results show that p53 knockdown down-regulated GLS2 levels and

Figure 5 continued

vascular invasion) and metastatic (with vascular invasion) HCCs was obtained from the TCGA (G) and GSE6764 (H).

p=0.0066 in G; p=0.0198 in H; Student’s t-test. GLS, glutaminase

DOI: 10.7554/eLife.10727.013
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Figure 6. GLS2 mediates p53’s function in inhibiting migration, invasion and lung metastasis of HCC cells. (A) Knockdown of endogenous WT p53

reduced GLS2 expression in Huh-1 and HepG2 cells as measured by western-blot (left) and Taqman real-time polymerase chain reaction assays (right),

respectively. (B, C) Knockdown of p53 promoted the migration (B) and invasion (C) of Huh-1 and HepG2 cells measured by trans-well assays. (D, E)

Simultaneous knockdown of GLS2 and p53 by shRNA vectors in Huh-1 and HepG2 cells did not display an addictive promoting effect on the migration

(D) and invasion (E) of cells. In A–E, data represent mean ± SD (n=6). **p<0.001; Student’s t-test. (F, G) Simultaneous knockdown of GLS2 and p53 in

Huh-1 and HepG2 cells did not display an addictive promoting effect on lung metastasis in vivo. Huh-1 and HepG2 cells with individual knockdown of

GLS2 or p53, or simultaneous knockdown of GLS2 and p53 were used for assays. In F, lung metastasis was analyzed by in vivo bioluminescence imaging

at 7 weeks after inoculation of cells. Upper panels: representative images of lung metastasis of Huh-1 cells analyzed by in vivo imaging. Lower panels:

quantification of lung photon flux. In G, lung metastasis was analyzed by histological analysis at week 7. Left panels: hematoxylin and eosin staining of

lung metastasis of Huh-1 cells. Scale bars: 200 mm. Right panels: The average number of tumors/lung. Data represent mean ± SD (n=10 mice/group).

**p<0.001; Student’s t-test. GLS, glutaminase; HCC, hepatocellular carcinoma; shRNA, short hairpin RNA.

DOI: 10.7554/eLife.10727.014

The following figure supplement is available for figure 6:

Figure supplement 1. The viability and number of HCC cells with p53 knockdown cultured in serum-free medium for 36 hr.

DOI: 10.7554/eLife.10727.015
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Figure 7. GLS2 mediates p53’s function in negative regulation of the Rac1 activity. (A, B) Ectopic expression of DN Rac1-T17N greatly abolished the

promoting effects of p53 knockdown on migration (A) and invasion (B) of Huh-1 or HepG2 cells as measured by trans-well assays. Data represent mean

± SD (n=6 in A, B). **p<0.001; Student’s t-test. (C, D) GLS2 mediates p53’s function in negative regulation of Rac1 activity in Huh-1 and HepG2 cells. In

C, knockdown of p53 in cells with GLS2 knockdown did not further promote Rac1 activity. In D, GLS2 overexpression largely abolished the promoting

effect of p53 knockdown on the Rac1 activity. Left panels: represented results of Rac1 activity analysis in cells transduced with #1 shRNA vectors. Right

panel: relative Rac1-GTP/total Rac1/Actin levels in cells transduced with two different shRNA vectors (#1 and #2). Data represent mean ± SD (n=3).

*p<0.01; **p<0.001; Student’s t-test. (E, F) p53 inhibits the interaction of Rac1 with Tiam1 and VAV1 through GLS2 in Huh-1 and HepG2 cells. In E,

knockdown of p53 in cells with GLS2 knockdown did not further promote the interaction of Tiam1 and VAV1 with Rac1. The knockdown of p53 and

GLS2 was shown in Figure 7C. Two shRNA vectors against p53 and GLS2, respectively, were used, and very similar results were observed. In F, GLS2

overexpression largely abolished the promoting effect of p53 knockdown on the interaction of Tiam1 and VAV1 with Rac1. (G) Proposed model for the

negative regulation of Rac1 activity and cancer metastasis by GLS2 and p53. GDP, guanosine 50-diphosphate; GLS, glutaminase; GTP, guanosine 5’-

triphosphate; shRNA, short hairpin RNA.

DOI: 10.7554/eLife.10727.016

The following figure supplement is available for figure 7:

Figure supplement 1. Knockdown of endogenous Rac1 greatly abolished the effects of p53 on migration and invasion of HCC cells.

DOI: 10.7554/eLife.10727.017
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promoted the interaction of Rac1-GDP with its GEFs Tiam1 and VAV1, and thereby enhanced the

Rac1 activity and promoted cancer metastasis. These results demonstrate that GLS2 is a novel and

critical mediator for p53 in suppressing metastasis, and also reveal a novel mechanism by which p53

inhibits Rac1.

HCC is one of the most common types of cancer and the third leading cause of cancer death

worldwide (El-Serag and Rudolph, 2007; Jemal et al., 2011). The high malignancy and poor prog-

nosis of HCC has been related with the high metastatic characteristic of HCC; however, the mecha-

nism underlying HCC metastasis is not well understood (El-Serag and Rudolph, 2007; Tang, 2001).

Considering that GLS2 is frequently down-regulated in HCC (Hu et al., 2010; Liu et al., 2014a;

Suzuki et al., 2010; Xiang et al., 2015), our findings that GLS2 inhibits HCC metastasis and loss of

GLS2 promotes HCC metastasis provide a novel mechanism contributing to high metastatic charac-

teristic of HCC. These results strongly suggest that the GLS2/Rac1 signaling could be a potential tar-

get for therapy in cancer, particularly in HCC.

In summary, our results demonstrate that GLS2 is a novel negative regulator of Rac1, and plays a

novel and critical role in suppression of metastasis through its negative regulation of the Rac1 activ-

ity. Furthermore, our results also reveal that GLS2 is a critical mediator for p53 in suppression of can-

cer metastasis.

Materials and methods

Cell lines, vectors and shRNA
HepG2 (p53-WT) and Hep3B (p53-null) cells were obtained from American Type Culture Collection

(ATCC, Manassas, VA). Huh-1 (p53-WT) and Huh-7 (p53 mutant) were obtained from the Japanese

Culture Collection (RIKEN BioResource Center, Saitama, Japan). All cell lines were authenticated by

short tandem repeat profiling. Cells were regularly tested for mycoplasma using Lookout Myco-

plasma PCR detection kit (MP0035, Sigma, St. Louis, MO) and only used when negative. The WT

p53 were knocked down in HepG2 and Huh-1 cells by 2 different shRNA vectors as previously

described (Zhang et al., 2013). The pLPCX vectors expressing Flag-tagged WT or deletion mutants

of GLS2 were constructed by PCR amplification as we previously described (Hu et al., 2010). The

pLPCX-Myc-Rac1 and pLPCX-Myc-Rac1-G12V vectors were constructed by using Myc-Rac1 DNA

fragment from pcDNA3.1-Myc-Rac1 WT and pcDNA3.1-Myc-Rac1 G12V vectors, respectively

(He et al., 2010). The pLPCX-Myc-Rac1-T17N vector was constructed by using a Quikchange II XL

Site-Directed Mutagenesis Kit (Stratagene/Agilent Technologies, San Diego, CA). The pLPCX vectors

expressing deletion mutants of Myc-Rac1 were constructed by PCR amplification. The pLPCX-GLS1-

Flag, pLPCX-Tiam1-HA and pLPCX-VAV1-HA vectors were cloned using PCR amplification. Two len-

tiviral shRNA vectors against GLS2 (ID: V3LHS_307701 and V2LHS_71048), two lentiviral shRNA vec-

tors against Rac1 (ID: V3LHS_317664 and V3LHS_317668) and control shRNA vectors were obtained

from Open Biosystems (Huntsville, AL).

Cell migration and invasion assays
The trans-well system (24 wells, 8 mM pore size, BD Biosciences, Franklin Lakes, NJ) was employed

for cell migration and invasion assays as we previously described (Zheng et al., 2013; Zhao et al.,

2015). In brief, cells (2 � 104 for Huh-1, and 6 � 104 for HepG2) in serum-free medium were seeded

into upper chambers for migration assays. Cells on the lower surface were fixed, stained and

counted at 24 hr after seeding. For invasion assays, cells (4 � 104 for Huh-1, and 1 � 105 for HepG2)

were seeded into upper chambers coated with matrigel (BD Biosciences). Cells on the lower surface

were fixed, stained and counted at 36 hr after seeding.

In vivo lung metastasis assays
In vivo lung metastasis assays were performed as previously described (Li et al., 2014; Zheng et al.,

2013). In brief, Huh-1 and HepG2 cells (2 � 106 in 0.1 mL phosphate-buffered saline) transduced

with lentiviral vectors expressing luciferase were injected into 2-month-old male BALB/c nude mice

via the tail vein (n=8 mice/group). Lung metastatic colonization was monitored and quantified at dif-

ferent weeks using non-invasion bioluminescence imaging by IVIS Spectrum in vivo imaging system

(PerkinElmer, Waltham, MA), and was validated at the endpoint by routine histopathological
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analysis. All mouse experiments were approved by the University Institutional Animal Care and Use

Committee.

Western blot assays
Standard western blot assays were used to analyze protein expression in cells. The following anti-

bodies were used for assays: anti-Flag-M2 (F1804, Sigma; 1:20,000 dilution), anti-b-Actin (A5441,

Sigma; 1:10,000 dilution), anti-Myc (9E10, Roche, Indianapolis, IN; 1:1000 dilution), anti-HA (3F10,

Roche; 1:1000 dilution), anti-Rac1 (23A8, Millipore, Billerica, MA; 1:5000 dilution), anti-p-PAK

(Ser199/204) (09–258, Millipore; 1:1000 dilution), anti-PAK (07–1451, Millipore; 1: 1000 dilution),

anti-p53 (FL393, Santa Cruz, Dallas, TX; 1:2000 dilution), anti-Tiam1 (sc-872, Santa Cruz; 1:2000 dilu-

tion), anti-VAV1 (sc-8039, Santa Cruz; 1:1000 dilution). The anti-GLS2 antibody (1: 1000 dilution) was

prepared as previously described (Hu et al., 2010). To increase the sensitivity of the GLS2 antibody,

endogenous GLS2 in cells was pulled down by IP and detected by western blot assays. The band

intensity was quantified by digitalization of the X-ray film and analyzed with the ImageJ software.

Co-IP assays
Co-IP assays were performed as we previously described (Liu et al., 2014b). For co-IP of GLS2-Flag

and Myc-Rac1 proteins, anti-Flag (M2, Sigma) and anti-Myc (9E10, Roche) agarose beads were used

to pull down GLS2-Flag and Myc-Rac1, respectively. For Co-IP of endogenous GLS2 and Rac1, the

anti-GLS2 antibody and the anti-Rac1 (23A8, Millipore) antibody were used for IP, respectively. The

mouse or rabbit purified IgGs were used as negative controls.

LC-MS/MS analysis
To determine potential GLS2 binding proteins, GLS2-Flag protein in Huh-1 cells with stable expres-

sion of GLS2-Flag was pulled down by co-IP using anti-Flag (M2) beads and eluted with Flag pep-

tide. Huh-1 cells transduced with control vectors were used as a control for co-IP assays. Eluted

materials were separated in a 4–16% sodium dodecyl sulfate polyacrylamide gel electrophoresis and

visualized by silver staining using the silver staining kit (Invitrogen, Carlsbad, CA). LC-MS/MS analysis

was performed at the Biological Mass Spectrometry facility of Rutgers University as previously

described (Yue et al., 2015; Zhao et al., 2015).

Rac1 activity analysis
For Rac1 activity analysis, the GST-p21-binding domain of PAK1 pull-down assays were performed

using a Rac1 activation assay kit (Millipore) to measure the levels of GTP-bound Rac1 (Rac1-GTP) in

cells as previously described (Galic et al., 2014; Hayashi-Takagi et al., 2010; Palacios et al., 2002).

The p21-binding domain of the Rac1 effector protein PAK1 binds specifically to the Rac1-GTP (Haya-

shi-Takagi et al., 2010; Palacios et al., 2002). The levels of precipitated Rac1-GTP were measured

by western blot assays using a Rac1 antibody (23A8, Millipore) and normalized to total Rac1 levels in

cells measured by western-blot assays.

Quantitative real-time PCR assays
Total RNA was prepared with the RNeasy Kit (Qiagen, Hilden, Germany). Complementary DNA was

prepared using a TaqMan reverse transcription kit, and real-time PCR was performed with TaqMan

PCR mixture (Applied Biosystems, Foster City, CA) as we previously described (Hu et al., 2010;

Zhang et al., 2013). The expression of genes in cells was normalized to the expression of the Actin

gene.

Glutaminase activity assays
Glutaminase activity was measured as previously described (Gao et al., 2009; Wang et al., 2010).

Briefly, cell lysates were incubated at 37˚C for 10 min with the assay mix consisting of 20 mM gluta-

mine, 50 mM Tris-acetate (pH 8.6), 100 mM phosphate, and 0.2 mM ethylenediaminetetraacetic

acid. The reaction was quenched with the addition of 2 mL of 3 M HCl. Subsequently, the reaction

mixture was incubated for 30 min at room temperature with the second assay mix (2.2 U glutamate

dehydrogenase, 80 mM Tris-acetate (pH 9.4), 200 mM hydrazine, 0.25 mM ADP, and 2 mM nicotin-

amide adenine dinucleotide). The absorbance was read at 340 nm using a spectrophotometer.
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Statistical analysis
The differences in tumor growth among groups were analyzed for statistical significance by analysis

of variance, followed by Student’s t-tests using GraphPad Prism software. All other P-values were

obtained using two-tailed Student t-tests. **p<0.001; *p<0.01; #p<0.05.
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