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The frequent finding of low HDL cholesterol in patients
with type 2 diabetes (T2D) or at increased risk for T2D has
been traditionally interpreted as the consequence of hyper-
triglyceridemia and hyperacylemia, which are caused by
insulin resistance and hyperinsulinemia (1). However, sev-
eral observations also point to antidiabetic actions of HDL
(1,2). Post hoc analyses of randomized controlled trials
showed that inhibitors of cholesteryl ester transfer protein,
which increase HDL cholesterol by 25 to 100%, improve the
glycemic control of subjects with diabetes and lower the
incidence of diabetes in patients who are treated with
statins (3). Infusion of artificial reconstituted HDL led
to acute decreases in glucose levels and improved insulin
sensitivity in subjects with diabetes (4). Mendelian ran-
domization studies generated controversial data, with one
study supporting and another disproving genetic causality
of HDL for T2D (5,6). Data from genetic mouse models
indicate that HDL secures both insulin production in pan-
creatic b-cells and insulin action in the periphery (2). The
clinical exploitation of HDL in the prevention and man-
agement of diabetes—for example, the development of
drugs that stimulate or mimic the antidiabetic effects of
HDL or biomarkers that improve risk prediction—is ham-
pered by the presence of hundreds of different proteins
and lipid species in HDL, several of which show antidia-
betic properties (7).

In this issue of Diabetes, Kurano et al. (8) provide ev-
idence that at least a part of HDL’s antidiabetic action
involves apolipoprotein M (apoM) and its lipid ligand
sphingosine-1-phosphate (S1P), two quantitatively minor
components of HDL. S1P is the agonist of five G-protein–
coupled receptors named S1P1, S1P2, S1P3, S1P4, and
S1P5 (9). The presence of apoM is mandatory for the
activation of S1P1 by S1P in endothelial cells (9) (Fig. 1).
APOM is one of the most responsive target genes of the
transcription factor HNF1a, whose gene is mutated in
patients with maturity onset diabetes of the young type
3 (MODY3) (10).

In Apom knockout mice fed with a high-fat diet (HFD),
Kurano et al. (8) found plasma levels of S1P decreased and
insulin resistance of liver, muscle, and adipose tissue in-
creased. Conversely, HFD-fed mice overexpressing human
APOM showed increased plasma levels of S1P, lower blood
glucose levels, and less insulin resistance. The glucose-
lowering effect of the APOM transgene was abrogated by
the treatment with an inhibitor of S1P and S1P3 but not
with an inhibitor of S1P2. In liver and skeletal muscle, the
phosphorylation of Akt and AMPK, i.e., two well-known
downstream targets of S1P1 and S1P3 as well as insulin,
was decreased in Apom knockout mice but increased in
APOM transgenic mice. Concomitantly, the expression of
glucose-metabolizing enzymes was oppositely altered in
Apom knockout mice and APOM transgenic mice. Oxygen
consumption and the expression of mitochondrial proteins
such as Ucp2 were decreased in livers of Apom knockout
mice but increased in livers of APOM transgenic mice. Cell
culture experiments provided evidence that the activation
of S1P1 by apoM/S1P inhibits the degradation of sirtuin 1,
which is regulated by AMPK and promotes mitochondrial
function (8).

Previous studies have indicated antidiabetic effects of
S1P (Fig. 1). Apom knockout mice showed hepatic steatosis
(11). Overexpression of the S1P-generating enzyme sphin-
gosine kinase 1 (SPHK1) reduced muscle insulin resistance
in HFD-fed mice (12). Kurano et al. (8) did not find any ef-
fect of apoM/S1P on b-cell function. However, in a previous
study by the same authors, adenovirus-mediated overex-
pression of APOM in mice enhanced insulin secretion (13).
Conversely, reduced S1P production by either pharmaco-
logical inhibition of SPHK or knockout of Sphk1 led to
decreases in b-cell mass and insulin secretion (14,15).
Intraperitoneal S1P administration induced islet b-cell
proliferation and abrogated b-cell apoptosis in mice with
streptozotocin-induced diabetes (16). Ex vivo, S1P pro-
tects b-cells in isolated murine and human islets from
IL-1b and glucose-induced apoptosis (17). ApoM and S1P
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can also exert additional indirect antidiabetic effects by
inhibiting inflammatory actions of immune cells (9). How-
ever, some data contradict the antidiabetic actions of S1P
and apoM. Compared with wild-type mice, Apom knock-
out mice are characterized by larger brown adipose tissue
mass, accelerated normalization of postprandial hyper-
triglyceridemia, and protection from HFD-induced obesity
(18). The treatment of mice with fingolimod, which inhib-
its all five S1P receptors and is in clinical use for the
treatment of multiple sclerosis, improved both secretion
and peripheral action of insulin as well as HFD-induced
hepatosteatosis (19–21). Likewise, genetic interference with
S1p2 and Sphk2 in mice resulted in improved b-cell function
and insulin resistance (22,23).

When testing the relevance of their findings in humans,
Kurano et al. (8) found significantly decreased plasma levels
of apoM in patients with diabetes as compared with eugly-
cemic control subjects. However, these differences were
rather small. Likewise, correlations between apoM plasma
levels and indices of insulin resistance were weak but sta-
tistically significant (8). Similar weak associations and cor-
relations of apoM and S1P with T2D and measures of
insulin resistance, respectively, were found in some but
not all previous studies (9,24). They cannot be interpreted
as any indication of causality, as both apoM and S1P levels
correlate with plasma levels of HDL cholesterol and apoA-I
(25) so that the decrease in HDL particle number in T2D
may secondarily cause a decrease in apoM and S1P. In

agreement with this, Kurano et al. (8) observed increased
rather than decreased plasma levels of apoA-I, apoM, and
S1P in mice with diet-induced obesity. However, the de-
crease of apoM levels in MODY3 patients (10) or the as-
sociation of single nucleotide polymorphisms of APOM
with diabetes (26) may be interpreted as initial hints to
causality. Genes contributing to the metabolism, trans-
port, and action of S1P must be tested more comprehen-
sively for their association with diabetes to understand the
role of apoM and S1P in human T2D and hence their utility
as targets for the management of diabetes. Because S1P
plays an important role for the function and survival of
many cell types including those of the cardiovascular system
and the kidney (9), it will also be interesting to test these
genes for their associations with the chronic complications
of diabetes.
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