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Abstract: Understanding the gene regulatory network governing cancer initiation and progression is
necessary, although it remains largely unexplored. Enhancer elements represent the center of this
regulatory circuit. The study aims to identify the gene expression change driven by copy number
variation in enhancer elements of pancreatic adenocarcinoma (PAAD). The pancreatic tissue specific
enhancer and target gene data were taken from EnhancerAtlas. The gene expression and copy number
data were taken from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs)
and copy number variations (CNVs) were identified between matched tumor-normal samples of
PAAD. Significant CNVs were matched onto enhancer coordinates by using genomic intersection
functionality from BEDTools. By combining the gene expression and CNV data, we identified
169 genes whose expression shows a positive correlation with the CNV of enhancers. We further
identified 16 genes which are regulated by a super enhancer and 15 genes which have high prognostic
potential (Z-score > 1.96). Cox proportional hazard analysis of these genes indicates that these are
better predictors of survival. Taken together, our integrative analytical approach identifies enhancer
CNV-driven gene expression change in PAAD, which could lead to better understanding of PAAD
pathogenesis and to the design of enhancer-based cancer treatment strategies.

Keywords: enhancer; copy number variation; regulatory elements; pancreatic cancer; adenocarcinoma;
super enhancer; survival; differential expressed genes; functional enrichment analysis

1. Introduction

Cancer is a genetic disease, as initiation, progression, and metastasis are governed by several
genetic and epigenetic changes within the genome. Pancreatic cancer is a leading cause of mortality
in the Western world [1]. Patients are mostly diagnosed at an advanced stage, resulting in poor
response to therapy. The 5-year survival rate of pancreatic cancer patients is 6%. This is the worst
survival rate among all 22 common types of cancer [2]. Cancer cells harbor thousands of genomic
alterations, including amplification, deletion, insertion, translocation, transversion and copy number
variation (CNV). Only a small fraction of these genomic alterations represents the driver mutations
that are truly morbific. Often biological function of a cell is maintained by a complex multi-level gene
regulatory hierarchy, including post-translation modification, enhancer activation, miRNA mediated
gene regulation, and RNA editing. In cancer cells, these regulatory circuits are disrupted or rewired,
which leads to the disease phenotype [3].

Whole genome sequencing of tumor and normal samples provides unprecedented data that can
be used to identify mutations associated with disease. The Cancer Genome Atlas (TCGA) [4] and
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International Cancer Genome Consortium (ICGC) are such large-scale efforts [5]. These projects and
follow up studies identified several mutated genes and pathways, and have significantly increased our
knowledge of cancer, leading to the discovery of new targets, diagnoses, prognoses and improvements
of therapy. Mutation in the coding region of several genes has been consistently identified by several
studies, such as with altered frequency (e.g., KRAS, TP53) or loss (e.g., CDNK2A, SMAD4, ROBO2), and
altered pathways, such as Wnt/Notch. Thus far, cancer studies have mostly focused on characterizing
the functional impact of mutations in protein-coding sequences. COSMIC (Catalogue of Somatic
Mutation in Cancer) is one such effort, which lists only aberrations in the coding sequence of the
genes [6].

The coding fraction represents only 2% of the genome. The remaining 98% the of human
genome is transcribed either in non-coding RNA or into regulatory elements. Most of the genomic
alteration resides in the non-coding region of the genome [7]. It is also observed that more than 80% of
genetic variants associated with diseases were observed in the non-coding region of the genome [8].
Nevertheless, this portion of the genome has been largely unexplored. Mutation in the non-coding
region of the genome can modify the function of both cis- and trans-acting elements in a regulatory
circuit [9,10]. Therefore, this can lead to the development of cell behavior towards tumorigenesis [11].
However, our knowledge of gene regulatory circuit rewiring is far from complete. Existing research
shows the importance of the enhancers as a key piece in this gene regulation circuit [12].

Enhancers are DNA elements of up to 50–1500 base pairs (bp) [13]. They interact with their target
promoters irrespective of their position to regulate downstream gene expression [14]. Several studies
link alteration within the enhancer to disease phenotype, e.g., DiseaseEnhancer is one such database
containing information on 847 disease associated enhancers in 143 human diseases [15]. Several studies
confirm the dosage effect of copy number variation in gene expression [16,17]. The dosage effect of
loss/gain in enhancer elements is further supported by experimental evidence. Zhang X., et al. [18]
demonstrate that duplication in the enhancer region results in higher gene expression by luciferase
assay. Experimental studies also confirm that copy number alterations within the enhancer element
are an important driver of tumorigenesis. In head and neck squamous cell carcinoma, KLF5 was
upregulated by amplification super-enhancers marked by H3K27ac [19].

In this study, we represent an integrative approach that embellishes the relationship between
enhancer CNV and targeting gene expression changes in pancreatic adenocarcinoma. The following
are main goals of this study: (i) identification of enhancers having a significant change in their CNVs;
(ii) understanding the effect of a change in enhancer CNVs on the expression of associated genes;
(iii) understanding the clinical potential of genes regulated by CNVs of enhancers; and, (iv) pathway
enrichment analysis of enhancer associated genes. In order to achieve our objectives, we performed the
following steps. Firstly, coordinates of enhancers specific to pancreatic tissue, as well as the associated
genes of these enhancers, were obtained from EnhancerAtlas [20]. EnhancerAtlas provides high
quality experimental data on enhancers and cross validation for each cell/tissue type was done by
integration of the multiple experimental dataset [21]. Secondly, gene expression and CNV data of
185 patients were obtained from TCGA. Thirdly, the software GISTIC was used for identifying CNVs
having a significant change (loss/gain) in PAAD samples. Fourthly, we used BEDTools to identify
enhancers specific to pancreatic tissue having significant variation in their CNVs in PAAD samples.
These enhancers were further classified based on their increase or decrease in CNVs and based on
positive or negative correlation with associated genes. Finally, we performed a wide range of analyses
to understand the effect of enhancers on gene regulation, with the potential to classify high and low
risk patients, and the rewiring of regulation in cancer.
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2. Results

2.1. Identification of Enhancers Having Change in CNV

In total, 952 significant CNV regions were obtained for the pancreatic cancer sample, out of
which 321 regions were amplified and 631 regions were deleted (Table S1). Based on the genomic
coordinate, by employing genomic intersecting functionality from BEDTools, we mapped enhancer
coordinates on to the significant CNV region. Finally, 421 enhancers having a significant variation in
their CNV region (amplified/increase or deleted/decreased) were mapped on to enhancer coordinates
(Table S2). The gene expression analysis of quantile normalized pancreatic cancer vs normal samples
identified 2431 upregulated and 3614 downregulated genes. By checking the expression of enhancer
target genes in the same TCGA sample, we identified 169 concordant regulatory pairs, which reflected
a CNV-based enhancer dosage effect on gene expression (Table S3). This regulatory pair consisted of
89 upregulated and 80 downregulated genes; all 169 gene expressions showed a positive correlation
with the CNV of enhancers. Our analysis in this study mainly focused on these 169 genes, and
considered two possible concordant changes: enhancer copy number gain/gene upregulation and copy
number loss/gene downregulation.

2.2. Pathway Enrichment Analysis of Genes Regulated by Enhancers

In order to gain further insight into the enhancer CNV-driven differentially expressed genes, gene
interaction network and enrichment analyses were performed using STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) and Enrichr, respectively. As shown in Figure 1, upregulated
genes RPS16, SCAMP3 and MUC1 show three or more interaction direct interactions. These genes are
the major components regulating the glucose metabolism and proteolysis in pancreatic cells [22,23],
indicative of poor prognosis [24] and involved in PDGFA expression in pancreatic cancer progression,
respectively [25]. Figure 2 (for downregulated) shows UBB, PRPF8, ERLIN and RPS6 genes involved in
direct interaction. The UBB gene is involved in TNF-α induced NF-κB activation, and thus plays a role
in the stabilization of the tumor suppressor P53 gene. Thus, downregulation of the UBB gene by any
means may serve as an anti-tumor treatment [26]. RPS6 and ERLIN1 genes are involved in the mTOR
signaling pathway, which is essential for cell growth and metabolism, particularly tumor formation
and angiogenesis [27,28]. Pathway enrichment analysis of the concordant gene set provides clues
regarding their role in regulating cell cycle progression, and the Eph cell signaling pathway (Figure 3).
This pathway regulates kinase activity, which is frequently mutated in almost all types of cancer [29].
GO (Gene Ontology) enrichment analysis was performed to identify the most correlative biological,
molecular and cellular function of the genes. GO analysis demonstrates that the genes are enhanced in
receptor binding and in regulation of the apoptotic pathway. The detailed results are presented in
Figure 4.

2.3. Cox Proportional Hazard Analysis of Enhancer Regulated Genes

Univariate analysis of genes was done using a Cox proportional hazard regression model on the
mean and median cut off of gene expression across the patient samples. On performing the analysis,
41 out of 169 genes were found to be significant on the basis of p-value < 0.05, which is statistically
significant. Twenty-nine genes had a hazard ratio of more than 1.5, that is, the expression of these genes
results in the progression of cancer at the rate of more than 1.5 in patients belonging to a high-risk
group [expression value < median(gene expression)] as compared to the low-risk group [expression
value > median(gene expression)]. Table 1 Shows the top 15 genes. VAMP2 has a HR of 2.9, and
downregulation of genes is involved in acute acinar pancreatitis [30]. The CERK gene, with a HR of
2.48, is involved in metastasizing of pancreatic cancer cells and thus leads to cancer development at
distant places [31].
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Figure 1. Gene interaction network of genes upregulated due to copy number gain in their regulatory 
enhancer region. Nodes represent proteins and edges represent protein–protein associations. 

Figure 1. Gene interaction network of genes upregulated due to copy number gain in their regulatory
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Table 1. Cox proportion hazard ratios with p-values of the top 15 genes of enhancer regulated genes;
genes sorted based on p-value.

Gene Symbol Hazard Ratio (Median Value) p-Value

VAMP2 2.917023 0.000221728

GBA2 2.641652475 0.000497427

RANGRF 2.512853346 0.000794802

CERK 2.483219821 0.001137485

SORBS3 2.450014903 0.001099829

AP5S1 2.375174975 0.001570686

INPP5K 2.317435264 0.00206786

SLC25A44 2.291295263 0.002326752

RNF167 2.239662092 0.003430129

DPM3 2.196709622 0.004076415

SEMA6C 2.192865982 0.005221015

NPR1 2.170189229 0.00497616

SLC25A11 2.104895785 0.006106619

USP22 2.093982578 0.006492927

DNAJB5 2.058641673 0.008559552
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2.4. Prognostic Potential of Regulatory Genes

The prognostic potential of genes regulated by enhancer CNV was identified using data from the
human prognostic database PRECOG [32]. Genes with a Z-score >1.96 can be evaluated as a prognostic
biomarker as this is equivalent to a two tailed p-value < 0.05. We identified 15 genes of the 169
concordant regulatory pair genes having a z-score greater than 1.96, as shown in Table 2 and Table S4.
Among the prognostic genes, several genes are involved in a number of pathways regulating pancreatic
cancer development: the gene UCK2 is vital for regulating apoptosis; the HDGF gene is considered
a jack of all trades in cancer [33]; SSR2 gene inhibition lowers cancer loads in vitro [34]; the USP21
gene is the master regulator of the Hippo pathway [35]; MUC16 regulates pancreatic cancer cell
metastasis [36]; and, the STOML2 gene is a prognostic biomarker for pancreatic cancer [37].

Table 2. Enhancer regulated genes present in the PRECOG database with z-score greater than 1.96.
Z-scores of these genes were taken from the PRECOG database.

Gene Name Z-Score

CLK2 CDC-like kinase 2 2.39128

EIF4A1 Eukaryotic translation initiation factor 4A1 2.24365

FDPS Farnesyl diphosphate synthase 4.03062

FLAD1 FAD1 flavin adenine dinucleotide synthetase homolog 2.95895

HDGF Hepatoma-derived growth factor 2.16932

ILF2 Interleukin enhancer binding factor 2, 45kDa 2.80112

MLLT11 Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog,
Drosophila); translocated to, 11 2.43407

PFN1 Profilin 1 2.49119

PRCC Papillary renal cell carcinoma (translocation-associated) 3.93837

REEP4 Receptor accessory protein 4 2.98392

RUSC1 RUN and SH3 domain containing 1 3.28846

SCAMP3 Secretory carrier membrane protein 3 2.32083

UBB In multiple clusters 2.54009

UBQLN4 Ubiquilin 4 2.79194

USP21 Ubiquitin specific peptidase 21 2.40871

2.5. Genes Regulated by Multiple Enhancers or Super Enhancers

It has been observed that multiple enhancers or clusters of enhancers regulate a single gene.
A gene regulated by multiple enhancers is called a gene regulated by super enhancers. We identified 16
genes which are regulated by super enhancers; the Ensembl ID of genes and genomic coordinates of its
enhancers are shown in Table 3. There are two main types of aberrant super-enhancers found in various
cancers: those involving mutations generated in super-enhancers and those involving the acquisition
of new oncogenic super-enhancers. In our study we have identified super-enhancer regions that are
created due to the amplification event. These are the master regulators of the cell’s fate and identity.
Inhibition of super-enhancers seems to be an effective therapy for lowering the burden of cancer, and
overexpression of genes regulated by these can act as a diagnostic marker for cancer progression [38].
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Table 3. Genes regulated by super enhancers, including name of the gene, the genome coordinates of its enhancers and name of the chromosome.

Gene Ensembl ID Enhancer Coordinates Chromosome

ENSG00000010278 6337690-6341770;6387100-6388270;6449480-6450940;6579320-6579700 Chromosome 12

ENSG00000068745 49028850-49029210;49044960-49046260;49044960-49046260;49486410-49486940;49486410-49486940 Chromosome 3

ENSG00000099622 1248660-1249890;1248660-1249890;1248660-1249890;1250530-1251560;1259140-1263220;1275830-1277180;1275830-1277180;1275830-1277180;1275830-1277180 Chromosome 19

ENSG00000099875 1941420-1943940;2031500-2033130;2047440-2050790;2047440-2050790 Chromosome 19

ENSG00000111319 6444030-6449420;6449480-6450940;6449480-6450940;6662010-6662810 Chromosome 12

ENSG00000111674 6662010-6662810;6999750-7001150;6999750-7001150;7046720-7047010;7047230-7047600 Chromosome 12

ENSG00000114353 50126460-50126820;50328720-50329650;50358380-50358800;50359200-50359520;50359200-50359520 Chromosome 3

ENSG00000115524 198055790-198057570;198152000-198152560;198318390-198319050;198318390-198319050 Chromosome 2

ENSG00000116285 8181000-8181800;8181000-8181800;8193790-8194520;8318930-8320010 Chromosome 1

ENSG00000116473 112134680-112136260;112134680-112136260;112134680-112136260;112202750-112203810 Chromosome 1

ENSG00000117632 26221860-26223380;26221860-26223380;26323300-26324510;26452760-26454880 Chromosome 1

ENSG00000129968 1875340-1876950;1905440-1906150;1905440-1906150;2042030-2042430;2166660-2167720;2579200-2579650 Chromosome 19

ENSG00000130005 1040200-1040500;1040580-1040860;1383940-1385280;1407800-1410200 Chromosome 19

ENSG00000137154 19183280-19185190;19232860-19233120;19379620-19380190;19456550-19457860 Chromosome 9

ENSG00000142910 32013850-32015900;32109070-32109980;32109070-32109980;111308340-111308980;111948770-111949470 Chromosome 1

ENSG00000143294 156659170-156659710;156716040-156721140;156659170-156659710;156716040-156721140 Chromosome 1
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2.6. Enhancer Expression Correlation with Patient Survival

To unravel the complex relationship between expression and survival, we analyzed the enhancer
expression correlation with patient survival, to display the positive or negative correlation between the
two. The enhancer locations, which show the maximum divergence between cancer and the normal
sample, are listed in Table 4 and Table S5.

Table 4. Correlation between CNV of enhancers and survival of patients in the case of cancer patients
and healthy individuals. The red-to-green color gradient shows high to low correlation.

Coordinates of Enhancer on Genome
Correlation (CNV vs. Survival Time)

Cancer Healthy

chr19:2059605-2060167 0.49837818 0.2314589

chr5:172380663-172381064 0.46715342 0.16699777

chr9:136999790-136999893 0.46557032 −0.0626969

chr16:85496879-85497321 0.45373278 −0.6866357

chr14:102415545-102415736 0.44115981 0.2792461

chr5:10352620-10352938 0.43075964 0.52245209

chr1:234746093-234747674 0.42760743 0.98845399

chr19:863983-864016 0.42492329 −0.3898893

chr10:31892273-31892723 0.42465511 −0.5260193

chr4:124621616-124621886 0.41837579 0.17175469

chr5:964244-964536 −0.1737289 0.52446177

chr6:169573934-169574190 −0.1747893 −0.7388221

chr22:50980817-50981280 −0.1776918 0.05853257

chr8:128306934-128307283 −0.1778833 −0.3632054

chr14:105500629-105500990 −0.1798565 0.11625874

chr15:99992993-99993428 −0.1823302 0.31824116

chrX:100792680-100793554 −0.1832455 −0.6606904

chr22:50979060-50979802 −0.1916855 0.01347895

chr18:12306995-12307375 −0.1946683 0.65842313

chr6:169569548-169569688 −0.1974295 0.1498992

chr8:70042378-70042779 −0.2421095 0.22802202

2.7. Prognostic Potential of Negatively Correlated Genes

In this study, our major emphasis was on 169 positively correlated genes (data shown in Table 1),
thus we used these genes for all analysis, including identification of prognostic biomarkers. The aim
was to understand the impact of negatively correlated genes, meaning enhancer copy number loss/gene
upregulation or enhancer copy number gain/gene downregulation (E+G−/E−G+). These genes are
negatively correlated with CNV of the enhancer. In order to understand the prognostic potential of
these genes, we computed the Cox proportion hazard ratio with the p-value. The performance of the
top genes is shown in Table 5 and performance of the remaining genes is shown in Table S6.
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Table 5. Shows Cox proportion hazard ratio with p-value of top negatively correlated genes having
potential of prognostic biomarkers, genes sorted based on p-value.

Negatively correlated genes (E+G−/E−G+)

Gene Symbol Hazard Ratio p-Value

MUM1 3.558401305 1.33 × 10−5

MUM1.1 3.558401305 1.33 × 10−5

MUM1.2 3.558401305 1.33 × 10−5

RBM6 3.444153767 1.83 × 10−5

MBD3 3.027911665 0.00010983

TLE2 2.983689472 0.000127766

TLE2.1 2.983689472 0.000127766

PLD3 2.853819471 0.00022269

PLD3.1 2.853819471 0.00022269

LRP3 2.81420074 0.00030683

3. Conclusions and Discussion

Gene expression and cell phenotype are governed by a complex set of regulatory circuits and
enhancer elements, which are at the center of governing the fate of each cell cycle. For the better
understanding of the disease phenotype and to provide better therapeutics, detailed knowledge of the
mechanism of regulation is necessary for every gene whose misexpression is known to cause disease
or is involved in disease progression. Due to the non-coding nature of the enhancers, their effect could
only be seen through co-expressed genes. Our data integration approach of human enhancers and
target provides the first comprehensive DNA–protein interaction in pancreatic cancer. By overlapping
the information with CNV, we revealed several important aspects of enhancer deregulation in cancer
development. The integration of data from matched TCGA allowed us to propose that the potential
mechanism concerning the changes in gene expression is mediated by enhancer copy number gain
or loss. We also identified genes (HDGF, UBB) which are upregulated, and downregulation of such
genes lowers the cancer load. One such gene is UBB, and previous research shows downregulation
of the UBB gene via siRNA and its anti-tumor effect in various cell lines and a mouse xenograft
model. Thus we recommend downregulation of the UBB gene with enhancer mutation may deliver an
anti-tumor effect for pancreatic cancer [26]. A number of super-enhancer linked target genes have been
identified. The amplification of enhancers may be used for biomarkers in cancer and may be a potential
target for anti-cancer drug design. One of the most fundamental approaches for treating genetic or
epigenetic diseases is to disrupt or correct aberrant genomic sequences responsible for the generation
of disease-associated enhancers. We also analyze the two gene sets: one shows a positive correlation
with enhancers and the other shows a negative correlation with enhancers. From this comparative
analysis, we concluded that although enhancers can bring about gene expression change, the survival
of a patient with cancer is a multifaceted phenomenon, as the hazard ratio in genes that corresponds
to enhancer nature is good but it is also good in genes which do not correspond to enhancer nature.
It may be in the particular case of pancreatic cancer that genomic aberration may occur more in the
genomic region than the regulatory region. Further study is required to confirm the results of survival
of patients and enhancer expression. With recent advances in genome engineering technologies such
as TALEN (Transcription activator-like effector nuclease) and CRISPR/Cas9, it is now more convenient
to generate mutations in cells or animal models, providing unprecedented opportunities to develop
effective gene therapies for enhancer-associated diseases. Moreover, enhancers and super-enhancers
can be used as prognostic markers for the prediction of disease risk and progression. Thus, integrative
analysis of a gene transcription signature and the enhancer profile of patients or healthy individuals
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could emerge as an important approach for disease diagnosis. We conclude that coupling of enhancer
profiles with gene expression changes has possibly unearthed a powerful approach to treat disease,
and can be expected to strengthen personalized medicine in the near future.

4. Materials and Methods

4.1. Enhancers and Target Gene for Human Pancreatic Tissue

In the present study, pancreatic tissue specific enhancers were mined from EnhancerAtlas
(http://www.enhanceratlas.org/data/AllEPs/Pancreas_EP.txt). EnhancerAtlas maintains enhancers
and associated/target genes of 105 human cell/tissue types. Enhancer sequences with their genomic
coordinates mapped to human genome assembly GRCh37/hg19 were downloaded in plain text
format. This contained 3876 sequences with genomic coordinates specific to pancreatic tissue. We also
downloaded the target genes corresponding to these enhancers from EnhancerAtlas. Enhancers that
do not interact with any promoter and gene sequence and with confidence scores below 0.7 were
removed. This step resulted in only 1696 enhancers, which were strongly associated with their target
gene and thus regulation of gene expression. These 1696 strong enhancers form 2968 interaction pairs.
Figure 5 shows the overall mind map and computational workflow used to carry out this study.
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4.2. Pancreatic Cancer Dataset from TCGA

The pancreatic adenocarcinoma (PAAD) dataset of copy number variations and gene expression
levels of 185 samples was downloaded from The Cancer Genome Atlas (TCGA) database (https:
//portal.gdc.cancer.gov/projects/TCGA-PAAD). Out of 185 samples, 181 correspond to tumor samples
and four samples consist of normal samples derived from adjacent solid tissue. More precisely, Illumina
HiSeq RNASeqV2 in 728 files and copy number variations in 737 files were taken into consideration.

http://www.enhanceratlas.org/data/AllEPs/Pancreas_EP.txt
https://portal.gdc.cancer.gov/projects/TCGA-PAAD
https://portal.gdc.cancer.gov/projects/TCGA-PAAD
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4.3. Copy Number Variations Identification

We implemented the GISTIC2.0 [39] (Genomic Identification of Significant Targets in Cancer,
version 2.0) algorithm to identify the regions of the genome that were amplified or deleted across the
samples. This algorithm uses human genome assembly Hg19 as the reference genome, which consists
of information on recurrent CNV cytoband and gene location. Thresholds were set as default GISTIC2.0
parameters. The threshold for copy number gain/loss was set at 0.1, so that regions with a copy number
value above 0.1 were acknowledged as a copy number gain (i.e., amplification), and regions with a copy
number value below 0.1 were acknowledged as a copy number loss (i.e., deletion) [40]. Segments
that comprised less than four markers were combined with the neighboring segment nearest in copy
number; regions with q-values less than 0.25 were acknowledged as significant. We then used genomic
intersecting functionality from BEDTools [41] to intersect each recurrent significant CNV identified
from GISTIC to map onto the genomic coordinates of enhancers of pancreatic tissue. This step led to
the identification of recurrent significant CNV of enhancers of pancreatic tissue.

4.4. Screening for Differential Gene Expression

Differential gene expression (DGE) analysis on the mRNA transcripts was done after quantile
filtration, which was achieved using the quantile method and a cut-off value of 0.25. To ascertain
whether a gene was expressed differentially, the test of the hypothesis, with the fold-change between the
two conditions as normal and tumor conditions, was calculated. We applied the TCGAanalyze_DEA
function, which performs DEA using various functions of the edgeR package from Bioconductor [42].
The function edgeR:exactTest makes pair-wise tests for differential expression between two groups.
The p-values obtained from the exactTest sorted in ascending order were corrected/adjusted using the
false discovery rate (FDR) correction which returns the top differentially expressed genes. Thresholds
for log fold change (logFC) and FDR were set at 1 and 0.1, respectively, such that differentially expressed
mRNAs were considered to be significant if logFC > 1 and FDR < 0.05.

4.5. Combination of Gene Expression and Copy Number Variation

The identification of differentially expressed genes with CNVs such as gain or loss was
accomplished here, by considering the outputs of the gene expression analysis, so that, if the gene was
upregulated or downregulated, and of CNV analysis, that is, if the region was amplified or deleted.
We selected the upregulated genes with an amplified copy number and downregulated genes with copy
number deletion in their corresponding regulatory enhancer regions of pancreatic adenocarcinoma
patients. These genes correspond with the nature of the enhancer element.

4.6. Gene Network Construction, GO Enrichment and Super Enhancer Based Regulation

In order to understand the significance of both upregulated and downregulated genes, the STRING
database [43] was used to construct the gene network of enhancer CNV driven genes at FDR 0.25. GO
enrichment analysis of genes was done with the help of Enrichr, an R package [44]. We also aimed to
identify super-enhancer-based gene regulation. Super-enhancers were defined as multiple enhancers
regulating the same gene expression with an upregulating effect [45].

4.7. Correlation Analysis of Enhancer Expression with Patient Survival

Enhancer elements specifically expressed in pancreatic tissue were taken from study [3]. Pancreatic
adenocarcinoma clinical files were downloaded from TCGA and correlation for enhancer expression
and patient survival was done using in-house Python scripts.
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Kellis, M.; Ørntoft, T.; Hobolth, A.; et al. Pan-cancer screen for mutations in non-coding elements with
conservation and cancer specificity reveals correlations with expression and survival. NPJ Genomic Med.
2018, 3, 1. [CrossRef] [PubMed]

12. Herz, H.-M. Enhancer deregulation in cancer and other diseases. BioEssays 2016, 38, 1003–1015. [CrossRef]
[PubMed]

13. Herman-Izycka, J.; Wlasnowolski, M.; Wilczynski, B. Taking promoters out of enhancers in sequence based
predictions of tissue-specific mammalian enhancers. BMC Med. Genomics 2017, 10, 34. [CrossRef] [PubMed]

14. Symmons, O.; Spitz, F. From remote enhancers to gene regulation: Charting the genome’s regulatory
landscapes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 20120358. [CrossRef] [PubMed]

15. Zhang, G.; Shi, J.; Zhu, S.; Lan, Y.; Xu, L.; Yuan, H.; Liao, G.; Liu, X.; Zhang, Y.; Xiao, Y.; et al. DiseaseEnhancer:
A resource of human disease-associated enhancer catalog. Nucleic Acids Res. 2018, 46, D78–D84. [CrossRef]
[PubMed]

16. Gamazon, E.R.; Stranger, B.E. The impact of human copy number variation on gene expression. Brief. Funct.
Genomics 2015, 14, 352–357. [CrossRef]

17. Jia, Y.; Chen, L.; Jia, Q.; Dou, X.; Xu, N.; Liao, D.J. The well-accepted notion that gene amplification contributes
to increased expression still remains, after all these years, a reasonable but unproven assumption. J. Carcinog.
2016, 15, 3. [CrossRef] [PubMed]

18. Zhang, X.; Choi, P.S.; Francis, J.M.; Imielinski, M.; Watanabe, H.; Cherniack, A.D.; Meyerson, M. Identification
of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 2016, 48,
176–182. [CrossRef]

19. Zhang, X.; Choi, P.S.; Francis, J.M.; Gao, G.F.; Campbell, J.D.; Ramachandran, A.; Mitsuishi, Y.; Ha, G.; Shih, J.;
Vazquez, F.; et al. Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation
of the KLF5 Transcription Factor. Cancer Discov. 2018, 8, 108–125. [CrossRef]

20. Gao, T.; He, B.; Liu, S.; Zhu, H.; Tan, K.; Qian, J. EnhancerAtlas: A resource for enhancer annotation and
analysis in 105 human cell/tissue types. Bioinformatics 2016, 32, 3543–3551. [CrossRef]

21. He, X.; Fuller, C.K.; Song, Y.; Meng, Q.; Zhang, B.; Yang, X.; Li, H. Sherlock: Detecting Gene-Disease
Associations by Matching Patterns of Expression QTL and GWAS. Am. J. Hum. Genet. 2013, 92, 667–680.
[CrossRef] [PubMed]

22. Hu, B.; Shi, C.; Jiang, H.-X.; Qin, S.-Y. Identification of novel therapeutic target genes and pathway in
pancreatic cancer by integrative analysis. Medicine (Baltimore). 2017, 96, e8261. [CrossRef] [PubMed]

23. Basso, D. Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts:
Searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut 2004,
53, 1159–1166. [CrossRef] [PubMed]

24. Zhang, X.; Sheng, J.; Zhang, Y.; Tian, Y.; Zhu, J.; Luo, N.; Xiao, C.; Li, R. Overexpression of SCAMP3 is an
indicator of poor prognosis in hepatocellular carcinoma. Oncotarget 2017, 8, 109247–109257. [CrossRef]
[PubMed]

25. Sahraei, M.; Roy, L.D.; Curry, J.M.; Teresa, T.L.; Nath, S.; Besmer, D.; Kidiyoor, A.; Dalia, R.; Gendler, S.J.;
Mukherjee, P. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene 2012, 31,
4935–4945. [CrossRef] [PubMed]

26. Oh, C.; Park, S.; Lee, E.K.; Yoo, Y.J. Downregulation of ubiquitin level via knockdown of polyubiquitin gene
Ubb as potential cancer therapeutic intervention. Sci. Rep. 2013, 3, 2623. [CrossRef] [PubMed]

27. Xia, P.; Xu, X.-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical
application. Am. J. Cancer Res. 2015, 5, 1602–1609. [PubMed]

28. Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589–3594. [CrossRef]
[PubMed]

29. Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V.
Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018, 17, 48.
[CrossRef]

30. Messenger, S.W.; Jones, E.K.; Holthaus, C.L.; Thomas, D.D.H.; Cooley, M.M.; Byrne, J.A.; Mareninova, O.A.;
Gukovskaya, A.S.; Groblewski, G.E. Acute acinar pancreatitis blocks vesicle-associated membrane protein
8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. J. Biol. Chem. 2017, 292,
7828–7839. [CrossRef]

http://dx.doi.org/10.1038/s41525-017-0040-5
http://www.ncbi.nlm.nih.gov/pubmed/29354286
http://dx.doi.org/10.1002/bies.201600106
http://www.ncbi.nlm.nih.gov/pubmed/27570183
http://dx.doi.org/10.1186/s12920-017-0264-3
http://www.ncbi.nlm.nih.gov/pubmed/28589862
http://dx.doi.org/10.1098/rstb.2012.0358
http://www.ncbi.nlm.nih.gov/pubmed/23650632
http://dx.doi.org/10.1093/nar/gkx920
http://www.ncbi.nlm.nih.gov/pubmed/29059320
http://dx.doi.org/10.1093/bfgp/elv017
http://dx.doi.org/10.4103/1477-3163.182809
http://www.ncbi.nlm.nih.gov/pubmed/27298590
http://dx.doi.org/10.1038/ng.3470
http://dx.doi.org/10.1158/2159-8290.CD-17-0532
http://dx.doi.org/10.1093/bioinformatics/btw495
http://dx.doi.org/10.1016/j.ajhg.2013.03.022
http://www.ncbi.nlm.nih.gov/pubmed/23643380
http://dx.doi.org/10.1097/MD.0000000000008261
http://www.ncbi.nlm.nih.gov/pubmed/29049217
http://dx.doi.org/10.1136/gut.2003.024471
http://www.ncbi.nlm.nih.gov/pubmed/15247186
http://dx.doi.org/10.18632/oncotarget.22665
http://www.ncbi.nlm.nih.gov/pubmed/29312605
http://dx.doi.org/10.1038/onc.2011.651
http://www.ncbi.nlm.nih.gov/pubmed/22266848
http://dx.doi.org/10.1038/srep02623
http://www.ncbi.nlm.nih.gov/pubmed/24022007
http://www.ncbi.nlm.nih.gov/pubmed/26175931
http://dx.doi.org/10.1242/jcs.051011
http://www.ncbi.nlm.nih.gov/pubmed/19812304
http://dx.doi.org/10.1186/s12943-018-0804-2
http://dx.doi.org/10.1074/jbc.M117.781815


Int. J. Mol. Sci. 2019, 20, 3582 15 of 15

31. Rivera, I.-G.; Ordoñez, M.; Presa, N.; Gangoiti, P.; Gomez-Larrauri, A.; Trueba, M.; Fox, T.; Kester, M.;
Gomez-Muñoz, A. Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer
cells. Biochem. Pharmacol. 2016, 102, 107–119. [CrossRef] [PubMed]

32. Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.;
Hoang, C.D.; et al. The prognostic landscape of genes and infiltrating immune cells across human cancers.
Nat. Med. 2015, 21, 938–945. [CrossRef] [PubMed]

33. Bao, C.; Wang, J.; Ma, W.; Wang, X.; Cheng, Y. HDGF: A novel jack-of-all-trades in cancer. Future Oncol. 2014,
10, 2675–2685. [CrossRef] [PubMed]

34. Fisher, W.E.; Wu, Y.; Amaya, F.; Berger, D.H. Somatostatin receptor subtype 2 gene therapy inhibits pancreatic
cancer in vitro. J. Surg. Res. 2002, 105, 58–64. [CrossRef] [PubMed]

35. Nguyen, H.T.; Kugler, J.-M.; Loya, A.C.; Cohen, S.M. USP21 regulates Hippo pathway activity by mediating
MARK protein turnover. Oncotarget 2017, 8, 64095–64105. [CrossRef] [PubMed]

36. Muniyan, S.; Haridas, D.; Chugh, S.; Rachagani, S.; Lakshmanan, I.; Gupta, S.; Seshacharyulu, P.; Smith, L.M.;
Ponnusamy, M.P.; Batra, S.K. MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma
through focal adhesion mediated signaling mechanism. Genes Cancer 2016, 7, 110–124. [PubMed]

37. Takadate, T.; Onogawa, T.; Fukuda, T.; Motoi, F.; Suzuki, T.; Fujii, K.; Kihara, M.; Mikami, S.; Bando, Y.;
Maeda, S.; et al. Novel prognostic protein markers of resectable pancreatic cancer identified by coupled
shotgun and targeted proteomics using formalin-fixed paraffin-embedded tissues. Int. J. Cancer 2013, 132,
1368–1382. [CrossRef]

38. Shin, H.Y. Targeting Super-Enhancers for Disease Treatment and Diagnosis. Mol. Cells 2018, 41, 506–514.
39. Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates

sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers.
Genome Biol. 2011, 12, R41. [CrossRef]

40. Kaveh, F.; Baumbusch, L.O.; Nebdal, D.; Børresen-Dale, A.-L.; Lingjærde, O.C.; Edvardsen, H.;
Kristensen, V.N.; Solvang, H.K. A systematic comparison of copy number alterations in four types of
female cancer. BMC Cancer 2016, 16, 913. [CrossRef]

41. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics
2010, 26, 841–842. [CrossRef] [PubMed]

42. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [CrossRef] [PubMed]

43. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.;
Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [CrossRef] [PubMed]

44. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.;
Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server
2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [CrossRef] [PubMed]

45. Li, X.; Liu, Y.; Lu, J.; Zhao, M. Integrative analysis to identify oncogenic gene expression changes associated
with copy number variations of enhancer in ovarian cancer. Oncotarget 2017, 8, 91558–91567. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bcp.2015.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26707801
http://dx.doi.org/10.1038/nm.3909
http://www.ncbi.nlm.nih.gov/pubmed/26193342
http://dx.doi.org/10.2217/fon.14.194
http://www.ncbi.nlm.nih.gov/pubmed/25236340
http://dx.doi.org/10.1006/jsre.2002.6450
http://www.ncbi.nlm.nih.gov/pubmed/12069503
http://dx.doi.org/10.18632/oncotarget.19322
http://www.ncbi.nlm.nih.gov/pubmed/28969054
http://www.ncbi.nlm.nih.gov/pubmed/27382435
http://dx.doi.org/10.1002/ijc.27797
http://dx.doi.org/10.1186/gb-2011-12-4-r41
http://dx.doi.org/10.1186/s12885-016-2899-4
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
http://dx.doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/pubmed/27141961
http://dx.doi.org/10.18632/oncotarget.21227
http://www.ncbi.nlm.nih.gov/pubmed/29207666
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Identification of Enhancers Having Change in CNV 
	Pathway Enrichment Analysis of Genes Regulated by Enhancers 
	Cox Proportional Hazard Analysis of Enhancer Regulated Genes 
	Prognostic Potential of Regulatory Genes 
	Genes Regulated by Multiple Enhancers or Super Enhancers 
	Enhancer Expression Correlation with Patient Survival 
	Prognostic Potential of Negatively Correlated Genes 

	Conclusions and Discussion 
	Materials and Methods 
	Enhancers and Target Gene for Human Pancreatic Tissue 
	Pancreatic Cancer Dataset from TCGA 
	Copy Number Variations Identification 
	Screening for Differential Gene Expression 
	Combination of Gene Expression and Copy Number Variation 
	Gene Network Construction, GO Enrichment and Super Enhancer Based Regulation 
	Correlation Analysis of Enhancer Expression with Patient Survival 

	References

