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Background: Movement screens are increasingly used in sport and rehabilitation to
evaluate movement competency. However, common screens are often evaluated using
subjective visual detection of a priori prescribed discrete movement features (e.g.,
spine angle at maximum squat depth) and may not account for whole-body movement
coordination, or associations between different discrete features.

Objective: To apply pattern recognition and machine learning techniques to identify
whole-body movement pattern phenotypes during the performance of exemplar
functional movement screening tasks; the deep squat and hurdle step. Additionally,
we also aimed to compare how discrete kinematic measures, commonly used to
score movement competency, differed between emergent groups identified via pattern
recognition and machine learning.

Methods: Principal component analysis (PCA) was applied to 3-dimensional (3D)
trajectory data from participant’s deep squat (DS) and hurdle step performance,
identifying emerging features that describe orthogonal modes of inter-trial variance
in the data. A gaussian mixture model (GMM) was fit and used to cluster the
principal component scores as an unsupervised machine learning approach to identify
emergent movement phenotypes. Between group features were analyzed using a one-
way ANOVA to determine if the objective classifications were significantly different
from one another.

Results: Three clusters (i.e., phenotypes) emerged for the DS and right hurdle step
(RHS) and 4 phenotypes emerged for the left hurdle step (LHS). Selected discrete
points commonly used to score DS and hurdle step movements were different between
emergent groups. In regard to the select discrete kinematic measures, 4 out of 5, 7 out
of 7 and 4 out of 7, demonstrated a main effect (p < 0.05) between phenotypes for the
DS, RHS, and LHS respectively.
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Conclusion: Findings support that whole-body movement analysis, pattern recognition
and machine learning techniques can objectively identify movement behavior
phenotypes without the need to a priori prescribe movement features. However, we also
highlight important considerations that can influence outcomes when using machine
learning for this purpose.

Keywords: principal component analysis, cluster, gaussian mixture model, movement phenotypes, functional
movement screen

INTRODUCTION

Movement screens are commonly used to assess an individual’s
quality of movement as a method to highlight poor movement
patterns (McCunn et al., 2016). The quality of movement,
herein termed movement competency, can be explained as an
individual’s ability to adopt a movement pattern that achieves the
task objective, while also minimizing injury risk (Kritz et al., 2009;
McGill et al., 2015). Considering the emphasis on movement
and safety, sport (McCunn et al., 2016) and occupational settings
(Isernhagen, 1992; Sinden et al., 2017) rely on movement
screening methods to estimate performance capacity (Frost et al.,
2015; Bock et al., 2016) and to reveal functional limitations
that may increase risk of injury (O’Connor et al., 2011; Lisman
et al., 2013). Visual assessment of body mechanics is the de facto
method for measuring movement competency (Sinden et al.,
2017), which increases the subjectivity of movement screens,
thus relying on the appraisal and previous knowledge of the
practitioner. As a result, it may not be surprising that inter-
rater reliability issues continue to restrict the utility of movement
screening approaches (i.e., Shultz et al., 2013).

In addition to inter-rater reliability challenges that affect
subjective appraisal of movement competency, the current use
of top-down, prescribed, discrete movement features to define
“safe” or “good” movement may be inadequate. While many
believe that movement competency is linked to injury risk and/or
performance (where movement competency is defined using
conventional a priori definition such as torso is parallel with
the tibia when performing the deep squat), there remains little
evidence supporting such connections (Gross and Battié, 2006;
Mottram and Comerford, 2008; Schneiders et al., 2011; Okada
et al., 2011; Parchmann and McBride, 2011). Perhaps our a priori
criteria for subjectively evaluating movement competency are
incorrect or incomplete (Bennett et al., 2017), or our clinical
eye is simply not appropriately tuned to detect important
and meaningful changes. As an alternative to this top-down
approach, use of emerging tools in machine learning might
help us to identify naturally-occurring movement phenotypes,
where continued research can then explore phenotypes that are
associated with positive or negative health outcomes with respect
to specific task objectives.

Considering the magnitude of variability that exists in the
ways individuals can complete a task, a reliance on discrete
a priori measures, as common movement screen scoring

Abbreviations: DS, Deep squat; GMM, Gaussian mixture model; LHS, Left hurdle
step; PCA, Principal component analysis; PC, Principal component; RHS, Right
hurdle step.

parameters (e.g., spine angle at maximum squat depth), instead
of assessing time-series whole-body movement patterns remains
as a limitation. Specifically, the use of a priori discrete parameters
suggests that there is a single idealized pattern, which as
shown by Srinivasan and Mathiassen (2012), is not necessarily
optimal. Instead, it may be more beneficial to identify and
screen for phenotypical patterns of movement behaviors that may
differentiate and classify between those with optimal movement
competency relative to those that may benefit from a targeted
movement training intervention.

The Functional Movement ScreenTM (FMS) (Functional
Movement Systems, Chatham, VA, United States) remains
a popular tool for movement screening (Bennett et al.,
2017). Sinden et al. (2017) identified the FMSTM as one
of the most commonly used approaches for movement
screening among Kinesioligists. The FMSTM is an example of
a movement screen that depends on the visual appraisal of
discrete movement competency and identifies deficits and/or
compensatory movement patterns in the kinetic chain (Cook
et al., 2006a,b). While the FMSTM protocol includes a battery
of 7 distinct movements, we focus on the Deep Squat (DS) and
right and lift hurdle step (RHS; LHS) movements. Squatting is
a common pattern in most athletic events (Cook et al., 2006a;
Kritz et al., 2009) making it a useful movement to target first. The
hurdle step movement, provides a unique contrast relative to the
squat because it tests bilateral functional mobility and dynamic
stability of the hips, knees, and ankles (Cook et al., 2006a). Many
believe that such screening can be useful in proactive injury
prevention (Kiesel et al., 2007). However, due to the lack of
evidence relating the FMSTM to injury (McCunn et al., 2016),
or biomechanical exposure variables in transfer tasks (Beach
et al., 2014), evidence does not support that the current scoring
approach is useful for injury prevention (Okada et al., 2011;
Parchmann and McBride, 2011). This is not, however, to suggest
that screening is not useful. Considering sound biomechanical
arguments (Zazulak et al., 2008; Powers, 2010; Hewett and Myer,
2011), Beach et al. (2014), conclude that general whole-body
movement screening could be used to predict likelihood of
injury in physically demanding jobs if we advance beyond the
current scoring approaches. Therefore, to overcome limitations
associated with the subjective a priori driven grading criteria,
data-driven methods could improve the state of movement
screening (McCunn et al., 2016).

Application of pattern recognition and machine learning
techniques are growing within biomechanics (Halilaj et al., 2018)
and can enable data-driven methods to objectively identify
movement phenotypes. As a pattern recognition tool, principal
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component analysis (PCA), allows us to identify principal
movement patterns through data reduction, which explain
variance within kinematic-based data sets (Troje, 2002; Wrigley
et al., 2005; Brandon et al., 2013; Federolf et al., 2014; Ross
et al., 2018; Armstrong et al., 2019). One strength of using
PCA to determine modes of variability is that the scores can be
used in downstream analysis such as in classification through
cluster analysis to detect and interpret differences between
subjects and/or trials (Deluzio et al., 2014, p. 319). As an
example, clustering is an unsupervised machine learning method
that iteratively clusters data points into groups assigning each
observation to a cluster. In the biomechanical analysis of human
movement data, clustering has proven useful for grouping
participants with similar patterns (Sawacha et al., 2010; Bennetts
et al., 2013; Gilles and Wild, 2018) and gait waveforms (Watelain
et al., 2000; Toro et al., 2007; Roche et al., 2014). Previously,
PCA and clustering techniques have been combined to identify
and group distinct spine spatiotemporal movement strategies
(Beaudette et al., 2019), which support that a combination
of these methods may have utility in objectively identifying
movement phenotypes in a movement screening context.
However, such application of pattern recognition and clustering
to identify naturally occurring movement phenotypes within the
movement screening context remains a novel endeavor.

Therefore, to address issues related to the use of subjectively
measured a priori movement competency features, the objective
of this paper was to apply PCA and gaussian mixture model
(GMM), as pattern recognition and machine learning techniques
respectively, to objectively identify naturally occurring whole-
body movement pattern phenotypes during the performance
of common movement screening tasks (i.e., the deep squat
and hurdle step). Secondarily, we aimed to evaluate if
top-down a priori determined, discrete kinematic variables
(typically evaluated in practice using a subjective visual
appraisal), were indeed different between naturally emerging
movement phenotype groups identified using unsupervised
learning (i.e., bottom-up).

MATERIALS AND METHODS

Subjects
Thirty healthy participants volunteered for this study (Table 1).
The participants were recruited from the general student body
of the University of Waterloo, were older than 18 years old and
did not have an injury that prevented activities of daily living in
the previous 6 months. The participants completed a “Get Active
Questionnaire” that indicated their physical readiness for the
study. This study was approved by the University of Waterloo’s
Office of Research Ethics, and participants provided informed
consent prior to participation.

TABLE 1 | Participant demographics.

Age Height (cm) Weight (kg)

Male (n = 15) 23.6 ± 4.0 185.23 ± 6.8 87.9 ± 10.0

Female (n = 15) 23.7 ± 8.0 168.2 ± 9.8 64.3 ± 9.25

Instrumentation
Prior to coming to the lab, participants were instructed to wear
tight fitting clothing. All participants were instrumented with
reflective motion capture markers, including marker clusters
placed over body segments and single markers positioned over
anatomical landmarks (Figure 1). Marker clusters were used
to track segment motion instead of anatomical markers to
reduce soft tissue artifact (Leardini et al., 2005). Anatomical
markers were used during calibration to mathematically relate
the technical coordinate system of each cluster to its underlying
segment specific anatomical coordinate system (Robertson et al.,
2013). Motion was recorded using a 12 – camera (six, Vantage v5;
six, Vero v2.2) Vicon Nexus 2.6 motion capture system (Nexus,
Oxford, United Kingdom). Once participants completed a
calibration trial, the following markers, bilaterally, were removed
for the remainder of the study: lateral and medial epicondyles,
iliac crest, anterior superior iliac spine, greater trochanter of
femur, lateral and medial condyle, lateral and medial malleolus.

Protocol
Participants performed 15 movements in total for the study: 5
deep squat (DS), 5 right hurdle step (RHS), and 5 left hurdle step
(LHS) movements (Figure 2) and were given instruction about
how to perform each movement, adapted from those described
in Cook et al. (2006a). Specifically, for the deep squat participants
were instructed to: “stand with your feet approximately shoulder
width apart, place the dowel on your head adjusting your hands

FIGURE 1 | Whole-body reflective marker set up. Marker clusters were placed
bilaterally on the shank, thigh, forearm, and upper arm as well as on the pelvis
and trunk. Anatomical markers were placed on the anterior and posterior
lateral aspects of the head, suprasternal notch, xiphoid process, 7th cervical
vertebra; and bilaterally on the acromion, lateral and medial epicondyles, radial
and ulnar styloid processes, 2nd and 5th metacarpals, dorsum of the hand,
iliac crest, anterior superior iliac spine, greater trochanter of femur, lateral and
medial condyles, lateral and medial malleoli, 1st and 5th metatarsal, dorsal
tarsal midline, and calcaneus.
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FIGURE 2 | Deep squat movement and hurdle step movement as adapted from Cook et al. (2006a).

until your elbows are at 90 degrees, press the dowel overhead,
straightening the elbows, the trial will begin once you descend
into a deep squat position and back up keeping your heels on the
floor and arms extended the entire time.” For the hurdle step,
instructions were: “stand facing the front of the lab with your
toes touching the FMS board, place the dowel across the back
of your shoulders and below your neck, with your right/left leg,
step over the hurdle, touch your heel on the opposite side and
bring your moving leg back to the starting position.” Participants
completed 5 repetitions of the DS, followed by 5 repetitions of the
RHS and 5 of the LHS. Motion data were collected at 60 Hz using
Vicon Nexus while participants performed the DS, RHS and LHS
movements, respectively.

Data Post-processing and Conditioning
During post-processing, each trial was first labeled and gap filled
in Vicon Nexus, where gaps were filled using cubic spline, pattern
fill or rigid body fill functions within Vicon Nexus, where the
gap filling function was dependent on the underlying gap length
(Armstrong et al., 2019). Gap-filled and labeled marker trajectory
data were exported to Visual 3D (C-Motion Inc., Germantown,
United States). Within Visual 3D, data were filtered using a
fourth order low pass butterworth filter with an effective cut off
frequency of 6 Hz (Winter, 2009) to remove high frequency noise
from each signal. Filtered trajectory data were then used to drive
a 15 segment whole-body kinematic model, with IK constraints,
where segments were defined using ISB recommended segment
definitions (Wu et al., 2002, 2005), such that joint center positions
(ankle, knee, hip, shoulder, elbow, wrist) and centre of mass
(COM) locations (pelvis, trunk, and head) could be calculated.
Joint center and COM trajectory data were combined with
filtered position data from selected body landmarks (xiphoid
process, suprasternal notch, 7th cervical vertebra) to provide the
kinematic description of each motion.

Prior to additional data processing, start and end frames
for each trial were determined (Figure 3). The DS “start” and
“end” were defined by identifying the local maximum of the
supra-sternal notch marker in the vertical direction. The “start”
and “end” of the hurdle step were determined by identifying
the local minimum of the lead (step-over) heel marker in the
vertical direction.

To address our overarching research question, we also used
the trajectory data to calculate discrete kinematic variables

commonly used in screening. Tables 2, 3 list the additional
discrete kinematic data that were calculated and also summarizes
how they were calculated to support this analysis.

To support the use of pattern recognition and machine
learning, trajectory data representing the above mentioned joint
centers, landmarks, and COM locations were exported to Matlab
(MathWorks, Natick, United States). In Matlab, participants’
trajectory data were divided by their standing height to normalize
for inter-participant variance in height (Ross et al., 2018). The
trajectory data were also translated such that the new origin
was positioned at the center of the right (DS, LHS) or left
(RHS) ankle coordinate system. This translation was necessary
to eliminate variance in the trajectory data associated with
each participants’ relative positioning with the global coordinate
system of the laboratory.

Trials were time normalized to 101 frames (100% of the trial),
but in phases in order to account for the fact that participants

FIGURE 3 | (A) Represents the phases of the DS movement from 0 to 100%.
The “move into” phase is contained by the red and black bars and in between
the black and blue bars is the “move out” phase. The below graph represents
tracking of the suprasternal notch marker to determine 50% of the movement
(maximum squat depth) as well as define “start” and “end” points of the
movement. (B) Represents the phases of the hurdle step movement from 0 to
100%. The “move into” phase is contained by the red and black bars and in
between the black and blue bars is the “move out” phase. The graph below
represents tracking of the right (LHS) or left (RHS) calcaneus marker to
determine 50% of the movement (end of heel touch) as well as define “start”
and “end” points of the RHS and LHS, respectively.
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TABLE 2 | Calculated kinematic variables typically representative of the a priori, discrete DS scoring criteria.

Scoring criteria (Cook et al.,
2006a)

Kinematic representation Calculation Meaning/Relevance

The femur is at or below
horizontal

Femoral angle The right and left femoral segment angles were
calculated, averaged, and then the maximum
angle was found.

Representation of squat depth

The trunk is parallel with the
tibia and/or toward the vertical

Trunk- Shank angle difference
Trunk angle

The maximum trunk to shank angle difference
was determined as well as the maximum trunk
angle elicited.

The greater the difference the more the
tibia and trunk are not parallel.
The greater the trunk angle, the further
bent forward.

The knees remain aligned with
the feet

Knee-to-ankle separation ratio
(Ortiz et al., 2016)

The difference between left and right knee joint
centers in global space and the difference
between the left and right ankle joint centers in
global space were calculated.
The knee distance was divided by the ankle
distance.

(>1) = knees are wider (varus)
(<1) = knees fall inwards (valgus)

The dowel remains over top of
the feet

Left-right hand center
difference to foot center
difference.

The center of the left- and right-hands in global
space and left and right foot center in global
space were calculated. The maximum anterior
difference between the hand center and foot
center was calculated.

Measure of displacement of dowel over
the feet in the anterior direction.

TABLE 3 | Calculated kinematic variables typically representative of the a priori, discrete hurdle step scoring criteria.

Scoring criteria (Cook et al.,
2006a)

Kinematic representation Calculation Explanation

Hips, knees, and ankles remain
aligned

Hip-to-Knee difference
Knee-to-ankle difference
Hip-to-ankle difference
Hurdling leg was the leg of
interest

= (hip – knee)
= (knee – ankle)
= (hip-ankle)
All calculations used the joint center in
the y-axis (anterior plane)
Peak absolute values were calculated

A difference value closer to 0, the more in-line the
joint centers.
The hurdle step scoring criteria #1, was determined
kinematically by gathering the difference between all
three joints in the anterior plane.

Little to no movement noted in
lumbar spine

Lumbar Flexion – extension
range
Lumbar lateral flexion range

Rotation range

= (maximum extension – maximum
flexion)
= (maximum right lateral flexion –
maximum left lateral flexion)
= (maximum rotation to the right –
maximum rotation to the left)

To determine little movement in lumbar spine, angle
ranges in all three directions were calculated. The
greater the range, the more movement noted in
lumbar spine.

The dowel remains parallel with
the string

Right-left hand difference in the
z direction (superior/inferior)

= (right hand center – left hand center) Represented by the difference in hand displacement
in the superior/inferior direction. The greater the
difference of the two hands, the greater the dowel is
not parallel with the string.

typically took longer to move into the required position, but
less time to move out of the required position. As an example,
participants for the DS generally took different lengths of time
descending into maximum squat depth and returning to upright
standing. To achieve our desired phase-based time-warping, first,
the “move into” portion of the movement (i.e., from standing
to maximum squat depth, or foot extended over hurdle) was
segmented out and time normalized to 54 frames for the DS,
53 for the RHS and 52 for the LHS, respectively. Second, the
“move out” portion of the movement (i.e., return to standing)
was segmented out and time normalized to 47 frames for the DS,
48 for the RHS and 49 for the LHS respectively. Third, the time
normalized phases were re-concatenated into a complete trial
(101 frames). On average, participants tended to complete the
“move into” phase of the DS, RHS, and LHS at 54, 53, and 52% of
the total movement time, reinforcing the splits noted above. This
process was completed to eliminate timing effects or phase shift

between trials of each of the movements respectively (Moudy
et al., 2018). The time normalized estimated joint centers, body
landmarks, and calculated COM positions were then prepped for
PCA analysis in Matlab (Figure 3).

Data Analysis
Feature Selection
PCA was applied to the time-series conditioned and post-
processed trajectory data to identify emergent features that
captured orthogonal modes of variability in the data set.
Individual PCA models were developed for the DS, RHS,
and LHS data, respectively, using the ‘Statistics and Machine
Learning’ toolbox in Matlab. Described more completely in Ross
et al. (2018), but briefly summarized here, we organized the time-
series trajectory data into a [n, m] matrix, where, n represented
the number of trials (n = 150, corresponding to 30 participants
× 5 trials) and where m represented row vectors describing
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the time-series trajectory data (m = 5454, corresponding to 18
trajectories× 3 axes× 101 time points). PCA was then applied as
a data reduction and feature selection method to yield principal
components (PCs) that capture linearly uncorrelated sources of
variability within each dataset. The application of PCA in this
manner, for the purpose of identifying principal movements (PCs
representing linearly uncorrelated movement features) is more
completely described by Troje (2002) and Ross et al. (2018). PC
scores were retained, representing each observation (trial) in the
principal component space. PCs that individually explained > 5%
of the variance (Witte et al., 2010), were retained for classification.

Classification
A [p, q] matrix was input into a GMM, where p represents
each trial’s PC scores as input features (p = 150, corresponding
to 30 participants × 5 trials) and each column of q described
individuals’ PC scores for those PCs that were retained. As a brief
background, GMM is a model-based method where the algorithm
is aimed at optimizing the fit between the data and the model
to find structures (clusters) among the observations, while also
assigning a measure of probability to the clustered assignment.
GMM was applied to the data in Matlab using the “Statistics
and Machine Learning” toolbox. To determine the optimal k
(number of clusters), we used the Bayesian information criterion
(BIC), where for k = 1–10 a GMM was fit to the dataset and the
minimum BIC identified the best k. An optimal k was determined
for each movement: DS, RHS and LHS, respectively. A GMM for
each movement was applied to each data set respectively, running
100 repetitions to increase the likelihood of the data converging
to an optimum (Beaudette et al., 2019). Following the application
of the GMM to each movement dataset, centroid scores from each
cluster were determined along with the clustering assignments
from each individual trial, where hard clustering was performed
such that each trial was assigned to only 1 phenotype. The cluster
centroids therefore represent the mean movement phenotypes.

Reconstruction
Single component reconstruction was used to visualize
differences in movement patterns between clusters (Brandon
et al., 2013). This reconstruction was done by multiplying the
loading vectors for each retained PC by the centroid scores
representing each cluster and adding it to the mean loading
vector (eigenvectors from the PCA models). The reconstructed
patterns provided a visual representation that emphasizes
differences in the underlying kinematics associated with each
movement phenotype.

Statistics
Kinematic variables typically representative of the a priori,
discrete scoring criteria (Tables 2, 3) served as dependent
variables in one-way ANOVA models. Cluster assignment served
as the independent variable (3 levels for DS and RHS movements
and 4 for LHS movement, based on the emergence of 3 and
4 clusters, respectively). An alpha value of 0.05 was used to
determine significance. Where a main effect of cluster assignment
emerged, post hoc testing, using Bonferonni corrected pairwise
comparisons were used to determine significant differences in

dependent measures between clusters. Partial eta squared values
(η2) were calculated for each dependent variable where, 0.01 was
considered a small effect, 0.06 a medium effect and 0.14 a large
effect (Cohen, 1988, p. 285–287, 383). Statistical analysis was
completed using SPSS (SPSS Version 24.0, IBM Corporations,
Armonk, NY, United States).

RESULTS

Feature Selection and Classification
The PCA models revealed that 4, 6, and 6 PCs each explained
at least 5% of the variance in the time-series trajectory data for
the DS, RHS, and LHS, respectively. Using those retained PCs,
the GMM identified k = 3 as the optimal number for the DS
and RHS and k = 4 for the LHS movements (Figure 4). For
the DS, 62, 24, and 64 trials were assigned to phenotypes 1, 2,
and 3, respectively, where 23 of the participants had all 5 trials
classified within the same phenotype and 7 participants had trials
distributed between 2 different phenotypes. For the RHS, 47, 84,
and 19 trials were assigned to phenotypes 1, 2, and 3, respectively,
where 21 of the participants had all 5 trials classified into the
same phenotype, and 9 participants had trials distributed between
different phenotypes. Lastly, for the LHS, 36, 50, 25, and 39
trials were assigned in phenotypes 1, 2, 3, and 4 respectively,
where 23 participants had all 5 trials classified within the same
phenotype, and 7 participants had trials distributed between
different phenotypes. It is interesting to note the disproportionate
clustering, where many trials were assigned to cluster 2 for the
RHS, but fewer to clusters 1 or 3, as an example. It is important
to note than when interpreting the data, each movement was
analyzed separately, for example, we cannot claim that phenotype
1 for the RHS and phenotype 1 for the LHS are related.

Single Component Reconstruction
The results of the single component reconstructions are in
Figures 5–7 and in Supplementary Material. The purpose

FIGURE 4 | BIC values for k = 1–10 for the DS, RHS, and LHS demonstrating
minimum values at k = 3 for the DS and RHS, and k = 4 for the LHS.
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of the single component reconstructions is to provide a
visual representation of the emergent differences in movement
phenotypes (cluster centroids).

Kinematic Differences Between Clusters
Deep Squat
A main effect of cluster assignment was detected for 4 of the
5 kinematic measures typically used to subjectively evaluate
the DS (Table 4 and Figure 8). The trunk segment angle,
a measure to represent forward lean of the torso, was not
different between the clusters. Post hoc pairwise comparisons
revealed that the femoral angle (Figure 8A), was different
between phenotypes 1 and 2 and phenotypes 1 and 3, but that
phenotypes 2 and 3 were not different. Considering the trunk-
shank angle difference measure (Figure 8B) phenotypes 1 and 2
were different, but phenotype 3 was not different from either 1
or 2. The sagittal plane dowel alignment, was different between
phenotypes 1 and 3, but phenotype 2 was not different from
either 1 or 3 (Figure 8C). Lastly, the knee-ankle separation
ratio, a measure aimed to represent knee varus/valgus, showed
differences between phenotypes 1 and 3 only (Figure 8D).

Right Hurdle Step
A main effect of cluster assignment was detected for all 7
kinematic measures commonly used to score the RHS, implying
these variables soundly represent variance in the movement
of the RHS (Table 5). Post hoc pairwise comparisons revealed
that all three hip-knee-ankle frontal plane alignment variables
were significant between phenotypes 2 and 3, and where the

ankle-hip alignment variable was different between phenotypes
1 and 3 (Figure 9A). Considering measures associated with
lumbar spine control, post hoc pairwise comparisons revealed
differences between phenotypes 2 and 3 in the range of
motion about all three axes (Figure 9B). There were further
differences between phenotypes 1 and 3 for both the lumbar
range of motion associated with a lateral bend and rotation.
Phenotypes 1 and 2 only differed for the range of lumbar
movement represented by the flexion/extension axis. Lastly,
consider the hands/dowel parallel to the string measure, there
were significant difference between phenotypes 1 and 3, and 2
and 3 (Figure 9C).

Left Hurdle Step
A main effect of cluster assignment was detected for 4 of the
7 kinematic measures commonly used to score LHS, including
hip-ankle alignment, lumbar flexion/extension range, lumbar
lateral flexion range, and hands/dowel parallel with the string
measure. No main effects were detected for hip-knee and
knee-ankle alignment difference and lumbar rotation range
(Table 5). Post hoc pairwise comparisons revealed that hip-
ankle alignment measures were different between phenotypes
2 and 4 only (Figure 10A). Further, flexion-extension range
were different between phenotypes 1 and 2 as well as 2 and
4. Considering lumbar movement regarding lateral flexion,
phenotype 4 differed statistically from all other phenotypes
(Figure 10B). Lastly, all phenotypes for the hands/dowel parallel
with the string measure differed statistically except phenotype 4
with 1 and 3 (Figure 10C).

FIGURE 5 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the deep squat movement. Black, movement
phenotype 1; red, movement phenotype 2; blue, movement phenotype 3.
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FIGURE 6 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the right hurdle step movement phenotypes
identified. Black, movement phenotype 1; red, movement phenotype 2; blue, movement phenotype 3.

FIGURE 7 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the left hurdle step movement phenotypes identified.
Black, movement phenotype 1; red, movement phenotype 2; blue, movement phenotype 3; gray, movement phenotype 4.

DISCUSSION

The objective of this study was to identify naturally occurring
whole body movement pattern phenotypes related to the
performance of exemplar movement screening tasks including
the DS, RHS and LHS by using pattern recognition (PCA)
and machine learning techniques (GMM). Further, we aimed
to contrast how kinematic measures commonly used to score

these movements differed between the groups. The statistical
results demonstrate that while all kinematic measures commonly
used to score the RHS demonstrated a main effect, none of
the kinematic measures independently were actually different
between all emergent phenotypes (Figure 9). Instead, data
demonstrate that kinematic measures commonly used score
these screening movements are often different between pairs of
phenotypes, but not necessarily able to independently distinguish
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TABLE 4 | Level of significance (p-value) and effect size (η2= partial eta squared value) results for the kinematic variable representation of the DS scoring criteria.

The thigh is at or below
horizontal

The trunk remains upright and/or The Dowel remains
aligned over feet

The knees remain
aligned with the ankleremains parallel with the tibia

Thigh segment angle Trunk segment angle Trunk shank angle
difference

Hand center – foot
center difference

Knee ankle separation
ratio

Deep squat p = 0.000*
η2 = 0.141

p = 0.140
η2 = 0.026

p = 0.011*
η2 = 0.059

p = 0.000*
η2 = 0.143

p = 0.009*
η2 = 0.063

*Denotes a main effect at the 0.05 level.

FIGURE 8 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the DS.
The mean is represented by the white dotted line and median with the solid white line. (A) The femur is at or below horizontal; (B) the torso remains upright and/or is
parallel with the tibia; (C) the dowel remains aligned over the feet; (D) the knees remain aligned with the feet. *The mean difference is significant at the 0.05 level.
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TABLE 5 | Level of significance (p-value) and effect size (η2 = partial eta squared value) results for the kinematic variable representation of the hurdle step scoring criteria.

The hips, knees, ankle remain aligned There is little to no movement in the lumbar spine Dowel parallel with string

Hip-knee Knee-ankle Hip-ankle Flex/Ext range Lat flex range Rotation range Hands parallel

Right hurdle step p = 0.003* p = 0.026* p = 0.000* p = 0.000* p = 0.000* p = 0.004* p = 0.000*

η2 = 0.077 η2 = 0.048 η2 = 0.120 η2 = 0.139 η2 = 0.127 η2 = 0.074 η2 = 0.258

Left hurdle step p = 0.238 p = 0.418 p = 0.008* p = 0.001* p = 0.000* p = 0.932 p = 0.000*

η2 = 0.028 η2 = 0.019 η2 = 0.078 η2 = 0.112 η2 = 0.225 η2 = 0.003 η2 = 0.284

*Denotes a main effect at the 0.05 level.

across all groups (Figures 8–10). This suggests that, if screening
continues to be performed using visual appraisal of selected
kinematics markers, a hierarchical-based decision tree approach
(i.e., first classify on marker A, then sub-classify within those
groups based on marker B, etc.) is likely to improve the ability
to truly classify and distinguish between groups. Alternatively,
contrary to the common practice of analyzing movements based
on a priori prescribed features, objective data driven analysis
can identify and cluster relevant movement phenotypes while
considering the system as a whole. Using data driven methods
to determine common patterns of movement tasks can reduce
the need to use subjective visual appraisal based on a priori
prescribed features. However, it is also important to note
that while this study has generated insights about emergent
movement phenotypes during the performance of the DS and
hurdle step as exemplar movement screening tasks, the pattern
recognition and machine learning techniques applied in this
study cannot be applied blindly.

Independent evaluation of discrete kinematics features may
not adequately distinguish and separate movement phenotypes.
This is particularly evident when analyzing how the phenotypes
relate back to the FMSTM scoring criteria, as the means
of some scoring criteria were significantly different between
phenotypes and others were not. This demonstrates that
kinematic measures commonly used to score movements likely
shouldn’t be considered independently, and that the interaction
between multiple variables might be more revealing. For example,
the results for the DS demonstrate significant differences between
groups 1 and 2 for two different features (thigh angle and
trunk-shank angle difference) and 1 and 3 for three different
features (thigh angle, dowel alignment measure and knee-ankle
separation ratio). This suggests that the thigh angle or dowel
alignment measure could be used to first extract phenotype
1 DS movements (i.e., exceed an appropriate DS thigh angle
or dowel alignment threshold), and also highlights a potential
redundancy in the DS scoring criteria. However, there were no
significant differences present between phenotypes 2 and 3 in any
of the measures, which suggests that there are other features that
differentiate these groups. It also reveals an important limitation
regarding the use of a priori prescribed kinematic measure, in
that a top-down a priori assignment of variables may not actually
coincide with kinematic outcomes that do indeed differentiate
between groups (Bennett et al., 2017). In this case a sub-ordinate
criterion is necessary to distinguish between the movements that
remain after screening out phenotype 1 movements by using

the DS thigh angle or dowel alignment measure. Highlighting
the strengths of pattern recognition and machine learning, these
techniques can be applied “bottom-up” to probe for other
measures that might better distinguish between DS phenotype
2 and 3. Using our single component reconstructions as a
starting point, the frontal view visual representation of the
DS phenotypes (Figure 5) shows that foot width was different
between phenotypes 1 and 2, and 2 and 3 and has the potential
to be a sub-ordinate measure to distinguish between phenotypes.
While participants are instructed to place their feet approximately
shoulder width apart, some individuals may place their feet wider
due to limitations (e.g., morphological). Although this is not
a factor that the FMS considers, the use of a wider base may
be a result of some functional or behavioral differences that
clinicians can explore.

Interpreting results from the LHS and RHS also reveal
important evidence underscoring limitations in the use of “top-
down” discrete a priori measures to score screening movements
and further reinforcing the utility of pattern recognition and
clustering approaches as “bottom-up” strategies to identify
movement phenotypes. In comparison to the FMSTM based
kinematic measures used to score the RHS, the clustering
revealed that not all features were significant between groups
and may be differentially affected in the synergistic control
of movement features, further reinforcing the potential of a
hierarchical-based approach to screening. For example, the hip-
knee, knee-ankle, and hip-ankle alignments were all statistically
different between phenotypes 2 and 3, indicating redundancy
in the ability of these measures to differentiate, but also in
the ability of any one of these measures to be a useful initial
measure. However, only the hip-ankle alignment was statistically
different between phenotypes 1 and 3, suggesting that this
measure could be useful as a sub-ordinate to further refine
grouping assignments. Similarly, when considering the lumbar
motion related criteria, range of motion about each axis was
different between phenotypes 2 and 3, emphasizing redundancy.
Nevertheless, the results suggest the ability to differentiate
between phenotypes 1 and 2 based on lumbar flexion extension
range, and groups 1 and 3 based on the lumbar lateral flexion
and lumbar rotation ranges. Like the DS, the use of a bottom-
up, data-driven approach has also revealed a factor that might
be important, but that is not currently considered: anterior-
posterior centre of mass (COM) range of motion (Figure 6).
Phenotype 3 (RHS), as an example, elicited a larger range of
motion of the COM in the anterior direction, which could not be
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FIGURE 9 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the RHS.
The mean is represented by the white dotted line and median with the solid white line. (A) Hip, knee, and ankle remain aligned; (B) there is little to no movement in
the lumbar spine; (C) the hands/dowel remains parallel to the string. ∗The mean difference is significant at the 0.05 level.

explained by lumbar angle range of motion, suggesting a possible
necessity as an additional movement assessment consideration.

For the LHS, the hip-ankle alignment was the only feature
that showed differences between groups for the frontal plane hip-
knee-ankle alignment measures. The results demonstrated that
phenotype 4 can be differentiated from the other phenotypes
based on the lateral lumbar flexion range, but would need
subsequent analysis to differentiate further. Whereas, the feature
separating phenotypes 1 and 2 and 2 and 4 were due to lumbar
lateral flexion range, again supporting a hierarchical approach to
screening in the absence of direct data-driven methods. Further,

the dowel/hands parallel to string measure elicited differences for
phenotype 1 from 2 and 3, as well as phenotype 2 from 3 and 4,
thus demonstrating that the kinematic representation of keeping
the dowel parallel to the string of FMSTM scoring criteria is a
useful tool for differentiating differences in the hierarchy for the
LHS. Considering that there were few differences between the
frontal plane hurdling leg alignment, perhaps this is a feature that
does not demonstrate as much variance as the RHS. Moreover, at
this point in the analysis we are not able to explicitly state why the
number of optimal clusters differs between the LHS and RHS, but
speculate that there may be more variability in the LHS compared
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FIGURE 10 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the LHS.
The mean is represented by the white dotted line and median with the solid white line. (A) Hip, knee, and ankle remain aligned; (B) there is little to no movement in
the lumbar spine. (C) The hands/dowel remains parallel to the string. ∗The mean difference is significant at the 0.05 level.

to the RHS possibly due to foot dominance. Unfortunately, we
did not record foot dominance so we cannot further verify this
speculation. Further analysis would be needed to identify the
specific kinematic features that further aid to differentiate in the
hypothesized hierarchical approach.

This study applied PCA and GMM to a dataset of DS, RHS,
and LHS movements as performed by healthy individuals. As
a result, the grouping assignments and underlying kinematic

difference will likely be different among samples, or perhaps even
a larger sample, although the FMSTM has a target population
of healthy, active individuals within the general population
(Bennett et al., 2017), so our sample may be representative.
However, with access to such a larger, representative dataset,
this paper provides evidence to support and inform how motion
capture, pattern recognition and machine learning can advance
movement screening approaches. But, it is also important
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discuss the assumptions and challenges that emerge when
deploying this approach.

One challenge that emerged earlier on in the process of using
PCA to identify principal movements was the determination
of how many principal movements (PCs) to retain. In this
study, PCs that individually explain >5% variance were kept and
retained for analysis (Witte et al., 2010), since this method elicited
the least number of PCs. However, other common strategies
for PC retention include: PCs retained until a trace criterion of
90% of the total variance was retained (Deluzio and Astephen,
2007; Deluzio et al., 2014, p. 322) and PCs retained until a
trace criterion of 95% of the total variance was retained (Deluzio
et al., 2014, p. 322). However, in other applications, such as
optimizing the prediction of a dependent variable, retaining PCs
that individually explain >5% variability may not be sufficient
(Richter et al., 2014). While retaining a greater number of
PCs will include more of the variance within the dataset,
when working with clustering, reducing the dimensionality is
an important consideration, reinforcing our selection of a PC
retention strategy that balance the variance explained with the
number of PCs retained.

We chose a GMM as our clustering approach although other
types of clustering algorithms may be considered. A GMM
was chosen for its advantages of being a distribution-based
model. GMM is a soft clustering method based on how probable
it is that all data points in the cluster belong to the same
distribution. This is contradictory to a centroid-based model
with hard clustering (i.e., k-means clustering), where the notion
of clustering is based on how close each data point is to the
centroid and are assigned to a cluster without considering its
variance. While this distinction may not be critical for this
paper, it has important implications when clustering for the
purpose of movement screening. Considering human variability
(within and between), philosophically, it is unlikely that any
one individual will absolutely cluster the same way every time.
Instead, movements are likely to look more or less like a
representative cluster (mean movement), where the GMM can
provide an estimate of that likelihood. Such likelihood estimates
may inform a hierarchical assessment approach, whereas a mover
could be considered not just on the clustered assignment, but also
on their likelihood weighting with regards to their assignment to
each cluster. This is a concept that requires further contemplation
and investigation.

Selecting the optimal number of clusters is also an important
consideration, particularly when aiming to quickly screen a
wide population of movers, such that they can be appropriately
triaged (i.e., identify movers that require targeted training to
improve). With the distribution, soft clustering-based method,
GMM, the clusters can represent different ellipsoid shapes,
overlap or be relatively close to one another which can skew
results determined by a method such as a silhouette analysis.
Silhouette analysis measures the separability of the clusters
based on how close each point in one cluster is to points
in the neighboring clusters (Beaudette et al., 2019). As an
alternative, the BIC is a criterion for model selection among
a finite set of models partly based on the likelihood function.
The lower the BIC, the better the model to predict using the

data, this model avoids overfitting by penalizing models with
big number of clusters (Bishop, 2006, p. 217). Although this
may be interpreted as a drawback, if we want to be able to
generalize our phenotypes for the purpose of rapid screening
or movement-based triage, it is better to penalize large number
of clusters. However, if the intent was to support a more
personalized diagnoses, an alternate interpretation of the BIC
may be required.

Limitations
Limitations related to the sample size, kinematic trajectories
chosen to represent whole-body motion, kinematic variables
chosen to represent the scoring criteria and decisions required
to apply PCA and GMM likely all have some influence on
the results and interpretation of these data. Specific to sample
size, the sample size for this study was originally intended
for a different research question. However, given that we
did not know how many clusters would emerge, we were
challenged upon determining the a priori sample size. We
hope moving forward this study will assist in determining
a priori sample size. While remaining limitations have been
discussed within the main body of the paper, this method
nevertheless does show that objective whole-body evaluation
can identify phenotypes within a data set. With further
research, this method may prove useful and promising in
eliminating the subjective assessment of movement screens and
improving interrater reliability, or at a minimum, informing
on a hierarchy of distinguishable measures that can be used
to differentiate movements. It is also important to note that
future studies should consider adding their classification code
to enable other researchers to use their methods. At this
point we are not able to differentiate “good” versus “bad”
movers, although our group continues to explore this possibility
(Armstrong et al., 2019).

CONCLUSION

Overall, pattern recognition and machine learning techniques
were able to objectively identify phenotypes within a group
of individuals performing the DS, RHS and LHS. Further,
when comparing kinematic measures commonly used to score
movement between the different phenotype groups, some criteria
were indeed different and others were not. In most cases,
independent kinematic measures were not able to distinguish
between all three/four different emergent phenotypes, and several
measures overlapped in their ability to differentiate between
phenotype groups. In the absence of objective, data-driven
movement assessment, our results suggest that visual-based
screening can likely be improved by reducing the number of
measures to consider by eliminating independent measures that
provide redundant information (i.e., measures that are likely
coordinated in their control), and by considering measures using
a hierarchical approach (i.e., screen based on measure A, then
screen emergent groups based on sub-ordinate measures as
necessary). Objective data analysis using whole body movement
patterns gives insight into features of the DS and hurdle step that
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may not be elicited through a priori feature selection analysis.
Therefore, the results from this study provide important findings
to the field that open up a number of future study directions,
such as identifying which movement strategy could elicit different
injury risk factors to advance injury prediction. Moving toward
such objective data driven analysis may further enhance the
ability to apply movement screening for the purpose of injury risk
identification and mitigation.
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