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Abstract

Background: A biochemical mechanism with mass action kinetics can be represented as a directed bipartite graph
(bipartite digraph), and modeled by a system of differential equations. If the differential equations (DE) model can give
rise to some instability such as multistability or Turing instability, then the bipartite digraph contains a structure
referred to as a critical fragment. In some cases the existence of a critical fragment indicates that the DE model can
display oscillations for some parameter values. We have implemented a graph-theoretic method that identifies the
critical fragments of the bipartite digraph of a biochemical mechanism.

Results: GraTeLPy lists all critical fragments of the bipartite digraph of a given biochemical mechanism, thus enabling
a preliminary analysis on the potential of a biochemical mechanism for some instability based on its topological
structure. The correctness of the implementation is supported by multiple examples. The code is implemented in
Python, relies on open software, and is available under the GNU General Public License.

Conclusions: GraTeLPy can be used by researchers to test large biochemical mechanisms with mass action kinetics
for their capacity for multistability, oscillations and Turing instability.

Keywords: Biochemical mechanism, Bipartite digraph, Multistability, Turing instability, Oscillations, Parameter-free
model discrimination

Background
Biochemical mechanisms are often modeled by differen-
tial equations (DE) systems. Instabilities, such as multi-
stability, oscillations, or Turing instability, are ubiquitous
in DE models of biochemical mechanisms. Methods from
bifurcation analysis are usually applied in order to ana-
lyze DE models for instabilities [1]. Bifurcation analysis
methods are easily applied when the DE model has one or
two concentration species (phase plane analysis) or has a
relatively small number of parameters (numerical bifurca-
tion analysis). However, it is both difficult and expensive
to apply bifurcation methods to analyze large DE models
with many variables for instabilities.

On the other hand a biochemical mechanism can
be represented as a directed bipartite graph (bipartite
digraph), which is a graph with two different sets of nodes
representing species and reactions, and directed edges
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connecting a species and a reaction node. The existence
of structures referred to as critical fragments in the bipar-
tite digraph of a biochemical mechanism is necessary for
the existence of multistability or Turing instability in the
DE model [2-4]. Thus biochemical mechanisms that do
not have the potential for multistability or Turing insta-
bility can be ruled out early in the modeling process.
The existence of a critical fragment that does not contain
all species nodes can indicate that oscillations exist for
some parameter values for the DE model [3]. Thus graph-
theoretic methods can be used to determine the poten-
tial of various biochemical mechanisms to exhibit some
desired behavior, including multistability related to cell
decision [5,6], oscillations related to circadian rhythms
[7], or Turing instability related to pattern formation [8].

Graph-theoretic methods are applicable to mechanisms
with any number of species and reactions, which enables
the screening of large biochemical mechanisms for poten-
tial instabilities. However, application of graph-theoretic
methods by hand becomes challenging for large mech-
anisms, making a computational implementation highly
desirable.
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The graph-theoretic method implemented by GraTeLPy
identifies all critical fragments in the bipartite digraph
of a biochemical mechanism that can give rise to some
instability (multistability, oscillations and Turing instabil-
ity) [3,4]. GraTelPy is implemented in Python and can run
in parallel on computer clusters which increases the size
of testable biochemical mechanisms.

Other software packages implement theoretical and
computational methods for studying chemical reaction
networks for multistability. Using the deficiency theory
developed by M. Feinberg and collaborators [9], it can
be shown that a chemical network model does not admit
multistability for any choice of parameter values. The
CRNT toolbox [10] developed originally by M. Feinberg
implements the Deficiency One algorithm [11], that can
be used to detect if a given network has the capacity for
multistability [12]. If a given network admits multiple pos-
itive equilibria, in many cases the CRNT toolbox returns
rate constant values such that the corresponding model
system has at least two positive equilibria. In recent years,
the CRNT toolbox has been extended to implement an
algorithm for the mass-action injectivity test. A special
case of this test is the Jacobian criterion, which provides a
sufficient condition for excluding the existence of multiple
positive equilibria and is based on the theory developed in
[2,13,14].

Related software packages include BioNetX [15] and
CoNtRol [16]. BioNetX is based on the work of M.
Banaji and G. Craciun [17,18] and is created by C.
Pantea. BioNetX is used to analyze uni-molecular and
bi-molecular reaction networks for the existence of
multiple positive equilibria in [19,20]. CoNtRol [16]
is a web-based software package that employs matrix
and graph-theoretic methods based on the DSR graph
[17,18,21]. In particular CoNtRol provides information
about the capacity of a given chemical network for multi-
stability based on the DSR graph and on some additional
tests. In addition CoNtRol calculates the deficiency of
a network and checks if a network is weakly reversible.
BioNetX and CoNtRol are available to download for free,
they are open-source and are conveniently web-based.

We describe in Section Mathematical background the
DE model and the bipartite digraph of a biochemical
mechanism, as well as the instability criteria. In
Section Implementation we describe the algorithm
for finding critical fragments. In Section Results and
discussion we present several examples along with
some concluding remarks. A guide for downloading
and installing GraTeLPy for Mac, Windows and Linux
operating systems is available in the Additional file 1.

Mathematical background
Here we introduce the differential equations model and
the bipartite digraph representation of a biochemical

mechanism. In this section we also briefly describe the
instability criteria for multistability, oscillations and Tur-
ing instability. More details on the instability criteria are
available in [3,4].

Mathematical model
A biochemical mechanism withn species Ai, i = 1, . . . , n,
and m elementary reactions Bj can be written as

Bj :
n∑

i=1
αjiAi

kj−→
n∑

i=1
βjiAi, j = 1, . . . , m, (1)

where kj > 0, j = 1, . . . , m are the rate constants. The con-
stants αji ≥ 0 and βji ≥ 0 in (1) are small integers called
stoichiometric coefficients that account for the number of
molecules of species Ai participating in the jth elementary
reaction. An example of a biochemical mechanism, the
reversible substrate inhibition mechanism, is given below:

B1 : A1
k1−→ ∅,

B2 : ∅ k2−→ A1,
B3 : A1 + A2

k3−→ A3,
B4 : A3

k4−→ A2,
B5 : A1 + A3

k5−→ A4,
B6 : A4

k6−→ A1 + A3,

(2)

where the first two reactions represent an inflow and
outflow reaction, respectively.

We will assume that every species Ak in (1) is consumed
and produced in at least one true reaction, i.e, a reaction
which is different from an outflow reaction Ak → ∅ or
an inflow reaction ∅ → Ak . However, we do not specif-
ically require that all species participate in an inflow and
an outflow reaction.

We further assume mass action kinetics for the mecha-
nism (1) with rate functions

wj = kju
αj1
1 . . . uαjn

n , j = 1, . . . , m, (3)

where uk(t) is the concentration at time t of a species Ak ,
k = 1, . . . , n.

The ordinary differential equations (ODE) model of a
mass-action biochemical mechanism (1) can be written in
vector form as

u̇(t) = Sw(u), (4)

where u(t) = (u1(t), . . . , un(t))T is the concentration vec-
tor of the chemical species of (1), Sji = βji − αji are
the entries of the stoichiometric matrix S and w(u) =
(w1(u), . . . , wm(u))T is the vector of rate functions (3).
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Throughout the paper it will be assumed that the ODE
system (4) has a positive equilibrium.

The model equations of the reversible substrate mecha-
nism (2) are given below

u̇1 = −k1u1 + k2 − k3u1u2 − k5u1u3 + k6u4,
u̇2 = −k3u1u2 + k4u3,
u̇3 = k3u1u2 − k4u3 − k5u1u3 + k6u4,
u̇4 = k5u1u3 − k6u4.

(5)

The rank of the stoichiometric matrix S of (5) equals 3
since there is one conservation relationship u2 +u3 +u4 =
c0.

Since

u̇i(t) = fi(u) =
m∑

j=1
Sjiwj(u)

where Sji are the stoichiometric matrix entries and wj(u)

are the rate functions (3), the Jacobian matrix J(u, w) has
entries that can be written as

Jik(u, w) = ∂fi
∂uk

=
m∑

j=1
Sjiαjk

wj

uk
. (6)

Note that the concentrations uk , k = 1, . . . , n and the
rate functions wj(u), j = 1, . . . , m (both considered eval-
uated at a positive equilibrium) are used as parameters in
(6). The rank of the Jacobian (6) equals the rank of the
stoichiometric matrix S [3].

The Jacobian matrix of the model (5) parametrized in
(u, w) has rank 3 and is given below

J(u, w) =

⎛
⎜⎜⎜⎝

−w1+w3+w5
u1

−w3
u2

−w5
u3

w6
u4−w3

u1
−w3

u2
w4
u3

0
w3−w5

u1
w3
u2

−w3+w4
u3

−w6
u4w5

u1
0 w5

u3
−w6

u4

⎞
⎟⎟⎟⎠ . (7)

The characteristic polynomial of J(u, w) is

P(λ) = det( J(u, w) − λI) =
n∑

k=0
ak(u, w)λn−k , (8)

where I is the identity matrix. Note that the coefficients
ai = ai(u, w), i = 1, . . . , n of (8) are also functions of
(u, w). For example, the last non-zero coefficient of the
characteristic polynomial of the Jacobian (7) is

a3(u, w) = w4w6(w1 + w3)

u1u3u4
+ w1w3w6

u1u2u4
+ w3w5(w1 − w4)

u1u2u3
.

(9)

The bipartite digraph of a biochemical mechanism
For the convenience of the reader, in this section we
present definitions regarding the bipartite digraph of a
biochemical mechanism (1) [3,4,22]. To illustrate the def-
initions in this section we will continue to use as an
example the reversible substrate mechanism (2).

A directed bipartite graph (bipartite digraph) has a node
set that consists of two disjoint subsets, V1 and V2, and
each of its directed edges (arcs) has one end in V1 and the
other in V2 [23].

The bipartite digraph G of a biochemical reaction
network (1) is defined as follows. The nodes are sepa-
rated into two sets, one for the chemical species V1 =
{A1, A2, . . . , An} and one for the elementary reactions
V2 = {B1, B2, . . . , Bm}. We draw an arc from Ak to Bj if
and only if species Ak is a reactant in reaction j, i.e., if
the stoichiometric coefficient αjk > 0 in (1). Similarly, we
draw an arc from Bj to Ai if and only if Ai is a product
in reaction j, i.e., if the stoichiometric coefficient βji > 0
in (1). Therefore the set of arcs E(G) consists of arcs such
as (Ak , Bj) and (Bj, Ai). Hence the bipartite digraph can be
defined as G = {V , E(G)} where V = V1 ∪ V2 is the set of
nodes and E(G) is the set of arcs. If an arc is not weighted
explicitly, we assume that its weight equals 1. The cor-
responding bipartite digraph of the reversible substrate
inhibition mechanism (2) is shown in Figure 1.

The element [Ak , Bj] is an edge if αjk > 0, i.e., if species
Ak is a reactant in reaction j. The weight of an edge E =
[Ak , Bj] is defined as

KE = −α2
jk . (10)

A3

B5
B4

A2B3A1

B1

A4

B6

B2

Figure 1 Bipartite digraph of the reversible substrate inhibition
mechanism. Bipartite digraph of the reversible reaction mechanism
(2). Circles denote species nodes and squares denote reaction nodes
of the mechanism.
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For example, the edge E =[A1, B3] in Figure 1 has weight
KE = −1.

If αjkβji > 0, then the arcs (Ak , Bj) and (Bj, Ai) form
a positive path [Ak , Bj, Ai] that corresponds to the pro-
duction of Ai from Ak in a reaction j. The weight of the
positive path [Ak , Bj, Ai] is defined as αjkβji. For example,
the positive path [A1, B3, A3] in Figure 1 has weight 1.

If αjkαji > 0, then the arcs (Ak , Bj) and (Ai, Bj) form a
negative path [Ak , Bj, Ai] that corresponds to Ak and Ai
interacting as reactants in reaction j. The weight of the
negative path [Ak , Bj, Ai] is defined as −αjkαji. Note that
the negative paths [Ak , Bj, Ai] and [Ai, Bj, Ak] are consid-
ered to be different since they start at a different species
node. For example, both [A1, B3, A2] and [A2, B3, A1] in
Figure 1 are negative paths with weight −1. We note that
the direction of the arcs is followed in the positive paths
but not in the negative paths.

A cycle C of G is a sequence of distinct paths with
the last species node of each path being the same as the
first species node of the next path C = {(Ai1 , Bj1 , Ai2),
(Ai2 , Bj2 , Ai3),. . ., (Aik−1 , Bjk−1 , Aik ), (Aik , Bjk , Ai1)}. A cycle
will be denoted by C = (Ai1 ,Ai2 ,...,Aik

Bj1 ,Bj2 ,...,Bjk

)
, where the number of

species nodes defines its order. The set of species nodes in
a cycle is distinct, but there may be a repetition among the
reaction nodes. This is because negative paths containing
the same nodes are considered different depending on the
starting species node. For example, C = (A1,A2

B3,B3

)
in Figure 1

is a cycle formed by the two negative paths [A1, B3, A2] and
[A2, B3, A1].

A cycle is positive if it contains an even number of
negative paths and negative if it contains an odd num-
ber of negative paths. The sign of a cycle C can also be
determined by the cycle weight which is a product of all
corresponding weights of negative and positive paths of C

KC =
∏

[Ak ,Bj ,Ai]∈C

(−αjkαji)
∏

[Ak ,Bj ,Ai]∈C
αjkβji. (11)

For example, C = (A1,A3
B3,B5

)
(see Figure 1) is a negative cycle

of order 2 with weight KC = −1. The cycle C = (A2,A3
B3,B4

)
(see Figure 1) is a positive cycle of order 2 with weight
KC = 1.

A subgraph g = {L1, L2, . . . , Ls} of G consists of edges
or cycles Li, i = 1, . . . , s, where each species is the begin-
ning of only one edge, or one path participating in a cycle.
In other words, the edges and cycles in a subgraph are
species mutually disjoint. The number of species nodes in
a subgraph is defined as its order. The subgraph weight is
defined using the product of the cycle weights (11) and the
edges weights (10) of the cycles and edges in g

Kg = (−1)c
∏
C∈g

KC
∏
E∈g

(−KE), (12)

where c is the number of cycles in g. For example, the sub-
graph g = {[A1, B5] , C2 = (A2,A3

B3,B4

)} with weight Kg = −1 is
shown in Figure 2 (bottom right).

Since more than one path can exist between species
nodes via different reaction nodes in a bipartite digraph,
the number of subgraphs through the same node sets may
be greater than one. The set of all subgraphs g of order k
with the same species nodes V̄1 = {Ai1 , . . . Aik } and reac-
tion nodes V̄2 = {Bj1 , . . . Bjk } sets is called a fragment
of order k and is denoted by Sk

(i1,...,ik
j1,...,jk

)
. For a fragment

Sk
(i1,...,ik

j1,...,jk

)
we define the number

KSk =
∑
g∈Sk

Kg (13)

as the fragment weight. If KSk < 0, then Sk is a critical
fragment.

For example, the fragment S3
(1,2,3

5,3,4
)

is shown in Figure 2
(top left) together with its three subgraphs g1 = C3 =(A1,A3,A2

B5,B4,B3

)
, g2 = {[A1, B5] , C2 = (A2,A3

B3,B4

)} and g3 =
{[A1, B5] , [A2, B3] , [A3, B4] }. Each of the first two sub-
graphs g1 and g2 contains a positive cycle, and thus
S3

(1,2,3
5,3,4

)
is a critical fragment since

KS3 =
∑
g∈S3

Kg = Kg1+Kg2+Kg3 = −1−1+1 = −1 < 0.

In [3,22] it is shown that the coefficients of the charac-
teristic polynomial (8) have the following graph-theoretic
representation

ak(u, w) =
∑

Sk(
i1,...,ik
j1,...,jk

)

KSk

wj1 . . . wjk
ui1 . . . uik

, k = 1, . . . , n.

(14)

Note that similar terms in ak have been combined using
summation over the subgraphs of a fragment (13) and (14)
is in a simplified form. It follows by (14) that the corre-
spondence between a fragment Sk

(i1,...,ik
j1,...,jk

)
and a non-zero

term in ak(u, w) is one-to-one. For example, the nega-
tive coefficient in a3(u, w) given in (9) corresponds to the
critical fragment S3

(1,2,3
5,3,4

)
shown in Figure 2 (top left).

Critical fragments corresponding uniquely to negative
terms in (14) are important for the existence of instabili-
ties as it is explained next.

Instability criteria for the Jacobian and the bipartite
digraph
Here we summarize classical results from bifurcation
analysis [1] and more recent results relating graph-
theoretic methods to instabilities [3,4,22].

Multistability often arises from a saddle-node bifurca-
tion in an ordinary differential equations (ODE) model,
[1,24]. If a saddle-node bifurcation occurs, then a real
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Figure 2 Critical fragment and subgraphs of the reversible substrate inhibition mechanism. Critical fragment S3
(1,2,3

5,3,4

)
and constituent

subgraphs of the reversible substrate inhibition mechanism computed by GraTeLPy. (top left) Critical fragment S3 = (1,2,3
5,3,4

)
. (top right) Subgraph

g3 = {[ A1, B5] , [ A2, B3] , [ A3, B4] }. (bottom left) Subgraph g1 = C3 = (A1,A3,A2
B5,B4,B3

)
. (bottom right) Subgraph g2 = {[ A1, B5] , C2 = (A2,A3

B3,B4

)}.

eigenvalue λ(u, w) of J(u, w) changes sign as the param-
eters (u, w) change values. Hence, a necessary condition
for multistability arising from a saddle-node bifurcation is
an(u, w) = det(−J(u, w)) = 0 for some parameter values
of (u, w) [1].

Often ODE models of biochemical mechanisms (4) have
mass conservation relations reducing the rank r of the sto-
ichiometric matrix S and the Jacobian J(u, w) to r < n,
which means that the last non-zero coefficient in (8) is
ar(u, w). Thus if a saddle-node bifurcation exists, then
ar(u, w) = 0 for some values of (u, w) [3]. Therefore a crit-
ical fragment Sr

(i1,...,ir
j1,...,jr

)
of order r, corresponding uniquely

to a negative term in (14) for k = r, is required for a
saddle-node bifurcation, and thus for multistability [3,22].
Thus the potential of a biochemical mechanism (1) for
multistability depends on the structure of its bipartite
digraph.

Oscillations in ODE models of biochemical mechanisms
(1) often arise from Hopf bifurcation. It is shown in [3],
that if a coefficient ak(u, w) ≥ 0, k ∈ {1, . . . , n − 1} is close
to zero, then it is possible to choose parameter values for
(u, w) such that oscillations arising from Hopf bifurcation
occur.

The existence of a critical fragment Sk
(i1,...,ik

j1,...,jk

)
of order

k ∈ {1, . . . , n−1} makes it possible to minimize ak(u, w) ≥
0, k < n for some parameter values of (u, w) by increasing

the magnitude of the corresponding negative term in
ak(u, w). If there are mass conservation relations reduc-
ing the rank of the Jacobian matrix to r < n, a critical
fragment Sk

(i1,...,ik
j1,...,jk

)
of order k < r is required to detect

possible oscillations in an ODE model (4) of a biochem-
ical mechanism (1). Thus, the existence of oscillations in
the ODE model of a biochemical mechanism (1) can also
be determined by the structure of the bipartite digraph.

Patterns in a corresponding reaction–diffusion model
to (4) usually arise as a result of Turing instability. Turing
instability arises when a spatially homogeneous equilib-
rium is asymptotically stable in the absence of diffusion
and becomes unstable when diffusion is added to the
model [25]. For the existence of Turing instability, we
study the matrix J(u, w)−μD, where J(u, w) is the Jacobian
matrix (6), D is a diagonal matrix with positive diffusion
coefficients di > 0, i = 1, . . . , n on the diagonal and μ > 0
is a parameter (μ represents an eigenvalue of the negative
Laplacian) [25]. Turing instability is associated with a real
eigenvalue of the matrix J(u, w)−μD passing through zero
from left to right as parameter values are varied. In [4,22]
it is shown that a necessary condition for Turing insta-
bility is the existence of a critical fragment Sk

(i1,...,ik
j1,...jk

)
of

order k < n. Thus, the potential of a biochemical mecha-
nism to display Turing instability can be inferred from the
structure of its bipartite digraph.
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Implementation
Recall that the existence of a critical fragment Sr

(i1,...,ir
j1,...,jr

)
in

the bipartite digraph of a biochemical mechanism, where
r is the rank of the stoichiometric matrix S, can induce
multistability. Similarly a critical fragment Sk

(i1,...,ik
j1,...,jk

)
of

order k < n can induce Turing instability or even oscilla-
tions. On the other hand if no critical fragments of order
r are found, then the existence of multistability can be
excluded for any values of the parameters. Similarly if no
critical fragments of order k < n are found, then the exis-
tence of Turing instability can also be excluded for any
values of the parameters.

GraTeLPy enumerates all critical fragments of user-
defined order k for a given biochemical mechanism, thus
providing the user with information on the potential of a
biochemical mechanism for multistability, oscillations or
Turing instability.

We present in Figure 3 a flowchart that describes
schematically the algorithm implemented by GraTeLPy.

First a biochemical mechanism is read from an user-
provided input text file and its bipartite digraph is gen-
erated. Then all fragments Sk

(i1,...,ik
j1,...,jk

)
of an user-defined

order k are enumerated and placed in a computational
queue. Each fragment from the queue will be further pro-
cessed in order to compute its weight (top diamond nodes,
Figure 3).

For each fragment Sk
(i1,...,ik

j1,...,jk

)
in the queue, a linear

sequence of operations is carried out (central rectangu-
lar nodes, Figure 3). First all subgraphs g of a fragment
Sk

(i1,...,ik
j1,...,jk

)
are enumerated, and the weight Kg of each sub-

graph g is computed. Then the weights of all subgraphs g
contained in Sk

(i1,...,ik
j1,...,jk

)
are added to compute the weight

KSk of the given fragment. At this point it is decided based
on the sign of the weight KSk , if the fragment Sk

(i1,...,ik
j1,...,jk

)
is

critical, i.e., KSk < 0 is satisfied.
Once all of the fragments from the queue have been

processed, an output based on the potential of the
biochemical mechanism for some desired instability is

Figure 3 Flowchart that summarizes the steps taken by GraTeLPy to find all critical fragments of a given order. The division of tasks
between a single server and one or more clients is highlighted. (top diamonds) The fragment server reads in the user-specified mechanism file and
generates the bipartite digraph. The server generates all fragments of an user-defined order k and places them in a queue. (center rectangles) One
or more client scripts fetch fragments off the queue and process them independently. For each fragment Sk , a client generates all subgraphs and
computes the weight of each subgraph. The subgraph weights are then added to compute the weight of the corresponding fragment. The client
passes the computed data back to the server and fetches another fragment off the queue if the queue is not yet exhausted. (bottom diamonds)
After preparing the fragment queue, the server waits for the results sent by the clients. Upon receipt of client-computed results for a fragment, the
server stores these results if the fragment is found to have non-zero weight. Once the queue is exhausted, the server informs the user about the
number of critical fragments discovered and generates other informative output.
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created (bottom diamond nodes, Figure 3). The informa-
tion in the output includes the number of critical frag-
ments of an user-defined order found by GraTeLPy. Based
on the number of critical fragments found, GraTeLPy
states if a biochemical mechanism meets the neces-
sary condition for multistability or Turing instability,
and if the mechanism can exhibit oscillations for some
parameter values. In addition a list of all critical frag-
ments of a given order detected by GraTeLPy can be
provided.

Processing the queue of the enumerated fragments (cen-
tral rectangular nodes, Figure 3) is inherently parallel as
each fragment may be handled independently of all other
fragments. To use this parallelism to our advantage, two
scripts are created for GraTeLPy that implement a server
role and a client role, respectively.

The server script takes care of actions in the top and
bottom diamond nodes in Figure 3. The server creates
the bipartite digraph, enumerates all fragments and places
them in a queue (top diamond nodes). At the end the
server collects all computed data from the client processes
before displaying them for the user (bottom diamond
nodes).

The client script deals with actions in the central rectan-
gular nodes in Figure 3. The client fetches a fragment from
the queue presented by the server, generates all subgraphs
of the fragment, computes the weights of the subgraphs,
computes the weight of the fragment, and reports all com-
puted results back to the server. If the fragment queue
has not been exhausted, then the client fetches another
fragment and repeats these steps.

This server-client architecture allows the user to run
one or multiple instances of the client script to analyze
several fragments of a large mechanism in parallel. We
discuss the technical details of the parallelization in more
detail in Implementation challenges below.

In the following subsections we describe in detail the
implementation of both fragment and subgraph enu-
meration as these parts presented considerable technical
challenges during development.

Fragment enumeration
It follows by the definition of a fragment given in
Section The bipartite digraph of a biochemical mecha-
nism that fragments are identified by the species and reac-
tion indices of their subgraphs. A fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
of

order k contains k unique species indexed by {i1, . . . , ik},
and k possibly repeated reactions indexed by {j1, . . . , jk}.

Suppose that a given biochemical mechanism has N
species and R reactions. Using a combinatorial approach,
we can generate all fragments of order k by pairing the

(N
k
)

unique combinations of species with Rk combinations of
reaction nodes. This approach generates

(N
k
) · Rk possible

fragments that need to be filtered. This is because many
of the combinatorially generated fragments do not exist in
the bipartite digraph of a given biochemical mechanism.

To save computational time and cost we use a differ-
ent approach. We note that each fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
contains one subgraph that consists of edges [Ais , Bjs ],
s = 1, . . . , k. Let us denote by |Ei| (i = 1, . . . , ni) the
number of edges that a species Ai in a biochemical mech-
anism induces, or, is the starting node of. If we assume
that each species Ai is on average the starting node of
|E| = Avg(Ei) edges, then this approach generates approx-
imately

(N
k
) · |E|k fragments. Empirically, we observe that

|E| is usually considerably less than some common values
for the number of reactions R. Hence this latter approach
generates fewer fragments than the former combinatorial
approach. In fact, since fragments correspond uniquely
to the subgraphs consisting of edges, using this method
we generate only the fragments that are present in the
bipartite digraph.

By using the method of one-to-one correspondence
between fragments and subgraphs consisting of edges, we
reduce the number of fragments generated by the com-
binatorial approach by multiple orders of magnitude. A
reduction in the number of the generated fragments trans-
lates directly to a reduction in computational cost. Hence
the latter approach for fragment generation is an impor-
tant development in the implementation of GraTeLPy that
allows for analyzing larger biochemical mechanisms. To
highlight this reduction in computational cost we plot the
number of fragments (of varying order) generated with
both methods for the double-layer mitogen-activated pro-
tein kinase (MAPK) mechanism in Figure 4. The double-
layer MAPK mechanism is discussed in more detail in the
last example in Section Results and discussion.

Figure 4 Fragment enumeration for double-layer MAPK
mechanism. Number of fragments of different orders generated for
the double-layer MAPK network (i) combinatorially (gray) and (ii)
generated from the unique correspondence between fragments and
edges-only subgraphs (black).
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Subgraph enumeration
Given a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
we generate all edges

[Ais , Bjs ], positive paths [Ais , Bjs , Ail ] and negative paths
[Ais , Bjs , Ail ], where l, s = 1, . . . , k, that are induced by the
species and reactions of the fragment. We will refer col-
lectively to edges, and positive and negative paths of a
subgraph as subgraph components.

The subgraph components of a fragment Sk
(i1,i2,...,ik

j1,j2,...,jk

)
are

stored in a lookup table that lists for each species Ais
and corresponding reaction Bjs all subgraph components
induced by the pair (Ais , Bjs). The subgraph components
of a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
are generated as follows:

(i) For a fragment Sk
(i1,i2,...,ik

j1,j2,...,jk

)
each edge [Ais , Bjs ]

(s = 1, . . . , k) is identified and stored in the lookup
table.

(ii) For each edge [Ais , Bjs ] in the lookup table, arcs
starting at Bjs , such as (Bjs , Ail ) (l = 1, . . . , k) are
identified. This way all positive paths induced by
(Ais , Bjs) are generated and added to the lookup table
as part of the record for species Ais .

(iii) Similarly to (ii), for each edge [Ais , Bjs ] in the lookup
table, arcs ending at Bjs , such as (Ail , Bjs) are
identified. This way all negative paths induced by
(Ais , Bjs) are generated and added to the lookup table
as part of the record for species Ais .

To gain some intuition on how subgraphs can be
generated, we first describe a simple combinatorial
approach before we introduce the method implemented
by GraTeLPy. Suppose that for a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
there are {Li1 , Li2 , . . . , Lik } subgraph components induced
by each species {Ai1 , . . . , Aik }. We can generate combina-
torially a subgraph g of Sk

(i1,i2,...,ik
j1,j2,...,jk

)
by selecting at random

one subgraph component per species since each species
must be the starting node of exactly one component [3].
Using this approach we can generate combinatorially all
possible combinations of subgraph components |Li1 | ·
|Li2 | · · · |Lik |, that represent all possible subgraph candi-
dates of a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
. For a fragment with |L| =

Avg(Li) subgraph components per species on average, this
method generates |L|k possible subgraphs.

Even though this method guarantees that each species
is the starting node of exactly one subgraph component,
there may be combinations of paths that do not form
cycles as defined in Sec. Mathematical background. This is
because the end species node of a path has to be the start-
ing species node of another path in a cycle [3]. If we use
the combinatorial method for generating subgraphs, then
all candidate subgraphs that do not satisfy the definition of
a subgraph given in Sec. Mathematical background need
to be removed which would increase the computational
cost.

In the next two subsections we introduce the path graph
and the cycle graph that will allow us to generate only
the subgraphs that belong to a given fragment. The imple-
mentation of the algorithms associated with the path
graph and the cycle graph by GraTeLPy will allow us to
further reduce the computational cost.

Cycle detection: the path graph
We can avoid generating invalid subgraphs if paths are not
joined combinatorially, but rather only paths that form
cycles are joined. Recall that a cycle is a sequence of
paths where the end species node of each path is the
starting species node of exactly one other path in the
sequence.

Next, we introduce expanded paths, where a negative
path [Ai, Bm, Aj] is converted into two expanded paths
[Ai, Bm, Aj] and [Aj, Bm, Ai] that are positive. This expan-
sion is necessary as negative paths can be traversed in both
directions as explained in Section The bipartite digraph
of a biochemical mechanism. To enumerate all cycles of
a given fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, we construct the directed

graph (digraph) �. The nodes of � correspond uniquely
to the expanded negative paths and the positive paths
of a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
. We connect the nodes of the

digraph � representing paths whose end nodes and start-
ing nodes are the same. For example, there is a directed
edge in � that starts at a node representing [Ai1 , Bj1 , Ai2 ]
and ends at a node representing [Ai2 , Bj2 , Ai3 ]. Self-loops
in � from a node back to itself are also permitted and they
correspond to paths of the form [Ai1 , Bj1 , Ai1 ].

To summarize, we generate a digraph � with the follow-
ing properties:

• The nodes �i of � are the expanded negative paths
and the positive paths of a given fragment
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
.

• A directed edge (�i, �j) exists if and only if the end
species node of the path corresponding to �i is the
starting species node of the path corresponding to �j.
Self-loops (�i, �i) are permitted and correspond to
positive paths of the form [Ai, Bj, Ai].

We refer to the digraph � as the path graph. For a frag-
ment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
with a total of P paths that include

all expanded negative paths and all positive paths of
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, the generation of the path graph � has time

complexity O
(
P(P − 1)

)
.

To detect the cycles of the path graph �, and ultimately
the cycles of a given fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, an implemen-

tation of Johnson’s algorithm [26] provided by NetworkX
[27] is used by GraTeLPy. For a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
with

a total number of P expanded negative paths and pos-
itive paths (corresponding uniquely to the nodes of �),
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PE sequential relations between these paths (correspond-
ing uniquely to the directed edges of �), and PC cyclic
sequential relations (corresponding uniquely to the cycles
of �), the enumeration of all PC cycles requires O

(
(P +

PE)(PC + 1)
)

units of time [26].
Next we illustrate the construction and usage of the path

graph � described above. The path graph � for the crit-
ical fragment S3

(1,2,3
5,3,4

)
(see Figure 2) is shown in Figure 5,

together with the cycles c1 and c2 produced by Johnson’s
algorithm.

Some of the cycles of � enumerated by NetworkX corre-
spond to closed paths with revisited nodes in the bipartite
digraph G, and are therefore not cycles of G. This is the
case because Johnson’s algorithm finds all cycles of all
lengths of the path graph �. In our current implemen-
tation, we remove cycles of � that correspond to closed
paths with revisited nodes of the bipartite digraph G.
However, further optimization of Johnson’s algorithm is
likely possible, so that only cycles that exist in the bipartite
digraph G are generated in the first place.

Cycle combinations: the cycle graph
Suppose that PC valid cycles of a given fragment
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
have been found using the algorithm from the

previous subsection. Possible candidates for subgraphs of
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
can be constructed by creating all possible

combinations of cycles. In total, there are
∑PC

k=1
(PC

k
)

pos-
sible ways to combine PC cycles into combinations of k
cycles with no repeating cycles. Then, edges may have
to be added to the combinations of cycles in order to
construct the subgraphs of a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
.

Generally, not all combinations of cycles or edges form
subgraphs since such combinations may not contain every
species of a fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
exactly once. Suppose

that a given set of cycles has mutually disjoint species
sets, but the orders of the cycles sum to less than k. In

Figure 5 Path graph for the critical fragment of the reversible
substrate inhibition mechanism. The path graph � and the
detected cycles, that do not have repeated species as starting nodes
of paths, of the critical fragment S3 = (1,2,3

5,3,4

)
shown in Figure 2. Only

two cycles c1 and c2 that are reported previously in [3] are found.

order to form a subgraph of a fragment Sk
(i1,i2,...,ik

j1,j2,...,jk

)
we

need to amend such a cycle combination with a set of
edges whose species nodes are in Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, but not in

any of the cycles. If on average a species Ai is the starting
node of E edges and if on average we have to add μ edges
to a cycle combination, then we generate combinatorially
Eμ · ∑PC

k=1
(PC

k
)

possible subgraphs.
Many of the combinatorially generated cycle and edges

combinations will have repeated species nodes, thus ren-
dering such a combination of edges or cycles invalid as
a subgraph. Hence we need to verify which of the gen-
erated combinations of cycles or edges are subgraphs of
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
. If validating a subgraph requires O

(
1
)

units
of time then, on average, validating all possible candidates
for subgraphs has time complexity O

(
Eμ · ∑PC

k=1
(PC

k
)) =

O
(
PC !

)
. In reality, validating a combination of cycles or

edges as a subgraph has greater time complexity than
O

(
1
)
. Therefore, the computational cost will be greatly

reduced if we can generate only subgraphs that require no
further validation steps.

We use a similar approach to the one for finding the
cycles of a given fragment. We will reduce the problem of
generating cycle or edge combinations forming subgraphs
to a problem that can be solved with available algorithms
from the literature. To this end we generate an undirected
graph � whose nodes correspond uniquely to the cycles of
a given fragment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, that are found using the path

graph �. Drawing an edge between two nodes (represent-
ing cycles of Sk

(i1,i2,...,ik
j1,j2,...,jk

)
) means that these two cycles do

not share species nodes and can be combined as a part
of a subgraph. Next, we formally define the undirected
graph �

• A node �i of � represents a cycle of a given fragment
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
.

• An edge (�i, �j) exists if and only if the set of species
nodes of the cycle represented by �i and the set of
species nodes of the cycle represented by �j are
disjoint.

We refer to the undirected graph � defined above as a
cycle graph.

If a given set of cycles does not contain a number of
species equal to the order of the subgraph constructed,
then species-disjoint edges need to be added. To this end
the problem of generating a subgraph of a given frag-
ment Sk

(i1,i2,...,ik
j1,j2,...,jk

)
can be reduced to finding all cliques in

�. Recall that a clique is a set of nodes of an undirected
graph such that every node is connected to every other
node from the set [23]. To find all subgraphs of a fragment
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
, its corresponding undirected graph � should

be searched for all cliques. This is a standard problem
in graph theory, known as clique enumeration, that can
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be solved using existing algorithms from the literature
[28].

As an example, we construct the cycle graph � corre-
sponding to the fragment S3

(1,2,3
5,3,4

)
of the Reversible Inhi-

bition reaction (2) shown in Figure 2 (top left). We use the
fact that the cycles c1 and c2 of the path graph �, shown in
Figure 5 have paths that share at least one species. Hence,
the cycle graph � consists of two nodes corresponding
to the two valid cycles c1 and c2 with no edge connect-
ing them. Since the cycle graph � constructed from the
valid cycles in Figure 5 is completely disconnected, we can
choose one cycle at a time and attempt to construct a valid
subgraph by adding edges to the cycle. If c1 is chosen,
then the remaining nodes A1 and B5 form the edge [A1,
B5] yielding a valid subgraph of order 3, Figure 2 (bottom
right). If c2 is chosen, then no other nodes remain. Thus
the cycle c2 forms a valid subgraph of order 3, Figure 2
(bottom left).

When generating subgraphs of a fragment combinato-
rially, the number of subgraph candidates depends on the
number of subgraph components of a given fragment.
Using the improved algorithm (based on the path and
cycle graphs) implemented by GraTeLPy, the number of
generated subgraphs depends on the number of cycles in
the path graph.

To compare the computational cost of the two
approaches, we count the number of subgraphs generated
in both cases for 100 randomly selected fragments of vary-
ing order for the double-layer MAPK network. The results
are presented in Figure 6, and show that multiple orders of
magnitude fewer subgraphs are generated by the path and
cycle graph method in comparison to the combinatorial
method.

Figure 6 Subgraph enumeration for double-layer MAPK
mechanism. Number of subgraph candidates generated for 100
randomly selected fragments (of indicated order) of the double-layer
MAPK network. Gray: combinatorial approach, black: using the path
and cycle graphs. Circles denote averages, squares denote maxima
(maximal number of subgraph candidates generated for any one of
100 randomly selected fragments).

Implementation challenges
As an overarching principle, we have strived to reduce
code duplication hence we reuse as many components as
possible from open source libraries. To this end, we have
used combinatorial standard libraries distributed with the
programming language Python [29], NetworkX [27] for all
graph-related operations, and matplotlib [30] for graphi-
cal output. We note however that matplotlib is an optional
package and is not required for the core functionality of
GraTeLPy.

Over the course of implementation of GraTeLPy we
encountered combinatorial blowup and memory usage
as major challenges. Thus we have designed GraTeLPy
to minimize storage of fragments, subgraphs, and inter-
mediate structures in memory. To this end we make
considerable use of the standard Python library itertools
and the concept of generators that allow us to transfer
many results from one method to another with minimal
memory footprint.

The cycle enumeration method provided by NetworkX
[27] stores all detected cycles, causing memory shortage
and overflow due to the large number of generated invalid
cycles revisiting species. We have amended this library
method to only store and return valid cycles of the bipar-
tite digraph, i.e., those cycles that do not revisit species
nodes.

Analyzing large networks is computationally unfeasible
when only a single processor is used. Hence, we have par-
allelized the code. Python’s global interpreter lock causes
threaded code to run slowly, so we have used the Mul-
tiprocessing module [29], which operates by using sub-
processes rather than threads. We have implemented two
parallelized versions of the code:

1. Single multiprocessor machine. Here we use the
Multiprocessing.Pool system, whereby the
Multiprocessing module itself launches the requisite
subprocesses. The code allows the user to specify the
number of subprocesses that should be run (ideally
this should match the number of processors available
on the machine).

2. Multiple machines client/server. In this case, we
launch a server process that generates the list of
fragments to be analyzed. Clients can then be
launched on any machine with a network connection
to the server. These clients receive fragments from
the server and pass back to the server the results of
the analysis of the fragments. The server collates the
responses.

Because the time spent analyzing a fragment is orders
of magnitude higher than the time required to pass a
representation of the fragment between a client and the
server, the parallelization is extremely efficient. We have
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tested this client/server implementation with over 500
client processes, and the processing time scales very
well.

Results and discussion
GraTeLPy allows the user to enumerate critical fragments
of an user-defined order. Thus biochemical mechanisms
can be analyzed for their potential for some instability in
an efficient way. The existence of multistability requires at
least one critical fragment of order r, which is the rank of
the stoichiometric matrix. If a critical fragment of order
k < n exists, then oscillations may exist for some param-
eter values. The existence of Turing instability requires at
least one critical fragment of order k < n, where n is the
number of species.

Several examples of biochemical mechanisms of dif-
ferent sizes are presented in this section. We have
used GraTeLPy to find the critical fragments of a
given order in the bipartite digraph of each biochem-
ical mechanism. The first three examples are smaller
mechanisms and are used to verify the correctness of
implementation of GraTeLPy, since their critical frag-
ments have already been found elsewhere. Furthermore,
we show that by using GraTeLPy, finding critical frag-
ments in larger biochemical mechanisms such as the
MAPK single-layer and MAPK double-layer networks
becomes feasible. The median running time for finding
the critical fragments for each biochemical mechanism is
presented.

The models and data discussed in this section
are available at https://github.com/gratelpy/gratelpy-
supplementary-information.

Reversible substrate inhibition
The reversible substrate inhibition model is analyzed for
multistability in [3] using the graph-theoretic method
presented here.

GraTeLPy reads in the biochemical mechanism from a
plain text file.

Recall that the bipartite digraph of (15) shown in
Figure 1.

The bipartite digraph of (15) contains one critical frag-
ment S3

(1,2,3
5,3,4

)
of order 3 found in [3]. GraTeLPy repro-

duces this fragment and its constituent subgraphs shown
in Figure 2.

The median running time with one processor for finding
the critical fragment S3

(1,2,3
5,3,4

)
is 0.05 sec.

Remark. Note that the critical fragment S3 = (1,2,3
5,3,4

)
corresponds to the negative term in the last non-zero coef-
ficient (9) of the characteristic polynomial of the Jacobian
matrix (7). This suggests how we may choose parame-
ter values for (u, w) so that a saddle-node bifurcation and
multistability occur. The inequality w4 > w1 should be
satisfied, otherwise a3(u, w) > 0. Also u4 � ui, i = 1, 2, 3
so that a3(u, w) is close to zero. In general if Sk

(i1,...,ik
j1,...,jk

)
is a

critical fragment, then the species concentrations at equi-
librium uis > 0, s = 1, . . . , k should be chosen small and
the rate functions wjs > 0, s = 1, . . . , k should be chosen
large in order for a saddle-node bifurcation to occur.

As a future extension of GraTeLPy, we plan to make
parameter choices for (u, w) such that some desired insta-
bility occurs available to the user.

Glycolysis-Gluconeogenesis switch
Critical fragments of order smaller than n, the number
of species in a biochemical mechanism, can induce Tur-
ing instability in a reaction–diffusion model [4] as well as
oscillations in an ODE model [3].

The biochemical mechanism

B1 : ∅ k1−→ A2,
B2 : A2

k2−→ ∅,
B3 : A1 + A2

k3−→ A1 + A4,
B4 : A4 + A6

k4−→ A2 + A1,
B5 : A5 + A1

k5−→ A5 + A6,
B6 : A5 + A4

k6−→ A3,
B7 : A3

k7−→ A5 + A4,
B8 : A5 + A2

k8−→ A7,
B9 : A7

k9−→ A5 + A2,
B10 : A4

k10−→ ∅,

(15)

https://github.com/gratelpy/gratelpy-supplementary-information
https://github.com/gratelpy/gratelpy-supplementary-information
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represents a glycolysis-gluconeogenesis switch and is
studied for oscillations in [31]. It has been shown that the
critical fragments (identified here by GraTeLPy as well)
are the structural reason for the oscillations [31]. Based
on the existence of the critical fragments, parameter val-
ues are chosen such that oscillations occur [31]. Similarly
the mechanism (15) is studied for the existence of Turing
instability in [4]. In fact, parameter values are found such
that Turing instability exists in the reaction–diffusion
model of (15).

The bipartite digraph of (15) is shown in Figure 7.
The stoichiometric matrix associated with the bio-
chemical mechanism (15) has rank 5. The biochemical
mechanism meets the necessary criterion for Turing
instability since critical fragments of order 1 ≤ k ≤ 5
exist [4]. In Figure 8 we show the critical fragments
of order 2 and 3 reported in [4] and identified by
GraTeLPy.

The median running time with one processor
for finding the critical fragments of the bipartite
digraph of the glycolysis-gluconeogenesis switch is 5.9
sec.

Cdc42 network in yeast
A biochemical mechanism that describes the Cdc42
dynamics of yeast and cell polarity is studied in [32].
The corresponding reaction-diffusion model displays Tur-
ing instability and patten formation for some parameter
values [32].

Figure 7 Bipartite digraph of the Glycolysis-Gluconeogenesis
switch mechanism. Bipartite digraph of the glycolysis-
gluconeogenesis switch.

The biochemical mechanism of the Cdc42 network is
given below

B1 : Ec
k1−→ Em,

B2 : Em
k2−→ Ec,

B3 : RT + Em
k3−→ M,

B4 : M k4−→ RT + Em,

B5 : Em + RD k5−→ Em,
vB6 : M + RD k6−→ M + RT,

B7 : RT k7−→ RD,

B8 : Ec + RT k8−→ M,

B9 : RDIm
k9−→ I + RD,

B10 : RD + I k10−→ RDIm,

B11 : RDIc
k11−→ RDIm,

B12 : RDIm
k12−→ RDIm,

where RD and RT denote the membrane-bound inactive
and active form of Cdc42 respectively; I denotes cyto-
plasmic GDI that forms a membrane-bound complex with
RD, RDIm, that detaches from the membrane and diffuses
as RDIc in the cytoplasm. The enzyme E is a complex
that contains Cdc42-activating Cdc24 and exists in both
a cytoplasmic and membrane-bound form, Ec and Em,
respectively. If E is on the membrane, it can form a cat-
alytic complex M together with RT, that aids activation of
membrane-bound RD.

The bipartite digraph of the Cdc42 network is shown
in Figure 9. The Cdc42 network has a corresponding
stoichiometric matrix of rank 5. The necessary condi-
tion for Turing instability requires that a critical fragment
Sk

(i1,i2,...,ik
j1,j2,...,jk

)
of order 1 ≤ k ≤ 5 exists. GraTeLPy iden-

tifies 35 critical fragments – among which we find the
two critical fragments reported in [32] and shown in
Figure 10.

The median running time with one processor for finding
the critical fragments of the bipartite digraph of the Cdc42
network is 9.7 sec, and with two processors 6.1 sec.

Single-layer MAPK network
As the size of biochemical mechanisms increases, enu-
merating the critical fragments of their corresponding
bipartite digraphs by hand becomes tedious and difficult.
Using GraTeLPy we can find the critical fragments of a
given order of larger mechanisms in a short period of time.
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Figure 8 Critical fragments of the Glycolysis-Gluconeogenesis switch mechanism. Order 2 (bottom) and order 3 (top) critical fragments of the
glycolysis-gluconeogenesis switch, reported in [4] and found by GraTeLPy.

An example of a larger biochemical mechanism that
is difficult to analyze by hand is the single-layer MAPK
network

B1 : A + E1
k1−→ AE1,

B2 : AE1
k2−→ A + E1,

B3 : AE1
k3−→ Ap + E1,

B4 : Ap + E1
k4−→ ApE1,

B5 : ApE1
k5−→ Ap + E1,

B6 : ApE1
k6−→ App,

B7 : App + E2
k7−→ AppE2,

B8 : AppE2
k8−→ App + E2,

B9 : AppE2
k9−→ Ap + E2,

B10 : Ap + E2
k10−→ ApE2,

B11 : ApE2
k11−→ Ap + E2,

B12 : ApE2
k12−→ A + E2,

whose bipartite digraph is shown in Figure 11. The MAPK
network is a well-known example of a multistable system
[5,33]. The necessary condition for multstability requires
the existence of a critical fragment of order equal to the
rank of the stoichiometric matrix. Since the rank of the
stoichiometric matrix for the MAPK network equals 6,
using GraTeLPy, we enumerate all critical fragments of
order 6. The 9 critical fragments of order 6 of the MAPK
network are shown in Figure 12.

The median running time with two processors for find-
ing the critical fragments of the bipartite digraph of the
single-layer MAPK network is 10.7 sec.

Double-layer MAPK network
For large biochemical mechanisms the number of criti-
cal fragments of a given order may grow into the dozens
or hundreds. Thus the task of enumeration by hand of all
critical fragments of a given order becomes unfeasible, but
can be accomplished with the help of GraTeLPy.
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Figure 9 Bipartite digraph of the yeast Cdc42 mechanism. Bipartite digraph of the yeast Cdc42 network described in [32].

Figure 10 Critical fragments of the yeast Cdc42 mechanism. Critical fragments of order 5 of the yeast Cdc42 network reported in [32] and
reproduced by GraTeLPy.
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Figure 11 Bipartite digraph of the single-layer MAPK mechanism.

An example of a larger biochemical mechanism is pro-
vided by the double-layer MAPK network which has 12
species and 18 reactions

B1 : A + E1
k1−→ AE1,

B2 : AE1
k2−→ A + E1,

B3 : AE1
k3−→ Ap + E1,

B4 : Ap + E1
k4−→ ApE1,

B5 : ApE1
k5−→ Ap + E1,

B6 : ApE1
k6−→ App + E1,

B7 : App + E1
k7−→ AppE1,

B8 : AppE1
k8−→ App + E1,

B9 : AppE1
k9−→ Appp + E1,

B10 : Appp + E2
k10−→ ApppE2,

B11 : ApppE2
k11−→ Appp + E2,

B12 : ApppE2
k12−→ App + E2,

B13 : App + E2
k13−→ AppE2,

B14 : AppE2
k14−→ App + E2,

B15 : AppE2
k15−→ Ap + E2,

B16 : Ap + E2
k16−→ ApE2,

B17 : ApE2
k17−→ Ap + E2,

B18 : ApE2
k18−→ A + E2.

(16)

Similarly to the single-layer MAPK network, the double-
layer MAPK network is known to display multistability.
The stoichiometric matrix for the double-layer MAPK
network has rank 9. Therefore the necessary condition
for multistability requires the existence of at least one
critical fragment of order 9. GraTeLPy detects 88 crit-
ical fragments of order 9. The list of all critical frag-
ments of order 9 of the bipartite digraph of (17) can
be obtained from https://github.com/gratelpy/gratelpy-
supplementary-information.

The median running time of each client for finding the
critical fragments of the bipartite digraph of the double-
layer MAPK network is as follows: 141 sec with 100
clients, 270 sec with 50 clients and roughly 4 hours with a
single client.

Conclusions
We have implemented a graph-theoretic method that
allows for parameter-free model testing of biochemical
mechanisms with mass action kinetics for multistabil-
ity, oscillations and Turing instability. GraTeLPy is open-
source and is based on a free software. GraTeLPy enables
users to identify the graph structures referred to as crit-
ical fragments that can be responsible for the existence
of some instability in a differential equations model of a
biochemical mechanism (1).

At present, GraTeLPy expects that the user converts a
biochemical mechanism to a text format such as the one

https://github.com/gratelpy/gratelpy-supplementary-information
https://github.com/gratelpy/gratelpy-supplementary-information
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Figure 12 Critical fragments of the single-layer MAPK mechanism. Critical fragments of the single-layer MAPK network found by GraTeLPy.
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presented in (15). In a future release we plan to include
additional functionality so that biochemical mechanisms
provided in SBML [34] and other formats can be analyzed.
A list of the critical fragments of a user-defined order is
provided upon completion.

We plan a future extension of GraTeLPy where choices
of parameter values such that some desired instability
occurs will be offered to the user. This extension will
be based on the existence of a critical fragment and its
one-to-one correspondence with a negative term in a
coefficient of the characteristic polynomial (See Remark
in the Reversible substrate inhibition Example).

We also plan to combine GraTeLPy with a new analytic
method, local perturbation analysis (LPA) [35,36], in order
to test biochemical mechanisms for pattern formation.

An extension of GraTeLPy to multigraphs [37] that can
be used for the analysis of gene regulatory networks [38]
is also left as a future extension.

Availability and requirements
GraTeLPy is available from https://github.com/gratelpy/
gratelpy and has the following requirements: Python 2.6
or 2.7 and NetworkX 1.6 or above.

Additional file

Additional file 1: GraTeLPy Manual: A Practical Software Guide.
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