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Sympathetic overactivity with rising catecholamines levels 
and adrenergic receptors stimulation is a common feature 

of many cardiovascular disorders, including hypertension, 
myocardial infarction (MI), congestive heart failure, and acute 
cerebrovascular events. In these conditions, the hyperadren-
ergic state has a major and independent prognostic impact.1 
Although the importance of β-adrenoceptor (β-AR) overstim-
ulation in the pathogenesis of left ventricular dysfunction has 
been widely studied, less is known about its effects on vascu-
lar function. Following in vivo β-AR overstimulation, we and 
others have demonstrated abnormal vasoconstrictor response 
to agonists in aorta,2 coronary artery,3 and cerebral artery.4 In 

thoracic aorta, increased vasoconstrictor response induced by 
isoproterenol treatment was associated with increased reac-
tive oxygen species generation and uncoupling of endothelial 
nitric oxide synthase (eNOS).2,5 These studies demonstrate that 
β-AR overstimulation induces vascular dysfunction but the 
molecular mechanisms remain to be elucidated.

Activation of the renin–angiotensin–aldosterone system 
is also involved in the pathogenesis of cardiovascular and 
metabolic diseases, including hypertension, MI, heart failure, 
and obesity. It is known that β-AR signaling in juxtaglomeru-
lar cells stimulates renin release, thereby stimulating renin–
angiotensin–aldosterone system. In addition, β-AR agonist 
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isoproterenol increases cardiac expression of angiotensin-con-
verting enzyme6 and antagonism or deficiency of AT1 receptor 
(AT1R) attenuate isoproterenol-induced cardiac remodeling 
in mice.7 Elevated circulating aldosterone is also associated 
with isoproterenol-induced heart failure,8 and blockade of 
aldosterone-binding mineralocorticoid receptor (MR) is pro-
tective from cardiac hypertrophy and diastolic dysfunction 
induced by chronic isoproterenol treatment in rats.9 Together, 
these studies have suggested beneficial cardiac effects of 
AT1R and MR blockade in preventing isoproterenol-induced 
cardiac remodeling and dysfunction. In the vasculature, either 
AT1R or MR activation induces proinflammatory, profibrotic, 
and pro-oxidative vascular signaling pathways.10,11 However, 
whether AT1R and MR contribute to the vascular abnormali-
ties caused by β-AR overstimulation has not been explored.

Vascular function is also known to be modified by peri-
vascular adipose tissue (PVAT). Angiotensin II, via AT1R 
promotes aldosterone secretion from adipocytes, acting in a 
paracrine manner to regulate vascular function and contribut-
ing to endothelial dysfunction in obesity.12 PVAT of the tho-
racic aorta also releases adipocyte-derived relaxing factors 
that exhibit anticontractile effects.13,14 Acute β-AR activation 
stimulates the release of adipocyte-derived relaxing factors 
from PVAT of mesenteric artery.15 However, it is not known 
whether β-AR overstimulation could regulate the anticontrac-
tile effects of PVAT.

Therefore, in this study, we investigated a possible role 
of AT1R, MR, and PVAT in the vascular dysfunction induced 
by in vivo administration of isoproterenol as measured by 
enhanced vasoconstriction to phenylephrine. We hypothesized 
that MR activation induces uncoupling of eNOS, oxidative 
stress, and reduces anticontractile role of PVAT after β-AR 
overstimulation.

Methods

Animals
This study was approved by the Ethics Committee on Animal Use 
of the University of Campinas (protocol no. 2609-1) and carried out 
in accordance with the ethical principles for animal experimenta-
tion adopted by the Brazilian Society of Laboratory Animal Science 
(SBCAL/COBEA).

Male Wistar rats (12-week old) were obtained from the 
Multidisciplinary Center for Biological Research of the University 

of Campinas (Campinas, Brazil). Animals were housed at a constant 
room temperature (22°C), 12:12 hour light:dark cycle, and with 
normal chow and water provided ad libitum. Isoproterenol (0.3 mg/
kg per day, sc) or the vehicle were administrated once daily for 7 
days, concomitantly with the treatment or not via oral gavage with 
the AT1R antagonist losartan (40 mg/kg per day), or with the MR 
antagonist spironolactone (200 mg/kg per day).

Vascular Reactivity, Blood Pressure, and 
Biochemical and Molecular parameters
Detailed methods are available in the only-online Data Supplement.

Statistical Analysis
Data are presented as mean±SEM. Data were analyzed by the Student 
t test or two-way ANOVA followed by the Bonferroni post-test by 
using GraphPad Prism 5.0 software (GraphPad Software Corp, San 
Diego, CA). Values of P<0.05 were considered significantly different.

Results

Losartan and Spironolactone Treatments 
Similarly Reduce Isoproterenol-Induced Cardiac 
Hypertrophy
To confirm the efficacy of isoproterenol treatment in induc-
ing long-term β-AR stimulation, the ventricular weight:body 
weight ratio was measured as an index of myocardial 
hypertrophy. Isoproterenol treatment increased ventricu-
lar weight:body weight ratio without affecting body weight 
that was similarly reduced by losartan and spironolactone 
(Table S1). No effect of either isoproterenol or spironolactone 
on blood pressure or heart rate was observed, but losartan 
decreased diastolic blood pressure in both control and isopro-
terenol-treated rats (Table S1).

Spironolactone, but Not Losartan, Prevented the 
Increased Aortic Reactivity to Phenylephrine in 
Isoproterenol-Treated Rats
Aortic rings from isoproterenol-treated rats showed an 
increased contractile response to phenylephrine compared 
with the control group (Figure 1A). This high contractility 
was not altered by cotreatment with losartan (Figure 1B), 
whereas it was fully prevented by spironolactone cotreatment 
(Figure 1C). These data support a role for MR, but not the 
AT1R, in the increased aortic contractile response induced by 
β-AR overstimulation. The relaxation to either acetylcholine 

Figure 1. Spironolactone, but not losartan, prevented the enhanced contraction to phenylephrine induced by β-adrenergic 
overstimulation. Concentration–response curves to phenylephrine obtained in aortic rings from rats treated with vehicle (CT) or 
isoproterenol (ISO; A) combined with losartan (LOS; B) or with spironolactone (SPI; C). Data are expressed as mean±SEM; number of 
animals is indicated in parenthesis. Two-way ANOVA: *P<0.001 vs CT or LOS.
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or sodium nitroprusside was not modified by the treatments 
(Figure S1).

MR Antagonist Restored NO Bioavailability, NOS 
Dimerization, and HSP90 Protein Levels in Aortas 
of Isoproterenol-Treated Rats
Incubation with a nonselective NOS inhibitor, Nω-nitro-L-
arginine methyl ester, enhanced the contractile response to 
phenylephrine in the aorta of all the groups (Figure 2A). The 
NOS-dependent anticontractile component of phenylephrine 
response (as measured by difference of the area under the 
curve before and after Nω-nitro-L-arginine methyl ester) was 
impaired in the isoproterenol group, whereas spironolactone 
reversed this effect (Figure 2B). Pretreatment of aortas with 
superoxide dismutase (SOD, superoxide scavenger) or tetra-
hydrobiopterin (BH

4
, eNOS cofactor) reduced vascular con-

traction in the isoproterenol group but not in the control and 
spironolactone-treated groups (Figure 2C and 2E). There was 
an increased difference of the area under the curve to phen-
ylephrine in the presence of SOD and BH

4
 in isoproterenol-

treated rats, which was normalized by spironolactone (Figure 

2D and 2F). These data support a role for MR in increas-
ing superoxide and reducing NO production and bioavail-
ability after β-AR overstimulation. Indeed, aortic NO levels 
(evaluated by the fluorescence to diaminofluorescein) were 
decreased in rats exposed to long-term isoproterenol and spi-
ronolactone treatments enhanced NO to levels similar to the 
control group (Figure 3A). By contrast, losartan treatment did 
not prevent the impairment in NO bioavailability induced by 
isoproterenol (Figure S2).

Although aortic expression of total eNOS protein was 
increased in isoproterenol-treated rats (Figure 3B), the abun-
dance of its dimeric form was reduced (Figure 3C), as well as 
its phosphorylation in Ser1177 (Figure S3). Spironolactone 
did not affect the isoproterenol-induced increase in total eNOS 
protein levels, but it normalized eNOS dimerization (Figure 3B 
and 3C). eNOS phosphorylation were not affected by spirono-
lactone or losartan treatment (Figure S3). Because HSP90 is 
an eNOS chaperone that augments NO production and inhib-
its superoxide formation,16 we investigated HSP90 expression. 
Isoproterenol treatment significantly reduced HSP90 protein 
expression, which was restored by spironolactone (Figure 3D).

Figure 2. Effect of Nω-nitro-L-arginine  methyl ester (L-NAME) (A, square symbols), superoxide dismutase (superoxide dismutase (SOD, 
superoxide scavenger); C, triangle symbols), and tetrahydrobiopterin (BH4, eNOS cofactor) (E, diamond symbol) on the concentration–
response curves to phenylephrine of aortic rings from control (CT) and isoproterenol (ISO) groups without or with spironolactone (SPI) 
treatment. B, D, and F, The difference of the area under the curve (dAUC) to phenylephrine in the presence and absence of L-NAME, 
SOD, or BH4, respectively. Data are expressed as mean±SEM (n=4–15 in each group). Two-way ANOVA: P<0.05 +vs respective group 
without incubation; *vs CT; #vs ISO.
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eNOS-Derived Superoxide Anion Production 
After β-AR Overstimulation Is Prevented by 
Spironolactone
We measured reactive oxygen species production by quantifica-
tion of the fluorescence formed after exposing aortic slices to 
hidroethidine. The fluorescent signal was almost undetectable 
after incubation with the SOD mimetic MnTMPyP, indicat-
ing superoxide as the main reactive oxygen species detectable 
by hidroethidine in aortas (Figure 3E). Isoproterenol induced 
an increase in vascular superoxide production that was inhib-
ited by Nω-nitro-L-arginine  methyl ester incubation, indicating 

enhanced eNOS-derived superoxide production (Figure 3E). 
Importantly, spironolactone, but not losartan, blocked this 
increase (Figure 3E; Figure S4). The data indicate that β-AR 
overstimulation induces vascular oxidative stress by eNOS, 
dependent on MR activation.

β-Adrenergic Overstimulation Activates Aortic MR 
Genomic and Nongenomic Activity
MR functions by translocating to the nucleus to regulate gene 
transcription (genomic mechanisms) and also by activating 
cytoplasmic signaling pathways (nongenomic mechanisms). 

Figure 3. Reduced HSP90 expression and endothelial nitric oxide synthase (eNOS) uncoupling after β-AR overstimulation: prevention by 
mineralocorticoid receptor blockade. Diaminofluorescein (DAF-2) fluorescence (A), protein expression of total eNOS (B), dimer:monomer 
eNOS ratio (C), HSP90 (D), and hidroethidine (DHE) fluorescence (E) obtained in aorta from control (CT) and isoproterenol (ISO) groups 
without or with spironolactone (SPI) treatment. Protein expression was calculated as percentage of CT group. Representative images 
(20×, bar=100 µm) of DAF-2 and DHE fluorescence are shown in left side of A and E, respectively. In A, E=endothelium. The DHE 
fluorescence signal was evaluated under basal condition or after incubation with Nω-nitro-L-arginine  methyl ester (L-NAME) (1 mmol/L) 
or MnTMPyP (25 µmol/L). Data represent mean±SEM; number of animals used for each group is indicated in the bars. Two-way ANOVA: 
P<0.05 *vs CT; +vs SPI; #vs ISO.
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Isoproterenol treatment increased the nuclear:cytoplasmic MR 
ratio in the aorta (Figure 4A) and increased gene expression of 
the smooth muscle cell MR target gene, osteopontin (Figure 4B) 
and the endothelial MR target protein, the γ-subunit of the epithe-
lial sodium channel (ENaC; Figure 4C) when compared with the 
control group. Spironolactone prevented isoproterenol-induced 
MR nuclear translocation, osteopontin mRNA, and ENaC pro-
tein expression (Figure 4A through 4C) consistent with genomic 
MR activity. In addition, aorta from isoproterenol-treated rats 
demonstrated higher Src and ERK1/2 phosphorylation, which 

was prevented by spironolactone (Figure 4D and 4E). Thus, 
chronic isoproterenol treatment seems to activate both MR 
genomic and nongenomic activities in the aorta.

Enhanced Corticosterone Levels and Increased 
Expression of 11β-HSD1 in PVAT After 
Isoproterenol Treatment
MR can be activated by the mineralocorticoid aldosterone and 
also by some corticosteroids. To investigate if isoproterenol 
activates the MR by modulating levels of endogenous ligands, 

Figure 4. Genomic and nongenomic pathways of vascular mineralocorticoid receptor (MR) activity after isoproterenol treatment. Nuclear 
translocation of MR (A), mRNA expression of osteopontin (B), and protein expression of γ-epithelial sodium channel (γENaC; C), Src 
(D), and ERK1/2 (E) phosphorylation in thoracic aorta of control (CT) and isoproterenol (ISO) groups without or with spironolactone (SPI) 
treatment. Data represent mean±SEM; number of animals used in each group is indicated into the bars. Two-way ANOVA: P<0.05 *vs CT; 
#vs ISO.



Victorio et al  MR in Isoproterenol-Induced Vascular Dysfunction  731

we measured plasma and PVAT levels of aldosterone and cor-
ticosterone (the main glucocorticoid in rodents). Plasma and 
PVAT levels of aldosterone were increased by spironolactone 
treatment, consistent with a feedback mechanism associated 
with effective MR blockade (Figure 5A and 5B). Neither iso-
proterenol nor spironolactone treatment affected plasma corti-
costerone levels (Figure 5C). However, corticosterone content 
was enhanced in PVAT after isoproterenol treatment, whereas 
spironolactone did not alter this effect (Figure 5D). Treatments 
did not affect aortic PVAT weight (data not shown). These data 
suggest that enhanced PVAT-derived corticosterone could be 
a mechanism leading to paracrine activation of vascular MR 
after β-adrenergic overstimulation.

PVAT protein expression of aldosterone synthase 
(CYP11B1), a final enzyme required for glucocorticoid syn-
thesis, was not affected by isoproterenol treatment (Figure 
S5A); whereas, isoproterenol increased the PVAT expression 

of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), 
the enzyme that generates active glucocorticoids from their 
inactive 11-keto derivatives (Figure 5E), with no effect in 
11β-hydroxysteroid dehydrogenase type-2 (11β-HSD2) expres-
sion (Figure 5F). Spironolactone decreased the expression of 
11β-HSD1 and 11β-HSD2 (Figure 5E and 5F). Glucocorticoid 
synthase (CYP11B2) protein expression in PVAT did not differ 
from the control and isoproterenol groups (Figure S5B).

Spironolactone Restores the Anticontractile Effect 
of Perivascular Tissue, Which Is Impaired by 
Isoproterenol
Next, we investigated the role of PVAT on vascular contraction 
to phenylephrine. As expected, the presence of PVAT reduced 
the contraction to phenylephrine in aortas from control rats 
(Figure 6A). However, this anticontractile effect of PVAT 
was impaired by isoproterenol treatment (Figure 6B and 6E). 

Figure 5. β-AR overstimulation enhanced corticosterone content and protein expression of 11β-HSD1 in perivascular adipose tissue 
(PVAT) of aorta. Aldosterone (A and B) and corticosterone (C and D) content measured in plasma and aortic PVAT from control (CT) and 
isoproterenol (ISO) groups without or with spironolactone (SPI) treatment. Protein expression of 11β-HSD1 (E) and 11β-HSD2 (F) were 
evaluated in PVAT from CT, ISO, SPI, and ISO+SPI groups. Data represent mean±SEM; number of animals is indicated in the bars.  
Two-way ANOVA: P<0.05 *vs CT; +vs SPI; #vs ISO.



732  Hypertension  September 2016

Spironolactone did not affect the basal role of PVAT on the 
contractile response to phenylephrine (Figure 6C and 6E) but 
rather, in the presence of MR antagonist, the anticontractile 
effect of PVAT was restored in rats cotreated with isoproter-
enol and spironolactone (Figure 6D and 6E).

Recently, it was demonstrated that PVAT from thoracic 
aorta expresses eNOS that produces NO as a PVAT-derived 
relaxing factor, whereas uncoupled eNOS in this tissue might 
be a mechanism involved in vascular dysfunction.17 Therefore, 
we explored eNOS uncoupling in PVAT after β-adrenergic 
overstimulation. PVAT-derived NO production was impaired 
by isoproterenol treatment and restored by spironolactone 
treatment or BH

4
 incubation (Figure 6F).

Discussion
This study demonstrated that the MR antagonist spirono-
lactone, but not the AT1R blocker losartan, prevented the 
increased vasoconstrictor response to phenylephrine induced 
by β-AR overstimulation. The protective vascular effect 

of spironolactone was associated with (1) increased eNOS 
dimerization, HSP90 expression and NO production, (2) 
reduced eNOS-derived superoxide production, (3) inhibi-
tion of genomic and nongenomic vascular MR pathways, 
and (4) restoration of the anticontractile role of aortic PVAT. 
Furthermore, we found elevated corticosterone content in 
aortic PVAT after β-adrenergic stimulation. These findings 
support a model in which chronic β-adrenergic stimulation 
promotes vascular MR activation, which results in eNOS 
uncoupling and oxidative stress. This model provides a novel 
mechanism by which MR antagonists can be protective in 
patients with cardiovascular disease by preventing vascular 
dysfunction associated with hyperadrenergic state, such as in 
heart failure, MI, and essential hypertension.

Renin–angiotensin–aldosterone system inhibitors, includ-
ing angiotensin-converting enzyme inhibitors and AT1R 
antagonists, and more recently MR antagonists improve 
survival in patients with left ventricular dysfunction.18,19 
The diuretic effect of the MR antagonist was not sufficient 

Figure 6. Impaired anticontractile function of perivascular adipose tissue (PVAT) after isoproterenol treatment is rescued by 
spironolactone. Concentration–response curves to phenylephrine were obtained in aortic rings without (−) or with (+) PVAT from control 
(CT, A) and isoproterenol (ISO, B) groups without or with spironolactone (SPI) treatment (C and D). E, The difference of the area under 
the curve (dAUC) to phenylephrine in the absence and presence of PVAT. Fluorescence to NO-sensitive dye diaminofluorescein (DAF-
2) was evaluated in thoracic PVAT sections from CT, ISO, SPI, and ISO+SPI groups under basal conditions or after incubation with 
tetrahydrobiopterin (BH4, eNOS cofactor) (100 µmol/L, F). Representative images (20×, white bar=100 µm) of DAF-2 fluorescence are 
shown. Data are expressed as mean±SEM (n=5–15 in each group). Two-way ANOVA: P<0.05 +vs PVAT; *vs CT; #vs ISO.
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to explain its cardioprotective effects in patients with heart 
failure.20 Although both losartan and spironolactone reduced 
ventricular hypertrophy in a similar magnitude, we observed 
that only MR antagonism was effective in the prevention of 
increased vasoconstrictor response to phenylephrine, NO bio-
availability, and eNOS-dependent oxidative stress. This result 
demonstrates for the first time a role of MR, but not AT1R, in 
mediating the major vascular effects of β-adrenergic overstim-
ulation. In addition, losartan, but not spironolactone, reduced 
diastolic blood pressure measured invasively in anesthetized 
rats. However, we cannot exclude the possibility of group dif-
ferences in blood pressure because we did not monitor this 
parameter 24 hours per day in awake, unrestrained animals.

Abnormal vasoconstrictor responses to agonists includ-
ing phenylephrine have been demonstrated in several vascular 
beds2–5 in the isoproterenol-induced left ventricular hypertro-
phy model. These studies put forward a key role for β-AR 
overstimulation in inducing vascular dysfunction. We previ-
ously demonstrated a role for uncoupled eNOS in the altered 
vascular contractility induced by β-AR stimulation.5 Because 
aldosterone-induced MR activation can impair eNOS-derived 
NO production associated with a reduction in eNOS dimeriza-
tion in endothelial cells,21 we hypothesized that MR block-
ade could improve this endothelial pathway. In accordance, 
improved NO bioavailability, enhanced eNOS dimer expres-
sion, and reduced eNOS-derived superoxide were observed 
in aortas from isoproterenol+spironolactone–treated rats. 
Although eNOS uncoupling was associated with exacerbated 
contractile response to phenylephrine, the endothelium-
dependent relaxation to acetylcholine was not significantly 
changed by isoproterenol treatment. This apparently contra-
dictory finding might be explained by the greater sensitivity of 
basal NO to destruction by superoxide when compared with 
agonist-stimulated NO production.22

Dimerization of eNOS regulates its catalytic activity and 
NO production. Association of eNOS with HSP90 has been 
demonstrated to be an important mechanism regulating eNOS 
dimerization, rather than eNOS phosphorylation.23 Here, we 
show that β-AR overstimulation significantly reduced aortic 
expression of this chaperone, which was prevented by spi-
ronolactone. Interestingly, impaired interaction of HSP90 
with eNOS results in decreased NO production and superox-
ide generation.16 Therefore, reduced vascular expression of 
HSP90 is a potential link between β-AR overstimulation and 
eNOS dysfunction that can be prevented by MR blockade.

Increased nuclear:cytoplasmic MR ratio was found in 
aorta from isoproterenol-treated rats. Given that MR dis-
sociation from HSP90 induces MR cytoplasmic-to-nucleus 
trafficking,24 reduction in HSP90 expression induced by iso-
proterenol could also contribute to enhance MR transcriptional 
activity. Spironolactone treatment enhanced HSP90 expres-
sion and attenuated nuclear localization of MR, osteopontin 
mRNA, and ENaC protein levels in isoproterenol-treated rats. 
Osteopontin is a multifunctional glycophosphoprotein that can 
be secreted by endothelium and vascular smooth muscle cells; 
its gene expression is induced by MR and contributes to proin-
flammatory and profibrotic effects of aldosterone.25,26 In addi-
tion, recent data suggest that MR activation induces binding 
to the ENaC promoter, increasing expression of ENaC mRNA 

in endothelial cells with associated endothelial dysfunction.27 
We observed an increased aortic expression of the regulatory 
γ-subunit of ENaC in aorta of isoproterenol-treated rats that 
was prevented by cotreatment with spironolactone, suggesting 
that β-adrenergic stimulation might upregulate ENaC through 
MR activation. To our knowledge. this is the first demonstra-
tion that osteopontin and ENaC can be upregulated in vascular 
tissue in response to β-adrenergic stimulation and could be 
an additional mechanism involved in the vascular pathology 
associated with sympathetic hyperactivity.

In addition to genomic activity of MR, a nongenomic 
MR pathway in the vasculature has been demonstrated to 
contribute to oxidative stress, inflammation, and vascular 
dysfunction.11 Aldosterone rapidly activates several kinases, 
including Src and mitogen-activated protein kinases in vascu-
lar smooth muscle cells.28 Here, we reported that MR block-
ade attenuated phosphorylation of Src and ERK1/2 in aortas 
from isoproterenol-treated rats, which indicates convergence 
of the β-adrenergic and MR-signaling pathways. However, 
the observed association between the spironolactone-induced 
changes in the biochemical and molecular parameters evalu-
ated and the vascular protection in the contractile function 
may not necessarily reflect cause and effect relationship, rep-
resenting a limitation of this study.

Both aldosterone and glucocorticoids bind to the MR to 
activate its genomic and nongenomic functions.29 In this study, 
β-AR overstimulation did not change either aldosterone or 
corticosterone plasma levels; however, corticosterone, but not 
aldosterone, was enhanced in aortic PVAT from isoproterenol-
treated rats. Spironolactone did not attenuate the enhanced 
levels of corticosterone induced by isoproterenol in PVAT, 
suggesting that the beneficial vascular effects of spironolac-
tone may be downstream and could be because of blockade 
of glucocorticoid-induced MR activation. Mature adipocytes 
express CYP11B2 and CYP11B1 and can produce aldosterone 
and corticosterone.12 The expression of these enzymes was not 
modified by isoproterenol treatment. Glucocorticoid content 
is also regulated by 11β-HSD type 1 and 2. 11β-HSD2 con-
verts glucocorticoids into inactive metabolites, which favors 
aldosterone-MR interaction. However, 11β-HSD1 in the 
presence of NADPH promotes glucocorticoids regeneration 
from inert 11-keto metabolites.30 Therefore, an upregulation 
of 11β-HSD1 in PVAT after chronic β-adrenergic stimula-
tion might be a mechanism associated with high perivascular 
corticosterone content, thereby leading to paracrine activation 
of vascular MR. However, as β-AR signal through the small 
GTPase Rac131 which has been shown to activate MR with-
out ligand,32 we should also consider ligand-independent MR 
activation as a potential mechanism for isoproterenol-induced 
MR activation.

Spironolactone treatment prevented the isoproterenol-
induced 11β-HSD1 expression in PVAT. Earlier studies 
demonstrated that suppression of 11β-HSD1 abolishes the 
inhibitory effect of glucocorticoids on eNOS expression33 
and prevents heart failure development after MI.34 Therefore, 
reduction in 11β-HSD1 expression in PVAT is a potential car-
diovascular protective mechanism of spironolactone. Despite 
this effect, corticosterone levels were still high in PVAT from 
rats cotreated with isoproterenol and spironolactone, which 
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could be related to the minor expression of 11β-HSD2 induced 
by spironolactone. However, the cellular origin of corticos-
terone secretion induced by isoproterenol in PVAT and the 
signaling pathway involved in this effect remains an open 
question. In addition, as endothelium, vascular smooth mus-
cle cells, inflammatory cells and adipocytes express functional 
MR35–38 further investigation using cell-type–specific knock-
out mice should address which cell-type–specific MR signal-
ing is mediating the vascular effects induced by β-adrenergic 
stimulation.

In conclusion, our findings revealed a novel mechanism 
of regulation of vascular dysfunction mediated by β-AR over-
stimulation inducing PVAT-derived corticosterone produc-
tion, associated with impaired PVAT anticontractile effect and 
vascular MR activation. MR blockade with spironolactone 
protected from increased vasoconstrictor response to phenyl-
ephrine, upregulation of ENaC, and downregulation of HSP90 
and eNOS uncoupling. The present findings uncover a role for 
MR blockade in sympathoexcitatory cardiovascular diseases 
and provide an additional novel vascular mechanism for the 
protective effects of MR antagonism.

Perspectives
We demonstrated that MR antagonist spironolactone prevents 
the vascular alterations induced by long-term β-AR stimu-
lation, including enhanced vasoconstriction, uncoupling of 
eNOS, reduced NO bioavailability, and oxidative stress. The 
beneficial vascular effects of spironolactone were indepen-
dent of changes in systemic levels of MR ligand. Instead, we 
observed increased levels of PVAT-derived corticosterone in 
response to β-adrenergic stimulation associated with enhanced 
protein levels of 11β-HSD1 that regenerates glucocorticoids. 
MR genomic and nongenomic signaling were observed in aor-
tas of isoproterenol-treated rats. Therefore, this study suggests 
a novel link between β-AR signaling and vascular MR acti-
vation in causing vascular dysfunction. Moreover, the results 
indicate an additional mechanism for the protective vascular 
effects of MR antagonists in cardiovascular diseases associ-
ated with increased sympathetic activity, such as essential 
hypertension, MI, and heart failure.
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What Is New?
•	Spironolactone prevents the increased vasoconstrictor response to phen-

ylephrine and uncoupling of endothelial nitric oxide synthase in aorta of a 
rat model of chronic β-adrenergic stimulation induced by isoproterenol.

•	β-AR overstimulation impairs the anticontractile function of perivascular 
adipose tissue and induces perivascular adipose tissue–derived gluco-
corticoid production.

What Is Relevant?
•	Mineralocorticoid receptor blockade with spironolactone prevented the 

vascular dysfunction induced by β-AR overstimulation, independent of 
changes in systemic levels of mineralocorticoid receptor ligands, sug-

gesting a novel mechanism for the protective vascular effects of miner-
alocorticoid receptor antagonists in cardiovascular diseases associated 
with increased sympathetic activity, such as essential hypertension and 
heart failure.

Summary

Mineralocorticoid receptor activation is crucial for the vascular 
alterations induced by long-term β-AR stimulation, including in-
creased vasoconstriction, uncoupling of endothelial nitric oxide 
synthase, and impaired anticontractile function of PVAT.

Novelty and Significance




