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ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the du-
ration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for
long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobac-
terial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, ge-
netically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine
model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in
mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for
M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Ex-
perimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating
M. tuberculosis persistence genes.

IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has a genetic repertoire that permits it to
persist in the face of host immune responses. Identification of such persistence genes could reveal novel drug targets and eluci-
date mechanisms by which the organism eludes the immune system and resists drugs. Genetic screens have identified a total of
31 persistence genes, but to date only 15% of the ~4,000 M. tuberculosis genes have been tested experimentally. In this paper, as
an alternative to brute force experimental screens, we describe computational methods that predict new persistence genes by
combining known examples with growing databases of biological networks. Experimental testing demonstrated that these pre-
dictions are highly accurate, validating the computational approach and providing new information about M. tuberculosis per-
sistence in host tissues. Using the new experimental results as additional input highlights additional genes for testing. Our ap-
proach can be extended to other data types and target organisms to characterize host-pathogen interactions relevant to this and
other infectious diseases.
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Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB), has evolved adaptive mechanisms to avoid killing by

host immune responses. Identifying metabolic and regulatory
pathways required for M. tuberculosis persistence in host tissues
may elucidate novel strategies to eradicate TB infection. The avail-
ability of the M. tuberculosis genome sequence has enabled high-
throughput screens using subsaturated transposon (Tn) mutant
libraries (1, 2). Such libraries have been used to study the genetic
requirements of the pathogen under physiologically relevant
stress conditions, including during infection of macrophages (3),
mice (4–6), guinea pigs (7, 8), and nonhuman primates (9).

Recently, there has been substantial interest in developing
computational algorithms for accurately predicting genes essen-
tial for M. tuberculosis growth and survival. Flux balance analysis

uses the stoichiometry of biochemical reactions to predict growth
requirements but is limited to metabolic enzymes (10–12). Other
approaches have enhanced flux balance analysis by including
transcriptional profiles and regulatory relationships to constrain
fluxes through metabolic reactions (13, 14). These approaches
have been used to predict drug effects on M. tuberculosis mycolic
acid biosynthesis capacity and transcription factor knockout phe-
notypes (13, 14). Approaches to predict genetic requirements be-
yond metabolism would have great value, particularly since only
660 M. tuberculosis genes (~17% of the genome) are represented
in metabolic reconstructions.

Alternative approaches described here combine actual physical
interactions, including enzyme-substrate and protein-protein in-
teractions, with functional associations. The resulting networks
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can be exploited to predict protein function and mutant pheno-
types (15). Simple metrics, such as shortest distance to known
genes of interest, have been used previously to predict M. tuber-
culosis drug resistance genes (16). Graph diffusion kernels, intro-
duced first for searching Web pages, additionally account for mul-
tiple independent network paths and improve performance.
Successes have included predicting epistatic genetic interactions
in yeast (17, 18), predicting protein function through protein-
protein interactions (19), and identifying candidate genes for dis-
ease (20, 21). Biological networks with different interaction types
can provide complementary information, and integrative ap-
proaches modeling biological functions have been used to predict
protein-protein interactions (22, 23), synthetic lethal interactions
(17), co-complexed pairs (24), and driver missense mutations
(25). In this study, we combined known M. tuberculosis persis-
tence genes and transcriptional profiles with networks from met-
abolic reconstructions and functional associations to make
genome-wide predictions of genes required for mycobacterial
persistence in the host (26, 27). The top-ranked predictions were
then tested experimentally to confirm their accuracy. Further, we
developed new computational algorithms, incorporating recently
published data sets (28–31), which together with our new experi-
mental results highlight additional genes for testing. This study
extends our knowledge of M. tuberculosis persistence and identi-
fies potential novel drug targets, with the ultimate goal of short-
ening the duration of TB treatment. This systems biology ap-
proach, combining computational predictions with experimental
validation, is general and readily extended to new data types and
other target organisms, including host-pathogen interactions rel-
evant to this and other infectious diseases.

RESULTS
Computational predictions. Computational predictions (see
Data Set S1 and S2 in the supplemental material) were used to
prioritize mutants for experimental tests in mice (Fig. 1; see
Data Set S3A and B). The predictions propagated gene-based phe-
notypes (Table 1), including known persistence defects and addi-
tional informative phenotypes, through M. tuberculosis gene net-
works to generate gene-based features for predicting additional
persistence mutants with logistic regression (see Data Set S3C).

Known in vivo persistence genes were derived from a Tn mu-
tant screen using designer arrays for defined mutant analysis
(DeADMAn) (5). This screen identified 31 persistence genes and
474 genes not required for persistence in mouse lungs. These
genes served as known positives and negatives, respectively. Addi-
tional relevant gene data sets included Tn site hybridization
(TraSH) data derived from mouse spleen (6) and murine macro-
phages (3). Genes required for in vitro growth were obtained from
Tn mutagenesis screens (1, 2). Genes differentially expressed dur-
ing infection were obtained from transcription profiling studies
(32, 33).

Networks of functional associations were obtained from pub-
licly available metabolic reconstructions (11) and data integration
approaches (27). A steady-state graph diffusion kernel propagated
the gene data (persistence genes, essential genes, and differentially
expressed genes) through the networks to create features for logis-
tic regression and support vector machine classifiers (see Data Set
S1). The full logistic regression model included all 28 features;
stepwise selection with the Akaike information criterion (AIC)
eliminated redundant and uninformative features. Twentyfold

cross-validation was used to assess performance based on the
known positives and negatives, with area under the receiver oper-
ating curve (AUROC) and the maximum harmonic mean of pre-
cision and recall (F score) serving as quantitative criteria. Ten
different random 20-way splits were performed to ensure robust
results.

Stepwise logistic regression and full logistic regression were
equivalent, and both regression methods were superior to support
vector machines (Fig. 2). The F score for all methods is maximal
near 20 to 30% recall. Stepwise regression at 20% recall is pre-
dicted to have a mean precision of ~50%, an approximately 8-fold
enrichment compared to the overall estimate of in vivo persistence
genes within the entire genome (6%) (5). Stepwise logistic regres-
sion was chosen as the most parsimonious model and used to
predict genome-wide persistence requirements based on the 11
features selected for the full data (Table 2). Known positives and
negatives ranked by cross-validation provided empirical estimates
of precision and recall as a function of ranking. Predicted values
are provided genome-wide (see Data Set S2).

Gene selection for experimental verification. The top 75
computationally predicted genes were selected in rank order, in
addition to the positive and negative controls, pknF (Rv1746) and
Rv1863c (9), respectively, yielding 77 candidate genes. Of these 77
genes, 7 had unfavorable rankings as the prediction method was
being developed, and 1 known positive was not selected for test-
ing, leaving 69 genes selected for testing. Of the 70 corresponding
mutant strains, 7 failed to grow sufficiently in vitro, yielding 63
M. tuberculosis Tn mutants corresponding to 62 unique genes in
the infection pool.

Experimental verification in the murine model of TB infec-
tion. On the day after aerosol infection of BALB/c mice, the im-
plantation dose was determined to be 2.71 � 0.01 log10 bacilli. The
output time point of 14 weeks was selected to evaluate mutant
persistence in mouse lungs for consistency with previous studies
used for statistical modeling (5). In addition, earlier (day 49) and
day 196 time points were included to permit a kinetic analysis of
individual mutant survival.

Total lung bacillary counts increased and mice gained weight
as expected (see Data Set S3A and B). Gross examination of mouse
lungs 49 days postinfection and beyond revealed discrete tubercle
lesions. Histological evaluation showed cellular aggregates com-
prising primarily lymphocytes, with few histiocytes and plasma
cells. Acid-fast bacilli were localized primarily within foamy mac-
rophages (data not shown).

The ability of each mutant to survive in the host was ascer-
tained by quantitative real-time PCR (qPCR). PCR primers failed
to amplify 5 of the mutants. Of 63 mutants used, 5 (the Rv0099,
Rv0101, Rv1183, Rv1821, Rv3823c mutants) repeatedly failed to
amplify and were removed from further analysis. Data were avail-
able for a total of 58 mutants corresponding to 57 unique genes,
including 6 known positives previously characterized as having a
persistence phenotype, 12 known negatives previously character-
ized as not required for persistence in mouse lung, and 39 mutants
previously uncharacterized by DeADMAn. The mean predicted
precision was 32%.

Wild-type (null) mutants showed no change in representation
over time. On the other hand, attenuated mutants showed an
increase in cycle threshold (CT) number over time, and “hyper-
virulent” mutants showed a decreasing CT over time, indicating a
population fraction increase. Mutants having a multiple-testing-
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corrected P value of 0.05 were classified as either attenuated or
virulent; both replicates of Rv0169 had concordant null pheno-
types. Of the 57 unique genes tested, 23 were found to be attenu-
ated, 3 virulent, and 31 null (Table 3). Roughly equivalent results
are obtained using a threshold of 95% posterior probability for a
mutant to belong to the attenuated class. These thresholds corre-
spond to a change of about 1 CT unit between measurements or an
average change of 3 CT units (~8-fold attenuation) from the first
to the last of the 4 time points.

Statistical assessment of performance on known genes and
novel predictions. Of the 6 known positives that were tested, 5
gave growth defects in this test. The single known positive with no
growth defect was lldD2 (Rv1872c). However, the previously stud-
ied Rv1872c mutant was in an sigF deletion background (5), per-

haps accounting for the persistence phenotype. Of the 12 known
negatives that were tested, 8 remained negative. Four, however,
were attenuated: atsd (Rv0663), hrca (Rv2374c), fadA6 (Rv3556c),
and Rv3870. All four have been tested previously in related TraSH
studies, and all but Rv0663 were required for growth in mouse
spleen (2). The overall concordance for previously characterized
mutants is at least (5 � 8)/(6 � 12), or 72%, and may be closer to
(5 � 11)/(5 � 12), or 94%.

Of the 39 unique novel genes tested, 22 had no persistence
defect and 17 were found to have a non-wild-type phenotype, 14
with persistence defects and three with increased growth relative
to the wild type (Table 3). The attenuation ranged from 8-fold (the
lower limit for statistical significance) to over 100,000-fold (the
dynamic range of qPCR) (Fig. 3). Counting only the attenuated

FIG 1 Overview of study design. Phenotypes from previous studies of M. tuberculosis persistence in mouse lungs were combined with high-throughput data and
functional and metabolic networks to predict new candidate genes for experimental testing. Mutants corresponding to the top-ranked genes were grown, pooled,
and used for aerosol infection of mouse. Mutants were recovered from lungs at 1, 49, 98, and 196 days postinfection, and abundance for 57 mutants was
characterized by qPCR. Statistical models identified 23 of the 57 mutants as attenuated, including 18 novel genes, representing a 6-fold enrichment over the
fraction required for persistence genome-wide.
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strains as correct predictions, this 14/39 or 36% success rate is
close to the 32% success rate predicted by the statistical model and
represents a 6-fold enrichment over the 6% estimate of in vivo
persistence genes (5).

The 23 genes required for persistence in mouse lungs in this
assay include 5 that were previously known to be required and 18
novel genes that were either not tested or likely false negatives in
previous mouse lung screens (Table 3).

Concordance of experimental model systems. This and a pre-
vious study (5) used medium-throughput assays to test 545 geno-
typically characterized mutants for persistence in mouse lungs
following aerosol infection (see Data Set S4A to E). Similar mu-

tants have also been tested as part of high-throughput, complex
libraries using TraSH to study bacillary survival in macrophages
and in mouse spleen following intravenous infection (3, 6). Of the
459 genes tested by all three systems, 76 of the corresponding
mutants have a defect in at least one of the three systems: 8 are
attenuated in all three systems, and an additional 18 are attenuated
in two of the three systems (see Data Set S4F).

All pairwise comparisons of mutant phenotypes with 2-by-2
contingencies are highly significant (see Data Set S4G and H). It
does appear, however, that the in vivo DeADMAn system is more
similar to the corresponding in vivo TraSH mouse system (odds
ratio of 13.3, Fisher’s exact one-sided P value of 1.3 � 10�10) than

TABLE 1 Sources of data input into computational models

Source Description Edge wt Gene wt

M. tuberculosis networks
STRING functional associations
(27)

3,964 nodes, 496,278 edges Combined score � [0, 1]

BiGG metabolic reconstruction
(11)

661 nodes, 217,470 edges Poisson score mapped to [0, 1]

M. tuberculosis essential genes
Transposon mutants (1) 3,795 genes, Gibbs sampling posterior

probability
Pr(essential) � [0, 1]

TraSH (2) 3,172 genes Log(input/output)
M. tuberculosis persistence genes

DeADMAn in mouse (5) 31 persistence genes, 474 nonpersistence
genes

�1 (persistence),
�1 (nonpersistence),
0 (untested)

TraSH in mouse (6) 2,967 genes, measured 8 weeks after
infection

Log(input/output)

TraSH in mouse macrophage (3) 2,859 genes, unactivated macrophage Log(input/output)
TraSH in mouse macrophage (3) 2,859 genes, activated with IFN-�

before infection
Log(input/output)

TraSH in mouse macrophage (3) 2,859 genes, activated with IFN-�
after infection

Log(input/output)

M. tuberculosis differentially
expressed genes
Mouse infection (33) Weeks 1, 2, 4, and 8 after infection Log(input/output)
Macrophage infection (32) Hours 4 and 24 after infection Log(input/output)
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FIG 2 Statistical assessment of prediction methods. Predictions using logistic regression with stepwise selection by AIC (solid, green), logistic regression with
a full model (dashed, orange), and a support vector machine (solid, red) are assessed by receiver operating characteristic (A) and precision recall using 20-fold
cross-validation (B). Logistic regression with a full model or stepwise selection provide equivalent performance and are superior to the support vector machine.
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to TraSH in macrophages (odds ratio of 7.4, P value of 3.4 �
10�5). The two TraSH systems are also significantly correlated
(odds ratio of 14.2, P value of 5.2 � 10�9). Of genes attenuated by
TraSH overall, 37% are also required for persistence in mouse
lungs, similar to the predictive performance of the statistical
model. It is important to note, however, that this study identified
12 of the genes attenuated in both. Prior to this study, only 24% of
genes attenuated by TraSH were also found to be attenuated using
DeADMAn. Furthermore, of the mutants tested across all three
systems, distinct sets are attenuated in only a single system: 20 are
unique to DeADMAn, 18 are unique to TraSH in mice, and 12 are
unique to TraSH in macrophages. These results suggest corre-
sponding distinct mechanisms. The number of mutants unique to
TraSH in macrophages is smallest, possibly because macrophage
infection is common to all three systems.

Predictions with updated external data and new results from
this study. We investigated (see Data Set S4 to S6) whether re-
cently reported external data improved our predictions (28–31).
Incorporating four new external data sets with improved annota-
tion of essential genes did not improve the predictions: the area
under the curve (AUC) remained close to 0.69 and the F score

remained close to 0.30 (see Data Set S4A and B). We also updated
the predictions by including the new experimental results of this
study, which update gene labels from “untested” to either “atten-
uated” or “null,” together with the four new external data sets
(Fig. 4). In the three cases where the new experimental results
conflicted with previous results (lprK [Rv0173], lldD2 [Rv1872c],
tig [Rv2462c]), we used the new results for cross-validation tests.
Here, the prediction performance improved substantially, with a
new AUC of 0.77 and a new F score of 0.42 (see Data Set S4C and
D). Three genes are particularly noteworthy in rising substantially
in priority and also having mutants available for testing: Rv1410c,
fadD21 (Rv1185c), and pheA (Rv3838c).

DISCUSSION

Although many studies have highlighted the importance of vari-
ous adaptive mechanisms in promoting the long-term persistence
of M. tuberculosis in host tissues, the M. tuberculosis molecular
pathways underlying long-term survival in the infected host re-
main largely undefined (34–36). This information is not only im-
portant for improving our understanding of TB pathogenesis but
could also serve as the basis for the rational development of novel

TABLE 2 Stepwise logistic regression model

Feature Coefficient P value

Intercept �17.55 � 1,067.87 9.86 � 10�1

GDK (STRING, DeADMAn in mouse)a 8.37 � 2.21 1.57 � 10�4

GDK (STRING, TraSH in mouse macrophage after IFN-�) 0.66 � 0.37 7.47 � 10�2

GDK (STRING, TraSH in mouse) 1.62 � 0.42 1.14 � 10�4

GDK (STRING, TraSH essential genes) 0.40 � 0.23 8.95 � 10�2

GDK (metabolic, DeADMAn in mouse) �110.06 � 78.75 1.62 � 10�1

GDK (metabolic, TraSH in mouse macrophage unactivated) �1.35 � 0.76 7.62 � 10�2

GDK (metabolic, transposon mutants) 1,232.09 � 793.44 1.20 � 10�1

Mouse infection day 14 �0.63 � 0.42 1.39 � 10�1

Mouse infection day 21 0.65 � 0.22 3.42 � 10�3

Indicator (mouse infection day 7) �3.04 � 1.44 3.50 � 10�2

Indicator (mouse infection day 14) 17.82 � 1,067.88 9.86 � 10�1

a GDK (network, gene data) indicates features from a graph diffusion kernel with the given network and gene data.

TABLE 3 Experimental results of Tn mutant survival in mice and comparison with prior high-throughput studies

Gene(s) Count

Result

This screen DeADMAn (5) TraSH (3, 6)

mkl (Rv0655) 1 Attenuated Attenuated Attenuated
mmpL11 (Rv0202c), fadD26 (Rv2930) 2 Attenuated Attenuated Null
mmpL4 (Rv0450c), pknF (Rv1746) 2 Attenuated Attenuated Untested
hrcA (Rv2374c), fadA6 (Rv3556c), Rv3870 3 Attenuated Null Attenuated
atsD (Rv0663) 1 Attenuated Null Null
pks16 (Rv1013), Rv1045, lprG (Rv1411c), bioA (Rv1568), aceE

(Rv2241), cpsA (Rv3484), Rv3683, Rv3723, Rv3871
9 Attenuated Untested Attenuated

pntB (Rv0157), Rv1226c, Rv1591, mez (Rv2332), tig (Rv2462c) 5 Attenuated Untested Null
lldD2 (Rv1872c) 1 Null Attenuated Null
mce1A (Rv0169), Rv2707 2 Null Null Attenuated
mmpL6 (Rv1557), Rv1863c, Rv2674, ppsE (Rv2935), pks1 (Rv2946c) 5 Null Null Null
fadD28 (Rv2941) 1 Null Null Untested
lprK (Rv0173), Rv0176, pcaA (Rv0470c), lpqY (Rv1235), ppgK

(Rv2702), drrA (Rv2936), Rv3236c, Rv3616c, Rv3910
9 Null Untested Attenuated

gca (Rv0112), Rv0203, Rv0660c, Rv0662c, fabG (Rv2766c), dinF
(Rv2836c), ppsC (Rv2933), Rv3253c, aspB (Rv3565)

9 Null Untested Null

ppsA (Rv2931), ppsB (Rv2932), ppsD (Rv2934), Rv3273 4 Null Untested Untested
rodA (Rv0017c) 1 Virulent Untested Attenuated
gabD2 (Rv1731), pgsA2 (Rv1822) 2 Virulent Untested Null
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sterilizing drugs to shorten the duration of TB chemotherapy. The
computational methods developed here provide a genome-scale
ranking of bacterial mutants by predicting persistence pheno-
types. The predictions are then validated by medium-scale tests of
tens to hundreds of mutants in a mouse model. Using this ap-
proach, we observed a 6-fold enrichment in the predicted set of
M. tuberculosis genes required for persistence in mouse lungs rel-
ative to randomly selected mutant pools.

We identified 18 genes, which were previously not character-
ized as M. tuberculosis persistence in animal lungs. Of these genes,
Rv1013, Rv1411c, Rv2374c, Rv2462c, Rv3484, Rv3556c, Rv3683,
Rv3870, and Rv3871 were found to be significantly differentially
expressed during nutrient deprivation of M. tuberculosis (37, 38),
consistent with the hypothesis that the encoded products are in-
volved in adaptation of M. tuberculosis to the nutrient-deprived
environment of mouse lungs during chronic infection. The novel
persistence genes Rv1226c, Rv2462c, Rv3556c, Rv3683, and Rv3723
were shown to be significantly differentially regulated by M. tuber-
culosis upon inorganic phosphate limitation, suggesting that the
cognate products may contribute to bacillary survival within the
phosphate-starved environment of the macrophage phagolyso-
some during chronic infection (3, 39). These genes represent po-
tential novel drug targets but require further validation in individ-
ual infections.

The M. tuberculosis genome contains a number of genes be-
longing to the family of polyketide synthases (PKSs), which cata-
lyze the formation of polyketide secondary metabolites (40). The
PKSs are structurally and mechanistically related to the fatty acid
synthases (FASs), which are involved in the biosynthesis of fatty
acids. Recent reports suggest that proteins encoded by the three-
operon fadD26-mmpL7 locus (fadD26 ppsA-ppsE, drrA-drrC,
papA5 mas fadD28 mmpL7) play major roles in phthiocerol dimy-
cocerosate (PDIM) biosynthetic and transport pathways, which
are required for virulence (41–44). Out of 13 genes in this locus,

we tested 7 genes in the current study: fadD26, a known positive,
and ppsA-ppsE and drrA, all previously untested in mouse lungs,
except for the known negative ppsE. While attenuation of the
fadD26 mutant was confirmed, none of the remaining genes was
required for persistence in mouse lungs. Although the drrA and
drrB genes are required for macrophage infection (3), our data
suggest that they are not required for M. tuberculosis survival in
mouse lungs.

The PKS genes pks1, pks10 (45), and pks7 (46), which are in-
volved in dimycocerosyl phthiocerol synthesis, were reported to
be required for M. tuberculosis persistence in mice (45, 46). In the
current study, a pks16-deficient mutant showed reduced persis-
tence in mouse lungs, while the pks1-deficient mutant showed no
survival defect. The discrepancy between our findings and those of
Sirakova et al. may be due to the different strains of mice (BALB/c
and C57BL6/J, respectively), different routes of infection (aerosol
and intranasal, respectively), different inoculating dose (102 and
104 CFU, respectively), or model system (pooled and individual
infection, respectively) (45). It is unlikely that the function of the
Pks1 protein was not abrogated in our mutant, since the Tn inser-
tion is at 2,869 bp (total gene length � 4,863). Although pks7 was
previously reported to be an essential gene (2), our data are con-
sistent with other studies demonstrating that the gene is dispens-
able for in vitro growth but essential for M. tuberculosis survival in
mice (4).

Of the 12 M. tuberculosis genes designated mycobacterial mem-
brane protein large (mmpL1 to mmpL12), we studied three
(mmpL4, mmpL11, mmpL6) and confirmed the results of earlier
high-throughput screens demonstrating that the first two genes
are required for long-term bacillary survival in mouse lungs (5,
41). MmpL4 and MmpL11 are predicted to serve as lipid trans-
porters and have been shown to have a role in M. tuberculosis
virulence in mice (47).

The genes Rv3870 and Rv3871, which together with Rv3877

FIG 3 M. tuberculosis Tn mutant survival, as assessed by qPCR. Genes are sorted in decreasing order of �g (blue line), the regression fit of the change in �CT over
3 time intervals; large positive values correspond to attenuated mutants (green), and large negative values correspond to virulent mutants (red). The �CT values
at day 49 (dotted line), day 98 (dashed line), and day 196 (solid line) are shown relative to the day 1 baseline.
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encode cytosolic or membrane-bound components of the ESX-1
secretion machinery, were found to be required for persistence in
mouse lungs in the current study. Our findings are consistent with
prior studies demonstrating a requirement for Rv3871 in M. tu-
berculosis survival in murine macrophages (3) and lungs (2), as
well as in nonhuman primate lungs (9). Together, these results
indicate the central role for the ESX secretion pathway in M. tu-
berculosis virulence (48).

Interestingly, four mutants (Rv0017c::Tn, Rv0112::Tn,
Rv1731::Tn, and Rv1822::Tn) were more abundant in the mouse
lungs at days 98 and 196 relative to day 49. Data for two mutants
(Rv0017c::Tn and Rv0112::Tn) appear to conflict with earlier
TraSH-based studies reporting that Rv0112 is an essential gene (2)
and that Rv0017c is required for M. tuberculosis survival in pri-
mary murine macrophages (3). Since the Tn insertion in our mu-
tant, the Rv0112::Tn mutant, is at base pair position 91 (total gene

length � 957 bp), gene function is expected to be disrupted, indi-
cating that it is, in fact, a nonessential gene (1). The discrepancy in
our findings and those of Rengarajan et al. (3) regarding Rv0017c,
which encodes a probable cell division protein RodA, may be due
to differences in models (mouse versus macrophages) or tech-
niques used to assess mutant growth and survival (qPCR versus
microarrays).

The current study demonstrates that a network-based compu-
tational approach integrating diverse high-throughput data sets
may be used to predict genes essential for M. tuberculosis persis-
tence in mouse lungs. These computational predictive algorithms
can be further improved by iterative refinement through active
learning or by including data from additional relevant model sys-
tems, M. tuberculosis regulatory networks (49), and operon struc-
ture. To test this hypothesis, we updated the external data by in-
cluding four new essential gene data sets and updated the training
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data by using the new experimental results from this study. The
new experimental results highlighted three additional genes as
high-priority candidates for testing. Additional rounds of experi-
mentation and modeling could therefore lead to even greater
knowledge of the genetic requirements for M. tuberculosis persis-
tence. We believe future work should focus on the development of
small molecule inhibitors of the most promising candidates iden-
tified through such systems biology-based approaches, with the
ultimate goal of shortening the duration of TB chemotherapy.

MATERIALS AND METHODS
Network data. A functional association network for the M. tuberculosis
H37Rv strain was obtained from the STRING database (27). A metabolic
reconstruction for H37Rv (11) was converted to a functional association
network using the log-likelihood ratio � for shared metabolites (18) and
then mapped to the weight: 1/(1 � e2 � �). Protein-protein interactions
from yeast two-hybrid screens (50) are included in STRING and did not
improve performance when used as a separate feature.

Essential genes in vitro. Probabilities that genes are essential for
M. tuberculosis growth in nutrient-rich broth were compiled from two
random mutagenesis studies and Gibbs sampling with mutant survival
data (1, 2, 51). Probabilities were recalculated using the “negenes”
R-package (http://www.biostat.wisc.edu/~kbroman/software/) from cur-
rent data available from the Tuberculosis Animal Research and Gene
Evaluation Taskforce (TARGET) (http://webhost.nts.jhu.edu/target/).

Persistence genes in vivo. Genes required for M. tuberculosis survival
in mouse tissues (persistence genes) were obtained from two previous
studies (5, 6). In addition, data were extracted from a Tn mutant study in
macrophages derived from C57BL/6J bone marrow with and without
gamma interferon (IFN-�) activation (3). Persistence genes from M. tu-
berculosis strain CDC 1551 were mapped to H37Rv orthologs from Tu-
bercuList (52). Scores sg were log output pool/input pool for each gene g,
and sg � 0 for untested genes. The 8-week time point from the Sassetti et
al. study (6) was selected as the closest match to the 49-day time point in
the Lamichhane et al. study (5). Class totals for each study were

S� � �
g

|sg � |sg||
2

and normalized weights wg were sgStot/S� for �sg � 0 and Stot � S� � S�.
Transcriptional profiling. Transcriptional data of M. tuberculosis

H37Rv during infection of mouse lungs and bone marrow-derived mac-
rophages were obtained from the TB database (53). Features, defined as
positive or negative weights wg for each gene g, were the log ratios of the
transcriptional profiles obtained at 1, 2, 3, and 4 weeks (33) or 4 and 24 h
(32) postinfection.

Features from graph diffusion kernels Please see Data Set S1 for a
detailed description.

Classification and cross-validation performance assessment. Please
see Data Set S1 for a detailed description. Software and data sets are avail-
able in the supplemental material (see Data Set S1 and reference 54).

Mutant pool generation for experimental studies. A library of 5,126
unique transposon (Tn) insertion mutants in 2,246 unique genes in CDC
1551 was generated previously (1). The top 75 genes with Tn mutants
available were considered in rank order, and 67 were selected for testing. A
positive control, JHU1746-380, an in vivo persistence mutant containing a
Tn insertion in gene Rv1746/MT1788, and a negative control, JHU1863c-
275, a fully virulent mutant containing a Tn insertion in gene Rv1863c/
MT1912, were also added to the pool. JHU0169-511 and JHU0169-573
mutants were internal controls with Tn insertions in the same gene but at
different positions (511 bp and 573, respectively). Each mutant was grown
individually at 37°C in supplemented Middlebrook 7H9 medium (Difco)
containing 20 �g/ml kanamycin (Sigma) to mid-log phase (optical den-
sity at 600 nm [OD600] of ~0.6). The 63 different mutants in 62 unique
genes were pooled by combining an equal volume of each strain.

Mouse infection. All procedures involving animals were performed in
compliance with the U.S. Animal Welfare Act regulations and Public
Health Service Policy according to protocols approved by the Institutional
Animal Care and Use Committee at Johns Hopkins University. All mice
were maintained and bred under specific-pathogen-free conditions and
fed water and chow ad libitum. Female BALB/c mice (5 to 6 weeks old;
Charles River) were infected via the aerosol route using an inhalation
exposure system (Glas-Col) with 2 log10 bacilli. Five mice per group were
sacrificed at days 1, 49, 98, and 196 postinfection. Both lungs were homog-
enized in phosphate-buffered saline (PBS), plated on supplemented
Middlebrook 7H10 solid medium (Difco) containing 20 �g of kanamy-
cin/ml, and incubated at 37°C at least 3 weeks before colony enumeration
or DNA extraction.

Real-time PCR. For each time point, approximately 1,000 colonies
were scraped and pooled, and genomic DNA (gDNA) was prepared (4, 5,
7). The gDNA preparations from each experimental group were pooled,
and qPCR was performed in duplicate using iCycler iQ (version 3.1.7050;
Bio-Rad). Mutant-specific primer sets, each composed of a generic Tn
primer and a gene-specific primer, were designed to amplify 150- to
200-bp DNA fragments and validated by amplifying the correct-sized
fragment by conventional PCR. For a given qPCR run, the cycle threshold
(CT) for Tn mutant g is CT(g) and for the housekeeping gene sigA is CT(h).
The difference CT(g) � CT(h) is �CT(gtr), where g labels the mutant, t
labels the four time points (day 1, 49, 98, or 196), and r labels the technical
replicate (1 or 2). Finally, ygt is the average of the replicates: ygt �
[�CT(gt1) � �CT(gt2)]/2. A detailed description of the qPCR data anal-
ysis is provided in Data Set S1. Software, data, and expectation-
maximization detailed methods are available in the supplemental material
(see Data Set S1).

New predictions based on additional experimental data sets and
new experimental results. We collected essentiality data sets from four
papers published after the initial selection of candidates for testing (28–
31). Three of these new data sets rely on improved experimental methods
using next-generation sequencing to identify TA sites lacking transposon
insertions. Different methods characterize essential genes based on the
number of consecutive TA sites without observed insertions (29) or iden-
tify overlapping genome regions lacking transposon insertions and then
identify genes overlapping these essential regions (29, 31). New Bayesian
methods using extreme value distributions to describe runs of TA sites
have also been applied to estimate posterior probabilities of essentiality
for each gene (28, 29). In addition to these experimental approaches, a
recent computational method employed a metabolic reconstruction and
flux balance analysis (FBA) to identify essential metabolic genes (30).
These data sets generally identify 700 genes overall as essential, of which
about 200 are metabolic (see Data Set S5A). These four data sets were
incorporated as additional essential gene features and propagated through
the biological networks using graph diffusion kernels.

New predictions also relied on updated “attenuated” and “nonattenu-
ated” gene labels according to the new results for mutants tested experi-
mentally. Mutants found to be virulent were labeled as nonattenuated.

We generated new predictions in two stages: first, we included just the
new external data; then, we also included the updated gene labels. These
predictions used the same methods as described for the original set of
predictions used to prioritize genes for testing (see Data Set S6).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.01066-13/-/DCSupplemental.

Data Set S1, DOCX file, 0 MB.
Data Set S2, XLSX file, 0.9 MB.
Data Set S3, PPTX file, 0.1 MB.
Data Set S4, DOCX file, 0.2 MB.
Data Set S5, DOCX file, 0 MB.
Data Set S6, XLSX file, 0.3 MB.
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