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Background: Colorectal cancer (CRC) is the third most prevalent cancer

worldwide and the second leading cause of cancer mortality. Signal

transducer and activator of transcription (STAT) proteins are a group of

transcription factors implicated in cell signal transduction and gene

transcription in several cancer types. However, the level of expression,

genetic alterations, and biological function of different STATs, as well as

their prognostic and immunotherapeutic value in CRC remain unclear.

Methods: The mRNA and protein expression levels, genetic alterations,

prognostic value, gene–gene and protein–protein interaction networks, and

biological function of STATs in CRC were studied using the GEPIA, HPA,

cBioPortal, PrognoScan, Kaplan–Meier plotter, GeneMANIA, STRING, and

Metascape databases. The expression of STATs in CRC was confirmed using

immunohistochemistry (IHC). Finally, the relationship between STAT expression

and immune infiltration as well as immunotherapy-associated indicators was

also investigated.

Results: The expression levels of STAT2/5A/5B are downregulated in CRC, and

the STAT1/3/4/5B expressions were significantly associated with the tumor

stage of patients with CRC. The abnormal expression of STAT2/4/5B in patients

with CRC is related to the prognosis of patients with CRC. The STATs and their

neighboring proteins are primarily associated with lymphocyte activation,

cytokine-mediated signaling pathways, positive regulation of immune

response, regulation of cytokine production, and growth hormone receptor

signaling pathways in cancer. The expression of STATs was significantly

associated with immune infiltration and immunotherapy response-

associated indicators.
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Conclusion: This study may help further understand the molecular mechanism

of CRC and provide new prognostic biomarkers and immunotherapy targets in

patients with CRC.
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Introduction

Global cancer data in 2020 showed that colorectal cancer (CRC)

was the third most prevalent cancer globally and the second leading

cause of cancer mortality (Sung et al., 2021). Since the early

symptoms of colorectal cancer are not typical (Yoshioka et al.,

2014), 35% of patients are often found with metastatic disease when

they are diagnosed, and 50% of patients without metastasis

ultimately develop metastatic CRC (Zacharakis et al., 2010).

Despite advances in chemotherapy, targeted therapy, and

immunotherapy, the clinical outcome of CRC remains poor,

especially in metastatic CRC (Brenner et al., 2014). Thus,

exploring the possible pathogenetic mechanisms of CRC, as well

as discovering early diagnostic biomarkers and treatment targets, is

crucial for improving patients’ prognoses.

STATs are a group of transcription factors encoded by seven

members (STAT1/2/3/4/5A/5B/6) of the STAT gene family that are

involved in cell proliferation, differentiation, apoptosis, and

immune system regulation (Verhoeven et al., 2020). As a result,

dysregulation of their pathway would result in a variety of diseases,

including cancer (Bowman et al., 2000). Extensive studies have

already demonstrated that inappropriate activation of specific

STAT members contributes to oncogenesis, especially for the

Janus kinase (JAK)/STAT3 pathway, which has been linked to

many types of cancer (Johnson et al., 2018). For example, Li et al.

reported that long non-coding RNA RP11-468E2.5 could curtail

CRC development and promote apoptosis via the JAK/STAT

signaling pathway by targeting STAT5 and STAT6 (Jiang et al.,

2019).

Despite great importance of STATs in malignancies, there has

been no study to explore the implications of every STAT factor in

CRC, including their expression level, genetic variation, biological

function, and potential molecular mechanism. Furthermore, their

correlation with the prognosis, immune infiltration, and

immunotherapy response in patients with CRC also remains

unknown. Thus, it is necessary to comprehensively analyze the

significance of each STAT member in CRC development and

progression.

Multiple large-scale bioinformatics databases were used in this

study for comprehensive bioinformatics analysis of the expression of

STATs and their associations with tumor stage in patients with CRC.

In addition, immunohistochemistry (IHC) was used to confirm the

differential expressions of STATs in CRC and normal tissues.

Subsequently, the genetic variation, biological function, and

molecular mechanism of each STAT member in CRC were

explored. Ultimately, the relationship between the expression of

STATs and prognosis, immune infiltration, and immunotherapy

response in patients with CRC was analyzed.

Materials and methods

Data acquisition and analysis of differential
expression

The Genotype-Tissue Expression (GTEx) database (https://

commonfund.nih.gov/GTEx/) collects data from 54 normal

human tissues for sequencing, which can be used to compare the

differential level of gene expression between normal and diseased

tissues (GTEx Consortium, 2013). The Cancer Genome Atlas

(TCGA) (https://tcga.xenahubs.net) mainly contains data from

33 different types of tumors. The RNA sequencing data of

normal samples from the GTEx database and tumor samples

from TCGA were downloaded, and the Wilcoxon rank-sum test

method was used to compare the differential mRNA expressions of

STATs between 33 different types of cancers and corresponding

normal tissues. Threshold values were determined according to the

following values: ns, p ≥ 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.

The “ggplot2” R package was used for the boxplot.

Gene Expression Profiling Interactive
Analysis 2 (GEPIA2) dataset

GEPIA2 (http://gepia2.cancer-pku.cn) is the latest version of

GEPIA, which analyzes RNA sequencing expression data

including 9,736 tumors and 8,587 normal samples from TCGA

andGTEx projects using standard processing pipelines (Tang et al.

, 2019). GEPIA2 offers a variety of functions such as differential

gene expression analysis, cancer types and pathological staging,

similar gene detection, patient survival analysis, correlation

analysis, and dimensionality reduction analysis.

Human Protein Atlas (HPA) dataset and
immunohistochemistry (IHC)

HPA database (https://www.proteinatlas.org/) was used to

compare the STAT gene protein expression in the CRC tissues

and the corresponding normal tissues.
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IHC staining was used to further validate the reliability of

the above results. Clinical samples were collected from

21 patients with CRC who were undergoing surgical

treatment in our hospital, and their clinical information is

shown in Supplementary Table S1. Firstly, these samples

were made into 3 μm paraffin sections and incubated with

rabbit monoclonal antibodies of STAT1, STAT2, STAT3,

STAT4, STAT5A, STAT5B, and STAT6 (1:100, all from

Abcam, USA) at 4°C overnight. The sections were then

conjugated with horseradish peroxidase (HRP) secondary

antibody (Abcam, USA) at 1/500 dilution at room

temperature for 2 h. Subsequently, the conjugates were

stained with 3,3′-diaminobenzidine (DAB) reagent, and

ultimately counterstained with hematoxylin. The IHC score

of STATs was assessed manually and calculated by a

pathologist. The percentage of positive cells was scored as: 0

(0–10% positive); 1 (10–25% positive); 2 (26–50% positive); 3

(51–75% positive); and 4 (≥76% positive). The staining

intensity was scored as: 0 (no staining); 1 (weak); 2

(moderate); and 3 (strong). The overall IHC score was

calculated by multiplying the score of positive cells (0–4) by

the staining intensity (0–3).

Tumor–Immune System Interactions and
Drug Bank (TISIDB) database

TISIDB (http://cis.hku.hk/TISIDB) is a website for the tumor

and immune system interaction that integrates multiple types of

data in oncoimmunology and reports genes related to antitumor

immunity, tumor cell resistance or sensitivity to T cell-mediated

killing and immunotherapy, and relationships between genes

and immune features of 30 cancer types from TCGA (Ru et al.,

2019).

PrognoScan database and the
Kaplan–Meier plotter analysis

The prognostic value of STATs mRNA expression in patients

with CRC was assessed by the PrognoScan Database (http://

www.abren.net/PrognoScan/) (Mizuno et al., 2009). This could

be used for evaluating the correlation between gene expression

and patient survival including overall survival (OS) and disease-

free survival (DFS). Cox p < 0.05 was considered statistically

significant.

The Kaplan–Meier plotter (www.kmplot.com), an online

database containing gene expression data and clinical survival

information of cancer patients (Nagy et al., 2018), was further

used to validate the relationship between STAT expression in

rectal adenocarcinoma (READ) and OS. The hazard ratio (HR)

with 95% confidence intervals and log-rank p-value were also

calculated.

cBioPortal

cBioPortal (http://www.cbioportal.org) is an online database

that can conduct multidimensional cancer genomics studies

(Gao et al., 2013). A colorectal adenocarcinoma dataset

(TCGA, PanCancer Atlas) containing 524 patients was

selected to analyze the expression of STATs. The genomic

profiles included mutations, putative copy-number alterations

from Genomic Identification of Significant Targets in Cancer

(GISTIC) scores, and mRNA expression z-scores (RNA Seq

V2 RSEM). The z-score threshold was set at ±1.8.

Network analysis

GeneMANIA (www.genemania.org), an online analysis tool

that provides protein and genetic co-expression, co-localization,

interactions, pathways, and shared protein domains of submitted

genes (Franz et al., 2018), was used to perform a gene–gene

interaction network for STATs. STRING (https://string-db.org),

an online dataset that collects and integrates all publicly available

protein–protein interaction (PPI) data and predicts potential

functions (Szklarczyk et al., 2019), was used to construct a

PPI network for STATs.

Functional enrichment analysis

Firstly, GEPIAwas used to identify the top 30 similar genes in

CRC for each STAT family member. Metascape was

subsequently used to perform Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment pathway analysis of the STATs and similar genes

(Zhou et al., 2019). Only terms with p < 0.01, minimum count >3,
and enrichment factor >1.5 were considered significant.

Tumor Immune Estimation Resource
(TIMER) dataset

TIMER (http://timer.cistrome.org/), an online dataset that

provides tumor immune infiltrating abundances estimated by

multiple immune deconvolution methods (Li et al., 2020), was

used in this study to evaluate the correlation between STAT

expression levels and immune cell infiltration.

Statistical analysis

The difference between STAT IHC scores in normal and

tumor tissues was tested using a two-tailed Student’s t-test with

unpaired analysis. The correlation between STAT gene

expressions and immune infiltration level, tumor purity,
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immune checkpoints, tumor mutation burden (TMB),

microsatellite instability (MSI), and mismatch repair (MMR)

genes in CRC was assessed using Spearman’s correlation

coefficients, and a p < 0.05 was considered statistically

significant.

Results

The expression levels of STATs in pan-
cancer

STAT expression levels in 33 types of tumors were

evaluated using data from TCGA database (n = 9,379) and

GTEx database (n = 8,293). In most types of tumors, all STAT

family members had significantly abnormal levels of

expression compared to normal tissues (Figure 1). Tumors

of the digestive system were concentrated on since this study is

mainly about CRC. The STAT1 gene was highly expressed in

most tumors, including cholangiocarcinoma (CHOL), colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA),

liver hepatocellular carcinoma (LIHC), pancreatic

adenocarcinoma (PAAD), READ, and stomach

adenocarcinoma (STAD) (Figure 1A). The STAT2 gene

expression levels were high in CHOL and PAAD but low in

COAD and READ (Figure 1B). The STAT3 gene was highly

expressed in CHOL, ESCA, PAAD, and STAD but not in

COAD, LIHC, or READ (Figure 1C). The expression of STAT4

was high in CHOL, ESCA, PAAD, and STAD but low in

COAD, LIHC, and READ (Figure 1D). The STAT5A gene

expression was high in CHOL, LIHC, PAAD, and STAD but

low in COAD, ESCA, and READ (Figure 1E). The expression

of STAT5B was high in CHOL and PAAD but low in COAD,

ESCA, and READ (Figure 1F). STAT6 presented high

expression in CHOL and PAAD but low expression in

COAD, ESCA, LIHC, and READ (Figure 1G).

FIGURE 1
Transcription levels of signal transducer and activator of transcription (STAT) factors in different types of cancers from The Cancer Genome
Atlas (TCGA) database and the Genotype-Tissue Expression (GTEx) database.
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FIGURE 2
Transcription levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) from the Gene Expression
Profiling Interactive Analysis 2 (GEPIA2) dataset.
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Transcriptional and translational
expression levels of STATs in CRC patients

The GEPIA dataset was used to compare the transcriptional

levels of STATs between CRC and normal tissues (Figure 2A and

Figure 2B). The results showed that the expression level of STAT1

in CRC tissues was higher than in normal colon tissues, and the

transcriptional levels of STAT2 and STAT5B in CRC were lower

than in normal tissues significantly. The expressions of STAT3/4/

5A/6 genes were lower in CRC than in normal samples, although

there was no statistical significance.

The HPA database and IHC staining were used to further

confirm the protein expression of STATs in CRC and normal

tissues. The HPA database results indicated that the STAT1

protein was more highly expressed in the CRC tissues than in

the normal tissues, while STAT2/5A/5B/6 were significantly less

expressed in CRC tissues than in normal tissues (Figure 3). The

IHC results and scores from clinical samples showed the protein

levels of STAT1 were higher, and levels of STAT2/5A/5B were

lower in CRC tissues than in the adjacent normal tissues with

great significance (Figure 4 and Supplementary Figure S1).

The prognostic value of STATs in CRC
patients

The relationship between transcriptional levels of STATs and

CRC stage was investigated using the TISIDB. The results showed

that the expression levels of STAT1/3/4/5B were significantly

associated with the tumor stage of patients with CRC. However,

there was no significant correlation between the STAT2/5A/6

expression and tumor stage (Figure 5).

The correlation between STAT expression and clinical outcome

was evaluated using the PrognoScan database and the Kaplan–Meier

plotter analysis to assess the value of STATs expression levels in the

prognosis of CRC (Figure 6). The PrognoScan database analysis

results showed that higher STAT2/4/5B mRNA levels were

significantly associated with better OS (p < 0.05) and increased

STAT2/3/4/5B transcription levels were significantly associated with

longer DFS (p < 0.05) (Figure 6A). In addition, the correlation

between STAT expression levels and OS in patients with READwas

further validated using the Kaplan–Meier plotter, which indicated

that high expression of STAT1/4/5B favored OS (p < 0.05)

(Figure 6B).

FIGURE 3
Translation levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) from the Human Protein Atlas
(HPA) dataset.
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Gene mutations, co-expression, and
interaction analyses of STATs in CRC
patients

The cBioPortal online tool was used to evaluate genetic

alterations and STAT factor correlations in patients with CRC.

STATs were found to be altered in 224 (43%) of 524 patients

(Figure 7A). The genes with the highest and lowest mutation rates in

STATs are STAT5B (15%) and STAT4 (7%), respectively. The others

are STAT1 (9%), STAT2 (9%), STAT3 (12%), STAT5A (9%), and

STAT6 (12%) (Figure 7A). It was also found that patients with

colorectal mucinous adenocarcinoma were most likely to have

STAT gene alterations (53.57% of 56 cases) (Figure 7B). The

analysis results from cBioPortal showed that patients in the

unaltered group seemed /to have a better prognosis than those in

the altered group but without statistical significance (Supplementary

Figure S2A). The potential effects of every single STAT factor on

prognosis were then evaluated and the results showed that patients

with altered STAT4 had significantly poorer prognostic outcomes

compared with unaltered patients (Supplementary Figure S2E).

TIMER dataset analysis was used to evaluate the effect of STAT

mutations on five types of immune cell infiltration, and the

outcomes indicated that mutated STAT1 correlates with a higher

level of neutrophil infiltration; mutated STAT4 correlates with more

B cells, CD8+ T cells, and neutrophil infiltration; mutated STAT5A

correlates with a higher level of CD4+ T cells and neutrophils;

mutated STAT5B correlates with more B cells and; mutated STAT6

correlates with lower B cell infiltration with significance

(Supplementary Figure S3).

We further explored the co-expression of STAT members in

patients with CRC, and there were strong or moderate positive

relationships between STAT1 and STAT2, STAT3, STAT4, and

STAT5A; STAT2 and STAT3, STAT4, STAT5A, STAT5B, and

STAT6; STAT3 and STAT4, STAT5A, and STAT5B and; STAT5A

and STAT5B and STAT6 (p < 0.05) (Figure 7C).

The gene–gene interaction (GGI) network of STATs was

established using the GeneMANIA database (Figure 7D). Based

on shared protein domains, co-localization, physical interactions,

co-expression, pathways, and genetic interactions, 20 related genes

were enriched in this network. These genes are involved in a variety

of functions such as receptor tyrosine kinase binding, receptor

signaling pathway via STAT, signaling receptor complex adaptor

activity, signaling adaptor activity, phosphoprotein binding,

protein phosphorylated amino acid binding, and growth

hormone receptor signaling pathway. STRING was used to

explore the potential interactions between STATs at the protein

FIGURE 4
Translation levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) with immunohistochemistry (IHC).
Scale bar = 50 µm.
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level, as shown in Figure 7E, where the PPI network diagram had

seven nodes and 21 edges. The analysis results of PPI network

indicated that each STAT factor has known or predicted

interactions with the others, especially STAT3, which has

experimentally determined interactions with each of the other

factors. The top four molecular pairs with strong functional links

based on combined scores were STAT1 and STAT2, STAT1 and

STAT3, STAT3 and STAT5B, and STAT1 and STAT5A.

Functional enrichment analysis of STATs
and the genes similar to them in CRC
patients

GEPIA2 datasets were used to identify the top 30 genes that

have a similar expression pattern to each STAT family member.

The GO and KEGG enrichment pathway analyses of STATs and

their similar genes were then performed using Metascape. The

top 20 GO enrichment items were composed of 16 biological

processes (BP) items, three molecular functions (MF) items, and

one cellular component (CC) item (Figure 8A, Figure 8B, and

Table 1). The first five projects are all in the BPs, and they are

lymphocyte activation, cytokine-mediated signaling pathway,

positive regulation of immune response, regulation of cytokine

production, and growth hormone receptor signaling pathway via

JAK/STAT. MFs that were significantly related to STATs and

similar genes were kinase binding, GTPase regulator activity, and

CCR5 binding. The only one CC was side of the membrane.

The first 16 KEGG pathways are displayed in Figure 8C,

Figure 8D, and Table 2. The results indicated the involvement of

STATs in pathways such as Th17 cell differentiation, chemokine

signaling pathway, T cell receptor signaling pathway, and

cytokine–cytokine receptor interaction.

The relationship between STAT expression
levels and immune infiltration levels
in CRC

According to the results of GO and KEGG enrichment analysis,

it was found that STATs were closely related to immune functions

such as lymphocyte activation, positive regulation of immune

response, Th17 cell differentiation, and T cell receptor signaling

pathway. The results indicated that STATs were involved in the

regulation of the tumor immunemicroenvironment, which is closely

related to the initiation and progression of tumors.

FIGURE 5
Correlation between signal transducer and activator of transcription (STAT) factor expression and tumor stage in patients with colorectal cancer
(CRC) from the Tumor–Immune System Interactions and Drug Bank (TISIDB) database.
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FIGURE 6
Relationship between signal transducer and activator of transcription (STAT) factor expression and prognosis in patients with colorectal cancer
(CRC). (A) Prognostic value of STATs in patients with CRC in the OS and DFS curves (PrognoScan). (B) Prognostic value of STATs in rectal
adenocarcinoma (READ) patients in the OS curve (Kaplan–Meier plotter).
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FIGURE 7
Genetic mutations, co-expression, and interaction analysis of signal transducer and activator of transcription (STAT) factors at gene and protein
levels in patients with colorectal cancer (CRC) (cBioPortal, GeneMANIA, and STRING). (A) Analysis of genemutations of STAT family members in CRC.
(B) Summary of alterations in expressed STATs in CRC. (C) Correlation heatmap of expressed STATs in CRC. The numbers in the color blocks
represent Spearman’s correlation coefficient. (D)Gene–gene interaction network among STATs predicted by GeneMANIA. (E) Protein–protein
interaction network among STATs predicted by STRING.
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As a result, we used TIMER online dataset to evaluate the

relationship between STAT expression and immune cell

infiltration in CRC. As shown in Figure 9, the outcomes, as

expected, revealed that STATs were involved in many types of

immune cell infiltration and influenced the clinical outcome of

patients with CRC. STAT1/2/3/4 expressions had a positive

correlation with the infiltration of B cells, CD8+ T cells, CD4+

T cells, macrophage, neutrophil, and dendritic cells (Figures

9A–D). The expressions of STAT5A/5B/6 were positively

correlated with the infiltration of CD4+ T cells, macrophage,

neutrophil, and dendritic cells, and STAT5A expression was also

positively related to the infiltration of B cells (Figures 9E–G).

The correlation between STATs and
immunotherapy response-related
indicators in CRC

The tumor microenvironment (TME) includes tumor cells,

stromal cells, immune cells, and extracellular matrix. Stromal

cells have been reported to promote tumorigenesis in many

ways, and infiltration levels of different immune cells are also

linked to tumor prognosis. As a result, the correlation between

STAT gene expressions and stromal cells and immune cell

content in CRC was subsequently evaluated. The results

showed that the expressions of STAT1, STAT2, STAT3,

STAT4, and STAT5A were positively related to stromal

score, immune score, and ESTIMATE score with great

significance (p < 0.001) (Figures 10A–E). Also, the

expression of STAT5B was positively related to the stromal

score and the ESTIMATE score, but there was no relationship

between STAT6 expression and these scores as shown in

Figure 10F and Figure 10G. The correlation analysis showed

that STAT gene expressions were strongly positively related to

eight immune checkpoints, including CD40LG, ADORA2A,

TNFSF14, ICOSLG, TNFRSF8, CD27, VSIR, and TNFRSF4 (r >
0, p < 0.001) (Figure 10H and Table 3). In addition, the

expressions of STAT genes were also correlated with most

chemokines and their receptors (Figure 11).

TMB is a predictive biomarker of response for cancer

patients receiving immune checkpoint blockade. The study

results revealed a positive relationship between TMB score

and STAT1, STAT2, and STAT4 expression (p < 0.001), and a

negative relationship between TMB score and STAT5B

FIGURE 8
Functional enrichment analysis of signal transducer and activator of transcription (STAT) factors and the genes similar to them in patients with
colorectal cancer (CRC) (Metascape). (A)Heatmap of GO enriched terms colored by p-values. (B)Network of GO enriched terms colored by p-value,
where terms containing more genes tend to have amore significant p-value. (C)Heatmap of KEGG enriched terms colored by p-values. (D)Network
of KEGG enriched terms colored by p-value, where terms containing more genes tend to have a more significant p-value.
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expression (p < 0.001) (Figure 12A). The MSI status is also

closely linked to the response to immune checkpoint blockade,

especially in patients with CRC. As a result, the correlation

between STAT expression and MSI score was also assessed,

and the results indicated that STAT1, STAT2, STAT3, and

STAT4 were positively correlated with MSI score (p < 0.001),

TABLE 1 Gene Ontology (GO) functional enrichment analysis of signal transducer and transcription (STAT) factors and neighbor genes in colorectal
cancer (CRC) (Metascape).

GO Category Description Count % Log10 (P) Log10 (q)

GO:0046649 GO biological processes Lymphocyte activation 39 21.08 -23.76 -19.41

GO:0019221 GO biological processes Cytokine-mediated signaling pathway 27 14.59 -17.78 -13.90

GO:0050778 GO biological processes Positive regulation of immune response 27 14.59 -15.59 -11.84

GO:0001817 GO biological processes Regulation of cytokine production 29 15.68 -13.88 -10.49

GO:0060397 GO biological processes Growth hormone receptor signaling pathway via JAK/STAT 6 3.24 -11.87 -8.86

GO:0009615 GO biological processes Response to virus 18 9.73 -10.80 -8.00

GO:0031347 GO biological processes Regulation of defense response 22 11.89 -10.32 -7.56

GO:0046631 GO biological processes Alpha-beta T-cell activation 12 6.49 -9.60 -6.96

GO:0019900 GO molecular functions Kinase binding 23 12.43 -9.55 -6.93

GO:1901652 GO biological processes Response to peptide 19 10.27 -9.41 -6.79

GO:0000165 GO biological processes MAPK cascade 23 12.43 -9.27 -6.67

GO:0043368 GO biological processes Positive T-cell selection 7 3.78 -8.60 -6.06

GO:0030695 GO molecular functions GTPase regulator activity 17 9.19 -7.98 -5.50

GO:0098552 GO cellular components Side of membrane 19 10.27 -7.79 -5.34

GO:0031730 GO molecular functions CCR5 binding 4 2.16 -7.03 -4.64

GO:0010506 GO biological processes Regulation of autophagy 13 7.03 -7.00 -4.62

GO:0032615 GO biological processes Interleukin-12 production 7 3.78 -6.98 -4.61

GO:0030099 GO biological processes Myeloid cell differentiation 14 7.57 -6.94 -4.57

GO:0030036 GO biological processes Actin cytoskeleton organization 18 9.73 -6.35 -4.06

GO:0050900 GO biological processes Leukocyte migration 13 7.03 -6.27 -3.99

TABLE 2 Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of signal transducer and transcription (STAT) factors and
neighbor genes in colorectal cancer (CRC) (Metascape).

GO Category Description Count % Log10 (P) Log10 (q)

ko04659 KEGG pathway Th17 cell differentiation 16 8.65 -17.27 -14.39

hsa04062 KEGG pathway Chemokine signaling pathway 19 10.27 -16.55 -14.25

ko04917 KEGG pathway Prolactin signaling pathway 9 4.86 -9.33 -7.76

hsa05166 KEGG pathway HTLV-I infection 12 6.49 -7.17 -5.78

ko04660 KEGG pathway T-cell receptor signaling pathway 8 4.32 -6.61 -5.26

hsa04060 KEGG pathway Cytokine–cytokine receptor interaction 11 5.95 -5.21 -3.96

ko04612 KEGG pathway Antigen processing and presentation 6 3.24 -5.10 -3.87

hsa04810 KEGG pathway Regulation of actin cytoskeleton 9 4.86 -4.79 -3.62

ko04666 KEGG pathway Fc gamma R-mediated phagocytosis 6 3.24 -4.68 -3.53

ko04620 KEGG pathway Toll-like receptor signaling pathway 6 3.24 -4.35 -3.23

ko05340 KEGG pathway Primary immunodeficiency 4 2.16 -4.12 -3.04

hsa04520 KEGG pathway Adherens junction 5 2.70 -3.85 -2.79

hsa04371 KEGG pathway Apelin signaling pathway 6 3.24 -3.54 -2.54

ko04144 KEGG pathway Endocytosis 7 3.78 -2.94 -2.01

hsa04931 KEGG pathway Insulin resistance 4 2.16 -2.28 -1.49

ko04670 KEGG pathway Leukocyte transendothelial migration 4 2.16 -2.27 -1.48
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FIGURE 9
Correlation between signal transducer and activator of transcription (STAT) factor expression levels and immune infiltration levels in colorectal
cancer (CRC) from the Tumor Immune Estimation Resource (TIMER) dataset. The relationship between the abundance of immune cells and the
expression of (A) STAT1, (B) STAT2, (C) STAT3, (D) STAT4, (E) STAT5A, (F) STAT5B, and (G) STAT6 in CRC.
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whereas STAT5B and STAT6 were negatively correlated with

MSI score (p < 0.01) (Figure 12B). The relationship between

STAT expression and MMR genes such as MLH1, MSH2,

MSH6, PMS2, and EPCAM was evaluated using TCGA

expression profile data. The results showed that the

expressions of STAT1, STAT2, STAT4, and STAT5A were

FIGURE 10
Relationship between signal transducer and activator of transcription (STAT) factor expression and stromal score, immune score, ESTIMATE
score, and immune checkpoints in colorectal cancer (CRC). The correlation between the expression of (A) STAT1, (B) STAT2, (C) STAT3, (D) STAT4, (E)
STAT5A, (F) STAT5B, and (G) STAT6, and stromal score, immune score, and ESTIMATE score in CRC. (H) Correlation heatmap of STATs with immune
checkpoints in CRC.
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positively correlated with MSH2, MSH6, and PMS2 (p < 0.05);

STAT3 and STAT5B were also positively correlated with all

these genes, whereas STAT2 and STAT4 were negatively

correlated with EPCAM (p < 0.01) (Figure 12C).

Discussion

Extensive studies have indicated that the abnormal

regulation of STATs, especially for STAT1/3/5, is closely

TABLE 3 Relationship between signal transducer and transcription (STAT) factor expression and immune checkpoints in colorectal cancer (CRC).

R Immune checkpoint

CD40LG ADORA2A TNFSF14 ICOSLG TNFRSF8 CD27 VSIR TNFRSF4

STAT1 0.311 0.315 0.501 0.189 0.488 0.429 0.325 0.282

STAT2 0.326 0.483 0.618 0.257 0.576 0.497 0.460 0.372

STAT3 0.373 0.261 0.409 0.194 0.433 0.378 0.409 0.234

STAT4 0.536 0.444 0.647 0.152 0.544 0.572 0.383 0.329

STAT5A 0.234 0.241 0.336 0.237 0.409 0.405 0.478 0.366

STAT5B 0.178 0.335 0.224 0.233 0.307 0.199 0.173 0.158

STAT6 0.133 0.163 0.139 0.158 0.199 0.254 0.263 0.187

The p-value of immune checkpoints (CD40LG, ADORA2A, TNFSF14, ICOSLG, TNFRSF8, CD27, VSIR, and TNFRSF4) is less than 0.001.

FIGURE 11
Relationship between signal transducer and activator of transcription (STAT) factor gene expression and chemokines as well as their receptors.
(A) Correlation between STAT expression and multiple chemokines. (B) Correlation between STAT expression and multiple chemokine receptors.
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associated with the progression of various tumors, including

solid tumors and hematologic malignancies, such as prostate

cancer, breast cancer, CRC, and leukemias (Ferrajoli et al.,

2006; Lassmann et al., 2007; Benekli et al., 2009; Gu et al.,

2010; Koptyra et al., 2011). JAK/STAT signaling has also been

identified as one of the key pathways affected by the majority

of cancer gene mutations (Vogelstein and Kinzler, 2004).

Although some studies have reported the role of certain

STAT factors in cancer progression, there have been no

studies that have comprehensively analyzed the role of

different STATs in CRC. For the first time, bioinformatics

analysis was used to investigate the transcription and

translation levels, genetic variation, biological function, and

molecular mechanism of STATs in CRC, as well as their

correlation with prognosis, immune infiltration, and

immunotherapy response.

Some studies demonstrate that activated STAT1, as a tumor

suppressor, is lost in several types of malignant cells (Adámková

et al., 2007), including breast cancer (Koromilas and Sexl, 2013),

lung cancer (Chen et al., 2015), and esophageal squamous cell

carcinoma (Zhang et al., 2014), and many reports indicate that

high STAT1 expression means better clinical prognosis

(Widschwendter et al., 2002; Deng et al., 2012; Hosui et al.,

2012). However, contradictory results have also been reported,

showing that high STAT1 expression levels are found in some

cancers and correlate with poor prognosis compared to those

with low expression levels, such as breast cancer, glioblastoma,

lymphoma, and renal cell carcinoma (Khodarev et al., 2004;

Duarte et al., 2012; Greenwood et al., 2012; Zhu et al., 2012; Arzt

et al., 2014). In this study, database analysis showed that the

transcription and translation levels of STAT1 in CRC were higher

than those in normal tissues, which was further verified by IHC

staining. Furthermore, the expression of STAT1 in patients with

CRC was found to be significantly related to the tumor stage. A

survival analysis revealed that a high STAT1 transcription level

had no correlation with the prognosis of patients with CRC but

led to better OS in READ.

Previous reports suggest that STAT2, like STAT1, may play

a dual role in cancer progression. Clifford et al. reported that

sustained STAT2 expression was required for interferon

alpha-induced tumor-suppressive effects in skin squamous

cell carcinoma cells, and the tumor-suppressive activity was

also demonstrated in mice models (Clifford et al., 2003; Wang

et al., 2003). The role of STAT2 in the tumorigenesis of CRC

and skin cancer has also been described (Gamero et al., 2010).

The results of data analysis and IHC in this study indicated

that STAT2 was less expressed in CRC than in normal tissues

at the transcription and translation level. However, STAT2

expression in patients with CRC had no relationship with the

tumor stage. A survival analysis showed that high STAT2

expression was related to better OS and DFS in patients

with CRC.

The bulk of evidence indicates that STAT3 significantly

correlates with cancer development and immune escape

(Bromberg, 2002; Yu et al., 2009). Abnormal elevated STAT3

activity has been found in a variety of hematological and solid

malignancies such as acute myeloid leukemia (AML), multiple

myeloma, and cancers of the bladder, head and neck, kidney,

FIGURE 12
(Continued).
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pancreas, uterus, ovary, esophagus, and breast (Chen et al.,

2008; Sahu and Srivastava, 2009; Bar-Natan et al., 2012; Li et al.,

2013; Suh et al., 2015; Geiger et al., 2016; Subramaniam et al.,

2016; Zhang et al., 2016). In addition, high levels of

phosphorylated STAT3 expression often result in a poor

prognosis in many types of cancer (Kusaba et al., 2006;

Macha et al., 2011; Chen et al., 2013). However,

controversial evidence has emerged showing that STAT3

plays a negative role in the tumorigenesis of KRAS-induced

lung cancer in mice models (Grabner et al., 2015). A high

STAT3 expression correlates with a better clinical outcome in

patients with CRC and nasopharyngeal carcinoma (Hsiao et al.,

2003; Gordziel et al., 2013). The analysis of the GEPIA dataset

and IHC in this study showed that the expression level of

STAT3 in CRC was not different from that in adjacent normal

tissues, but was associated with the tumor stage of patients with

CRC. Survival analysis indicated that high STAT3 expression

was associated with better DFS, but did not affect OS in patients

with CRC.

The exact role of STAT4 in tumorigenesis remains unclear

because high levels of STAT4 expression have been shown to

promote invasion and metastasis in gastric cancer and ovarian

cancer (Zhou et al., 2014; Zhao et al., 2017), and potentially

predict a favorable outcome in these cancers (Li et al., 2017;

FIGURE 12
(Continued). Correlation between signal transducer and activator of transcription (STAT) factor expression and TMB score, MSI score, and MMR
genes. (A)Correlation between STAT expression and TMB score. (B)Correlation between STAT expression andMSI score. (C)Correlation heatmap of
STAT expression with MMR genes in CRC.
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Nishi et al., 2017). The results from this study demonstrated

that although there was no significant difference in STAT4

expression between CRC tissues and normal tissues, its

expression was related to tumor stage, and increased

STAT4 expression level favored OS and DFS in patients

with CRC.

STAT5, which consists of STAT5A and STAT5B, has

been reported to be implicated in multiple malignancies.

Hassel et al. (2008) reported that STAT5, a tumor promoter,

aided cell proliferation and survival in melanoma by

activating the antiapoptotic protein Bcl-XL. It also has

been suggested that activated STAT5 signaling promotes

tumor growth, invasion, and epithelial-to-mesenchymal

transition (EMT) in squamous cell carcinoma of the head

and neck (SCCHN), leading to resistance to chemotherapy

(Koppikar et al., 2008). Furthermore, highly activated

STAT5 results in poor prognosis in patients with prostate

cancer (Li et al., 2005). However, increasing evidence

suggests that STAT5 proteins also regulate the activities

of tumor suppressor genes, and activated STAT5 is

associated with a favorable prognosis in patients with

breast cancer and nasopharyngeal cancer (Hsiao et al.,

2003; Nevalainen et al., 2004). This study found that

STAT5A and STAT5B were significantly less expressed in

CRC compared to normal tissues at both the mRNA and

protein levels. In patients with CRC, STAT5B had a

significant relationship with tumor stage and exerted a

favorable effect on OS and DFS but STAT5A did not.

Some studies have reported that activated STAT6

signaling is important for IL-4 and IL-13-induced EMT

and CRC cell aggressiveness (Cao et al., 2016; Chen et al.,

2018). Furthermore, inhibition studies have indicated that

targeting STAT6 signaling can suppress tumor growth and

metastasis in gastric cancer (Lu et al., 2018). The data

analysis revealed that there was no significant difference

in STAT6 expression between CRC tissues and normal

tissues, and STAT6 expression level did not affect tumor

stage and prognosis.

The analysis outcomes showed that there was a high

mutation rate (43%) of STATs in patients with CRC, and the

genes with the highest and lowest mutation rates in STATs are

STAT5B (15%) and STAT4 (7%), respectively. Besides, the

mutation of STATs had some relationship with certain types

of immune cells infiltration, but showed little effect on

prognosis in patients with CRC. The co-expression

relationships between different STAT members in patients

with CRC indicated that these factors may play a synergistic

role in the progression of CRC. To evaluate the potential

interactions between STAT factors and their neighboring

genes at different levels, GGI and PPI networks were

constructed. GO and KEGG enrichment analyses were also

performed to explore the functions of STATs and their similar

genes, which are primarily related to lymphocyte activation,

cytokine-mediated signaling pathway, positive regulation of

immune response, and T-cell receptor signaling pathway.

These pathways have a close relationship with the immune

system, indicating the possible role of STATs in regulating the

tumor immune microenvironment.

The study results indicated that STAT transcription levels

were closely correlated with levels of immune infiltration in

CRC. STAT1/2/3/4 expressions were positively correlated with

the infiltrations of B cells, CD8+ T cells, CD4+ T cells,

macrophages, neutrophils, and dendritic cells. The

expressions of STAT5A/5B/6 were positively associated with

infiltrations of CD4+ T cells, macrophages, neutrophils, and

dendritic cells, and STAT5A expression was also positively

correlated with the infiltration of B cells. Also, the

expressions of STAT1/2/3/4/5A were positively correlated

with the stromal score, immune score, and ESTIMATE score

with great significance. The close relationship between the

expression levels of STATs and infiltration of multiple types

of immune cells further demonstrates that STATs may be the

regulators of tumor immunity in CRC.

Another significant finding of this study is that STATs

may be possible predictors of treatment response to

immunotherapy in CRC because of the close relationship

between STATs and indicators associated with

immunotherapy response, such as immune checkpoint

genes, TMB score, MSI score, and MMR genes. Our results

showed that seven STAT members were positively co-

expressed with eight immune checkpoints including

CD40LG, ADORA2A, TNFSF14, ICOSLG, TNFRSF8,

CD27, VSIR, and TNFRSF4. From literature searches, it

was found that CD40LG and CD27, both of which are

stimulatory immune checkpoints, are more likely to be

used clinically. Extensive studies have been conducted to

investigate the underlying mechanism by which CD40LG

and CD27 modulate tumor immunity. Additionally, various

types of strategies targeting them, such as agonistic/

antagonistic monoclonal antibodies, cellular vaccines, and

protein antagonists, have been developed and demonstrated

to be safe and efficacious in early clinical trials (Starzer and

Berghoff, 2020; Tang et al., 2021). Coincidentally, the factor

that is most closely related to both CD40LG and CD27 is

STAT4 based on their correlation coefficient (Table 3). It was

discovered that almost all the STAT factors were positively co-

expressed with certain MMR genes such as MSH2, MSH6, and

PMS2. A positive relationship between the TMB score and

STAT1/2/4 expression and a negative relationship between

the TMB score and STAT5B expression were observed.

Moreover, STAT1/2/3/4 expression had positive correlations

with the MSI score, but STAT5B and STAT6 had a negative

relationship with the MSI score.

This study indicates that the expression levels of STAT2/

5A/5B are downregulated in CRC and could inhibit the

initiation and development of CRC. The close relationship
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between the CRC stages and expression levels of STAT1/3/4/

5B reveals their potential as molecular biomarkers for tumor

stage classification. Moreover, the abnormal expressions of

STAT2/4/5B have the potential to be used as prognostic

predictors in patients with CRC. Besides, the strong

association between the expression of STAT and infiltration

of multiple types of immune cells in CRC, including B cells,

CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and

dendritic cells, demonstrates that STATs may play a role in the

regulation of CRC tumor immunity. More importantly, the

significant correlation between STAT expressions and

immunotherapy response-associated indicators showed that

they had the potential to predict response to immunotherapy

in patients with CRC and could be used to assist the physician

in deciding on a therapeutic regimen. These findings aid in

better understanding the molecular landscape of CRC

progression, providing new prognostic biomarkers, and

promoting the development of more immunotherapeutic

strategies for patients with CRC. However, further

investigations are still needed to validate the results of this

study to facilitate the clinical application of STATs as therapy

targets, prognostic biomarkers, and immunotherapy

predictors in CRC.
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