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Abstract

The robust estimate and forecast capability of random forests (RF) has been widely recog-

nized, however this ensemble machine learning method has not been widely used in mos-

quito-borne disease forecasting. In this study, two sets of RF models were developed at the

national (pooled department-level data) and department level in Colombia to predict weekly

dengue cases for 12-weeks ahead. A pooled national model based on artificial neural net-

works (ANN) was also developed and used as a comparator to the RF models. The various

predictors included historic dengue cases, satellite-derived estimates for vegetation, precipi-

tation, and air temperature, as well as population counts, income inequality, and education.

Our RF model trained on the pooled national data was more accurate for department-spe-

cific weekly dengue cases estimation compared to a local model trained only on the depart-

ment’s data. Additionally, the forecast errors of the national RF model were smaller to those

of the national pooled ANN model and were increased with the forecast horizon increasing

from one-week-ahead (mean absolute error, MAE: 9.32) to 12-weeks ahead (MAE: 24.56).

There was considerable variation in the relative importance of predictors dependent on fore-

cast horizon. The environmental and meteorological predictors were relatively important for

short-term dengue forecast horizons while socio-demographic predictors were relevant for

longer-term forecast horizons. This study demonstrates the potential of RF in dengue fore-

casting with a feasible approach of using a national pooled model to forecast at finer spatial
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scales. Furthermore, including sociodemographic predictors is likely to be helpful in captur-

ing longer-term dengue trends.

Author summary

Dengue virus has the highest disease burden of all mosquito-borne viral diseases, infecting

390 million people annually in 128 countries. Forecasting is an important warning mecha-

nism that can help with proactive planning and response for clinical and public health ser-

vices. In this study, we compare two different machine learning approaches to dengue

forecasting: random forest (RF) and artificial neural networks (ANN). National (pooling

across all departments) and local (department-specific) models were compared and used

to predict future dengue cases in Colombia. In Colombia, the departments are administra-

tive divisions formed by a grouping of municipalities. The results demonstrated that the

counts of future dengue cases were more accurately estimated by RF than by ANN. It was

also shown that environmental and meteorological predictors were more important for

forecast accuracy for shorter-term forecasts while socio-demographic predictors were

more important for longer-term forecasts. Finally, the national pooled model applied to

local data was more accurate in dengue forecasting compared to the department-specific

model. This research contributes to the field of disease forecasting and highlights different

considerations for future forecasting studies.

Introduction

Dengue virus is most prevalent of the mosquito-borne viral diseases, infecting 390 million peo-

ple annually in 128 countries with four different virus serotypes [1]. Rising incidence and

large-scale outbreaks are largely due to inadequate living conditions, naïve populations, global

trade and population mobility, climate change, and the adaptive nature of the principal mos-

quito vectors Aedes aegypti and Aedes albopictus [2, 3]. The direct and indirect costs of dengue

are substantial and impose enormous burdens on low- and middle-income tropical countries,

with a global estimate of US$8.9 billion in costs per year [4].

Human and financial costs of dengue can be alleviated when response systems, such as

intervention strategies, health care services, and supply chain management, receive timely

warnings of future cases through forecasting models [5]. A number of dengue forecasting

models have been developed and these models can be generally classified into two methodo-

logical categories: time series and machine learning [6, 7]. The majority of existing dengue

forecasting models used time series methods and typically Autoregressive Integrated Moving

Average (ARIMA), in which lagged meteorological factors (e.g. temperature and precipitation)

act as covariates in conjunction with historical dengue data for one- to 12-week-ahead fore-

casting [8–13]. Many studies reported that conventional time series models such as ARIMA

are insufficient to meet complex forecasting requirements [14–16], as multiple trends and out-

liers present in the time series reduce the forecasting accuracy [17].

In the last two decades, machine learning (ML) methods have been used in many disci-

plines, such as geography, environment, and epidemiology, to yield meaningful findings from

highly heterogeneous data. Differing from statistical modeling that forms relationships

between variables based on many assumptions (e.g. independence of predictor variables,

homoscedasticity, and normal distributions of errors), machine learning facilitates the
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inclusion of a large number of correlated variables, enable the modeling of complex interac-

tions between variables, and can fit complex models without presupposing forms (e.g. linear,

exponential, and logistic) of functions, providing a more flexible approach for disease forecast-

ing [18, 19]. Decision trees, support vector machine, shallow neural network, K-nearest neigh-

bor, gradient boosting, and naive Bayes are frequently used ML approaches in dengue-

forecasting studies [7, 20–23]. Compared to the above ML methods, random forests (RF),

another common ML algorithm, have shown to be more accurate in forecasting given its abil-

ity to overcome the common problem of over-fitting through the use of bootstrap aggregation

[24–28].

Random forests have been used to forecast dengue risk in several countries including Costa

Rica [29], Philippines [30, 31], Pakistan [32], Peru and Puerto Rico [33]. However, time or sea-

sonal variables were not always included in the models nor were sociodemographic predictors,

which have been found to improve forecast accuracy in HIV [34] and Ebola [35] epidemic

models. Furthermore, dengue models, regardless of the use of the time series or ML

approaches, have been developed for predicting dengue cases in individual administrative

areas such in a city or a province [9–12, 20–23]. Universal dengue prediction models that are

effective across different administrative regions remain scarce.

Historically, Colombia is one of the countries most affected by dengue, with the Aedes mos-

quitoes being widely distributed throughout all departments at elevations below 2,000 meters

[36, 37]. The objective of this study was to evaluate the potential of RF forecasting models at

the department and national level in Colombia. We compared the accuracy of department-

specific RF models to a nationally-pooled RF model to understand the feasibility of using a

pooled model to predict dengue cases for individual departments. Using ARIMA as baseline,

we also compared errors of the nationally pooled RF model with those of Artificial Neural Net-

work (ANN), another classic and widely used ML approach. Finally, we estimated the change

in importance of different predictors according to forecast horizon.

Methods

Ethics statement

Ethical approval was obtained from the Health Research Ethics Board from the University of

Montreal (18-073-CERES-D).

Data. Various data were used to develop the forecasting models, which included: dengue

cases from surveillance data, environmental indicators from remote sensing data, and sociode-

mographic indicators such as population, income inequity, and education coverage (Table 1).

The dengue case surveillance data were extracted from an electronic platform, SIVIGILA, cre-

ated by the Colombia national surveillance program and was available at the department level.

The national surveillance program receives weekly reports from all public health facilities that

provide services to cases of dengue. the dengue cases reported by SIVIGILA were a mixture of

probable and laboratory confirmed cases without distinguishing between the two different

case definitions. Laboratory confirmation for dengue is based on a positive result from antigen,

antibody, or virus detection and/or isolation [38]. Probable cases are based on clinical diagno-

sis plus at least one serological positive immunoglobulin M test or an epidemiological link to a

confirmed case within 14 days prior to symptom onset. Cases are typically reported within a

week with severe cases usually being reported immediately.

Precipitation, air temperature, and land cover type have been shown to be three important

determinants of Aedes mosquito abundance and are often used as predictors in dengue fore-

casting [9, 11, 21, 39]. In this study, precipitation data was obtained from the CMORPH (Cli-

mate Prediction Center morphing method) daily estimated precipitation dataset [40]. The
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land surface temperatures were extracted from the MODIS Terra Land Surface Temperature

8-day image products (MOD11C2.006). Enhanced vegetation index (EVI) estimates were

obtained from the MODIS Terra Vegetation Indices 16-Day image products (MOD13C1.006).

Several studies have shown that socio-demographic factors may influence dengue transmission

and incidence as significantly as environmental factors [41–43]. Education influences people’s

knowledge and behaviours towards infectious diseases, as people with higher education more

likely to adopt behaviours to reduce risks of infection compared to individuals with lower edu-

cation [44]. Income also affects risk of infectious diseases, with those from higher income

brackets often being less exposed and consequently, less at-risk of infection compared to indi-

viduals with lower income [45]. Given this, we included population, education coverage, and

the Gini Index (a measure of income inequity) as potential predictors, which were retrieved

from the Colombian National Administrative Department of Statistics.

Random forests. Random forests (RF) is an ensemble decision tree approach [46]. A deci-

sion tree is a simple representation for classification in which each internal node corresponds

to a test on an attribute, each branch represents an outcome of a test, and each leaf (i.e. termi-

nal node) holds a class label. Decision trees can also be used for regression when the target or

outcome variable is continuous. Bootstrap aggregation, commonly known as bagging, is the

most distinctive technique used in RF and bagging requires training each decision tree with a

randomly selected subsample of the entire training datasets.

Data preprocessing. To ensure a consistent temporal granularity with the outcome vari-

able, the daily precipitation data were aggregated to a weekly frequency. The 8-day land surface

temperature and the 16-day EVI data were resampled to a weekly frequency using a spline

interpolation [47]. We assigned a given department the same population, Gini Index, and edu-

cation coverage values for all weeks within the same calendar year.

Colombia has 32 departments and the archipelago of San Andrés, Providencia, and Santa

Catalina (commonly known as San Andrés y Providencia) is a department consisting of two

island groups and 775 km away from mainland Colombia. Due to the frequent cloud contami-

nation over the small island areas, it was not possible to have high-quality MODIS images

products for weekly temperature or EVI value estimation. Vaupés department had only 30

confirmed dengue cases during 2014 to 2018. Therefore, the departments of San Andrés y Pro-

videncia and Vaupés were excluded from this study and data from the other 30 departments

were used to train our models.

Weekly dengue data from 2014–2017 was used to train the RF models and the data from

2018 was used to evaluate the models. To simulate ‘real life’ forecasting, we did not include the

2018 data for the socio-demographic variables given that they are only produced annually

Table 1. Summary of indicators and data sources.

Indicator Source Temporal granularity Format

Dengue cases SIVIGILA (national surveillance program of Colombia) Weekly Tabular

Rainfall CMORPH precipitation data from NOAA’s CPC Daily Gridded

EVI MOD13C1 from NASA’s LP DAAC 16-day Gridded

Temperature MOD11C2 from NASA’s LP DAAC 8-day Gridded

Population Colombian National Administrative Department of Statistics Yearly Tabular

Gini Index Colombian National Administrative Department of Statistics Yearly Tabular

Education coverage Colombian National Administrative Department of Statistics Yearly Tabular

CPC: Climate Prediction Center; LP DAAC: Land Processes Distributed Active Archive Center; NOAA: National Oceanic and Atmospheric Administration; EVI:

enhanced vegetation index; CMORPH: Climate Prediction Center morphing method; NASA: National Aeronautics and Space Administration.

https://doi.org/10.1371/journal.pntd.0008056.t001
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whereas the remote sensing data are more readily available. Based on historical (2010–2017)

time series data, double exponential smoothing with an additive trend was used to estimate the

values for 2018. The specific exponential smoothing functions were determined by the optimal

decay option in the “forecast” package for R software through minimizing the squared predic-

tion errors.

Development of RF, ANN, and ARIMA models. We first developed RF models for each

department (hereafter referred to as the local level). Let the “current” week be k and the num-

ber of confirmed dengue cases be y. Referring to the RF streamflow forecasting model devel-

oped by Papacharalampous and Tyralis [48], we used the numbers of current and previous 11

weeks dengue cases (i.e. yk, yk-1,. . ., yk-10, yk-11) of a department to predict one-week-ahead

dengue cases (i.e. yk+1) for each department. The current and previous 11 weeks of rainfall,

land surface temperature, EVI, population, Gini Index, and education coverage were also

included as predictors. These values were selected as previous studies demonstrated that the

optimal lags of meteorological variables used for dengue forecasting are usually not larger than

12 weeks [49–54]. In addition, the ordinal number of the forecast week (1–52 for the year of

2015, 2016, 2017, and 2018 and 1–53 for 2014) as well as year (2014–2018) were treated as two

predictor variables to account for seasonality and long-term changing trend of dengue occur-

rence [55,56].

We then developed a RF model at the national scale, which consisted of pooled the data

across each department. To train a national-scale RF model for forecasting n-week-ahead den-

gue cases (where n�12), we used the same predictor and target variables as those used in the

local n-week-ahead forecasting models. The difference between the local and the national

pooled models was that the local n-week-ahead models were trained using 209-n (209 = 53+52

+52+52) samples while the national model was trained using 6270-30n [i.e. (209-n) ×30] sam-

ples. Through 10-fold cross-validations, we found that the common settings for the number of

variables randomly sampled as candidates at each split (i.e. the number of features divided by

three) and the minimum size of terminal nodes (i.e. five) were also optimal to avoid over-fit-

ting in our RF models [57]. The specific RF models were fitted by “randomForest” in the R sta-

tistical computing environment and set 1000 trees for an ensemble of trees (forest) [58]. We

found that further increasing the number of trees did not markedly decrease out-of-bag mean

square errors of the RF models but only increased computation time.

Artificial Neural Network (ANN) is considered a classic ML approach and to highlight the

advantage of prediction accuracy of the RF models, we developed an ANN model at the

national scale. The ANN was composed of one input layer, three hidden layers, and one output

layer. The ANN model used ReLU as an activation function to solve the problem of a vanishing

gradient and avoids over-fitting through setting “dropouts”. Jointly considering prediction

accuracy and computation time, we set “epoch” and “batch size” of the ANN models as 100

and 32 respectively. The ANN models had the same 53 predictor variables as the RF models,

resulting in 53 neurons in the input layer and one neuron in the output layer. The number of

neurons in the hidden layer was decreased layer by layer as the shape of an inverted pyramid.

The specific number of neurons and value of dropout of a hidden layer were determined by

iterative attempts until the mean absolute error (MAE) of the prediction could not be further

reduced [59] (see Table 2).

Standard univariate ARIMA developed at the local scale was used as the baseline to com-

pare with the RF and ANN models. The Hyndman-Khandakar algorithm was used for auto-

matic ARIMA modeling [60]. This algorithm first determines the number of non-seasonal

differences needed for stationarity (i.e. d in ARIMA) using repeated Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) tests. Then, the number of autoregressive terms and the number of
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lagged forecast errors (i.e. p and q in ARIMA respectively) by minimizing Akaike’s Informa-

tion Criterion (AIC).

Model evaluation. The MAEs of the ARIMA, RF, and ANN models were calculated for

the 52 weeks in 2018 by the actual and the predicted numbers of dengue cases. The accuracy

comparison was performed for the local (department) and national (pooled) scales. When the

comparison for an n-week-ahead prediction was conducted at the national scale, the predicted

numbers of dengue cases by the 30 local RF models were additively combined and compared

with the actual national values to calculate one MAE. When the comparison was implemented

at the local scale, the national RF model was applied to each one of the 30 departments and

then the predicted values were compared with the actual numbers of dengue cases to compute

30 individual MAEs. To improve intuitive interpretation and facilitate comparisons of one

model’s predictive performance across different departments and forecasting horizons, we

used the relative MAE (RMAE) to evaluate model accuracy [61]. We defined a RMAE between

a ML (i.e. RF or ANN) and the baseline models at a horizon h as:

RMAEA;B;h ¼
MAEA;h
MAEB;h

ð1Þ

where A represented a ML model and B denoted the baseline ARIMA model.

Given that dengue burden varies across different years, we conducted leave-one-season-out

cross-validations to improve the robustness of our evaluation. The accuracy between the

national (pooled) and local RF models as well as the national ANN model were compared

using RMAE. In the validations, four years of data were used to train the models and the

remaining one year was used to validate the models. This procedure was iterated five times to

ensure each year data were selected once for validation. An ARIMA model requires continu-

ous time series and therefore, was not suitable for conducting the leave-one-season-out cross-

validations. The specific ANN and ARIMA fitting processes were completed using the “keras”

and “forecast” packages respectively in the R statistical computing environment.

Percentage of increased mean squared error (%IncMSE) is a robust and informative indica-

tor to quantitatively evaluate the importance of predictor variables in a random forests model

[62]. Percentage of increased mean squared error indicates the increase in the mean squared

error (MSE) of prediction as a result of an independent variable being randomly shuffled while

maintaining the other independent variables as unchanged [46]. A larger %IncMSE of a pre-

dictor variable suggests greater importance of the variable on the model’s overall forecast accu-

racy and the %IncMSE was calculated for each predictor in each RF model.

Results

An exceptionally large dengue outbreak occurred in Colombia during the study period. The

counts of confirmed dengue cases reached more than 2,500 per week by the end of 2015 and

the outbreak ended mid-year in 2016. Following this outbreak, the yearly dengue case peaks

were drastically reduced in 2016 and 2017 but began increasing again in 2018 (Fig 1).

For any of the n-week-ahead (n�12) forecasts, the national RF model more accurately pre-

dicted the counts of dengue cases than the ARIMA models, demonstrated by the smaller-than-

Table 2. The numbers of neurons and values of dropouts in the hidden layers of the ANN models.

Hidden layer Number of neurons Dropout

First 48 0.3

Second 32 0.2

Third 19 0.1

https://doi.org/10.1371/journal.pntd.0008056.t002
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Fig 1. Weekly total counts of confirmed dengue cases over Colombia for 2014–2018 (A) and the predicted counts of dengue cases by the national one-, two-,

four-, eight-, and twelve-week-ahead models for 2018 (B). See S1 Fig for the predicted counts of dengue cases by the remaining seven models.

https://doi.org/10.1371/journal.pntd.0008056.g001
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one RMAE (Table 3). The performance of the national model was better than that of the local

model, demonstrated by the smaller overall RMAE and MAE (Tables 3 and 4). Moreover, in

most cases, a department’s dengue cases were more accurately predicted by the national model

than the local model (Fig 2). The errors of the national RF model were mainly derived from

under-estimation of cases which coincided with dramatic increases in cases towards the end of

2018. As expected, the under-estimation was more pronounced when predictions were made

over a longer time period.

The overall MAE of the ANN model developed at the national scale and obtained from the

leave-one-season-out cross-validation was smaller than that of the local RF model at any fore-

casting horizon (Table 4). The MAE grew for the ANN model with longer forecasting horizons

compared to the local RF model. The RMAE of the ANN model obtained from the validation

for 2018 was consistently smaller than that of the local RF model for each forecasting horizon.

Table 3. Accuracy comparison among ARIMA, RF, and ANN model for prediction of 2018.

n-week ahead MAE RMAE

ARIMA Local RF National RF National ANN

1 6.24 1.28 0.93 0.98

2 7.15 1.27 0.95 1.03

3 8.12 1.25 0.94 1.04

4 8.95 1.23 0.95 0.99

5 9.76 1.24 0.95 0.98

6 10.69 1.20 0.94 0.96

7 11.61 1.16 0.93 0.98

8 12.50 1.12 0.92 0.98

9 13.31 1.08 0.90 1.00

10 14.05 1.04 0.89 0.99

11 14.84 1.00 0.87 0.95

12 15.56 0.97 0.86 0.95

MAE: mean absolute error; RMAE: relative mean absolute error; ARIMA: Autoregressive Integrated Moving Average; RF: random forests; ANN: artificial neural

network.

https://doi.org/10.1371/journal.pntd.0008056.t003

Table 4. Average MAEs of the leave-one-season-out cross-validations.

n-week ahead Local RF National RF National ANN

1 13.86 9.32 10.20

2 15.90 11.05 12.40

3 17.70 12.50 13.89

4 19.45 14.19 16.04

5 20.88 15.81 16.61

6 22.00 17.36 18.55

7 23.14 18.88 20.46

8 24.10 20.29 22.14

9 25.08 21.55 22.57

10 25.69 22.63 23.86

11 26.16 23.82 24.28

12 26.76 24.56 25.25

MAE: mean absolute error; RF: random forests; ANN: artificial neural network.

https://doi.org/10.1371/journal.pntd.0008056.t004
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The MAE and RMAE of the national RF model were always smaller than those of the national

ANN model at any forecasting horizon.

The relative importance of different predictor variables in the national RF model was varied

(Table 5). Firstly, “current” and “near current” past dengue data were extremely important in

predicting occurrence of dengue in the near future (e.g. one- to three-weeks ahead). However,

with the predicted week increasingly further away from the “current” week, the importance of

historical dengue data decreased while the “current” week of dengue cases remained one of the

top three most important predictors in predicting the future dengue cases. Secondly, the envi-

ronmental (EVI) and the meteorological predictors (rainfall and temperature) were more

important than the socio-demographic predictors when dengue cases were predicted in the

near future (one- to three-weeks ahead). Yet, with the predicted week increasingly far away

from the “current” week, importance of the three socio-demographic covariates (education,

population, and Gini Index) became increasingly notable. Finally, the week predictor, which

Fig 2. Accuracy comparison between the local and the national random forests models at the department scale for the one-week ahead, four-week ahead, eight-

week ahead, and twelve-week ahead predictions. See S2 Fig for the comparison between the two types of models for all week ahead predictions.

https://doi.org/10.1371/journal.pntd.0008056.g002
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accounted for the seasonal pattern of dengue, was important across all forecasting horizons

but relatively smaller in importance with smaller forecasting horizons (i.e. n�4).

Discussion

In the current study, we developed a national pooled model to predict counts of dengue cases

across different departments of Colombia and found that for the majority of departments, the

national model more accurately forecasted future dengue cases at the department level com-

pared to the local model. This result indicates the similarity in importance of dengue drivers

across different administrative regions of Colombia. Random forests is an unsupervised tree-

based regression approach requiring a relatively large training sample for the repeated splitting

of the dataset into separate branches. A RF regression model cannot yield predictions for data

points beyond the scope of the training data range. Pooling data from individual departments

creates a training dataset with larger ranges of variables, increasing the extrapolating capacity

of the RF model. Therefore, the national pooled model trained by a larger dataset had higher

prediction accuracy compared to the local models. The national and the local models per-

formed poorly in departments of Guainı́a and Vichada. The small population and conse-

quently the low counts of dengue cases resulted in the relatively large errors in the two

departments.

We also found that the meteorological and environmental variables were more important

for prediction accuracy at smaller forecasting horizons compared to the socio-demographic

variables, with socio-demographics being more important at larger forecasting horizons. This

Table 5. The top ten most important predictor variables for predicting dengue cases in the national models, ordered from the largest to the smallest %IncMSEs.

Rank 1 2 3 4 5 6 7 8 9 10

1-week-

ahead

Denguek
(26.35%)

Denguek-1

(17.97%)

Denguek-2

(12.61%)

Denguek-3

(10.36%)

Week

(8.78%)

Denguek-4

(7.83%)

EVIk-11 (6.43%) Temperaturek-

11 (6.39%)

EVIk-10

(6.07%)

EVIk-8 (6.05%)

2-week-

ahead

Denguek
(25.72%)

Denguek-1

(17.13%)

Week

(12.33%)

Denguek-2

(12.30%)

Denguek-3

(9.73%)

Temperaturek-

11 (8.87%)

Denguek-4

(8.82%)

EVIk-7 (8.42%) EVIk-5 (8.06%) EVIk-8 (7.41%)

3-week-

ahead

Denguek
(27.16%)

Denguek-1

(17.54%)

Week

(14.57%)

Denguek-2

(12.91%)

EVIk-8

(9.67%)

EVIk-10

(8.52%)

Temperaturek-

10 (8.49%)

Education

(8.40%)

Denguek-3

(7.48%)

Denguek-4

(7.40%)

4-week-

ahead

Denguek
(27.24%)

Week

(17.94%)

Denguek-1

(15.10%)

Education

(12.97%)

Denguek-2

(11.28%)

Temperaturek-9

(10.03%)

EVIk-8 (9.68%) Temperaturek-

11 (8.67%)

EVIk-7 (8.37%) Denguek-3

(7.86%)

5-week-

ahead

Denguek
(25.39%)

Week

(18.86%)

Denguek-1

(18.73%)

Education

(12.99%)

Denguek-2

(12.39%)

EVIk-10

(11.42%)

Temperaturek-8

(11.15%)

Temperaturek
(11.31%)

Gini (10.33%) EVIk-9 (9.82%)

6-week-

ahead

Denguek
(24.88%)

Week

(20.14%)

Denguek-1

(17.68%)

Education

(17.13%)

Population

(12.38%)

Year (11.83%) Denguek-2

(11.54%)

EVIk-8

(11.52%)

EVIk-9

(11.24%)

EVIk-1

(11.15%)

7-week-

ahead

Denguek
(25.61%)

Week

(19.71%)

Education

(17.66%)

Denguek-1

(17.49%)

Year

(15.64%)

Denguek-2

(14.45%)

Population

(12.49%)

Gini (11.69%) EVIk-10

(11.55%)

EVIk-9

(11.06%)

8-week-

ahead

Denguek
(25.68%)

Week

(21.49%)

Population

(20.67%)

Education

(19.16%)

Denguek-1

(16.84%)

Year (16.06%) Temperaturek-

11 (12.99%)

Temperaturek-5

(12.11%)

Denguek-2

(11.66%)

Gini (11.63%)

9-week-

ahead

Denguek
(24.11%)

Week

(22.15%)

Population

(21.56%)

Education

(20.47%)

Year

(17.70%)

Denguek-1

(17.44%)

Temperaturek-

11 (12.94%)

Denguek-11

(12.05%)

Gini (11.89%) Temperaturek-3

(11.15%)

10-week-

ahead

Denguek
(23.42%)

Week

(23.03%)

Year

(21.45%)

Education

(20.38)

Population

(19.80%)

Denguek-1

(17.22%)

Gini (14.88%) Denguek-11

(13.02%)

Temperaturek-4

(12.95%)

Denguek-2

(10.60%)

11-week-

ahead

Year

(22.94%)

Week

(21.73%)

Denguek
(21.37%)

Population

(18.61%)

Education

(17.20%)

Gini (16.98%) Denguek-1

(16.56%)

Temperaturek-

11 (15.48%)

Denguek-10

(13.47%)

Temperaturek-4

(11.80%)

12-week-

ahead

Population

(26.76%)

Year

(24.86%)

Denguek
(22.50%)

Week

(22.45%)

Education

(17.12%)

Gini (17.72%) Denguek-11

(16.71%)

Denguek-1

(16.67%)

Denguek-10

(14.06%)

Temperaturek-

10 (13.07%)

Dengue indicates historical dengue cases and EVI denotes enhanced vegetation index. %IncMSE: percentage of increased mean squared error.

https://doi.org/10.1371/journal.pntd.0008056.t005
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is likely due to the influence of meteorological and environmental conditions on Aedes mos-

quitoes and the lag effects are usually between 1 to 4 weeks for temperature and precipitation

[63–65]. Poor quality housing and sanitation management with high population density are

key risk factors for dengue transmission [66, 67], and are closely related to education and pov-

erty [68, 69]. These results demonstrate the complementary nature of these different groups of

predictor variables and the importance of their inclusion in dengue forecasting models.

We compared our RF pooled national models to pooled national ANN models using the

same predictor variables. Theoretically, with ANN, more complex correlations between pre-

dictor and target variables can be discerned by deeper (i.e. more hidden layers) networks [70].

However, traditional ANNs cannot handle the problem of vanishing gradient which results in

the failure of improving accuracy of ANN models by adding more hidden layers. In the current

study, we used the activation function of ReLU to overcome the issue of vanishing gradient,

mitigated over-fitting by adding dropouts for each hidden layer, and predicted dengue cases

with a three-hidden neural network. Compared with the ARIMA and local RF models, the

ANN model developed by the national pooled data showed a stronger capability on forecasting

dengue cases in Colombia across different forecasting horizons but performed slightly worse

than the national RF model in this forecasting case study. It usually requires several iterative

attempts to determine an optimal structure of an ANN model. By contrast, RF has conven-

tional settings for tuning the hyperparameters (e.g. using the number of features divided by

three for the number of variables at each split and five for the minimum size of terminal

nodes) with the default hyperparameters having been found to be optimal in different studies

[57].

Despite the strengths of our study, our RF approach is likely to generate time lags in fore-

casting rapid changes in dengue, which is also a common occurrence with other forecasting

approaches. Including a predictor of mosquito abundance from an entomological surveillance

program may reduce such time lag errors [71]. However, this type of data was not available at

the national level given insufficient temporal and spatial granularity. Additionally, RF, as a

non-parametric black-box approach, cannot use specific equations to quantify the relation-

ships between the count of dengue cases and the heterogeneous predictor variables, although it

is able to more flexibly and accurately capture the possibly complex non-linear and non-addi-

tive relationships among the variables. A more severe limitation of the RF model is the fact

that RF cannot obtain values beyond the range of the variable in the training dataset. If an

unprecedented dengue outbreak occurred in future, under-estimations will occur inevitably

using the RF approach. Modeling changes in the count of dengue cases rather than the count

may reduce such under-estimation errors.

Forecasting is an important warning mechanism that can help with proactive planning and

response for clinical and public health services. This study highlights the potential of RF for

dengue forecasting and also demonstrates the benefits of including socio-demographic predic-

tors. Our findings also found that a national pooled model, on average, performed better com-

pared to the local models. These findings have important implications for dengue forecasting

models in public health in terms of time savings, such as pooled data versus locally-specific

models, and predictors and approaches that could help improve forecast accuracy. Future

studies should consider the inclusion of other arboviruses as predictors, such as chikungunya

and Zika as well as examine the importance of other socio-economic factors. In addition,

other promising ML methods should be tested including recurrent neural networks, which

inherently account for time, and are able to capture complicated non-linear and non-additive

relationships between predictor and target variables [72].
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çalves Cruz O, et al. Time series analysis of dengue surveillance data in two Brazilian cities. Acta Tro-

pica. 2018; 182:190–7. https://doi.org/10.1016/j.actatropica.2018.03.006 PMID: 29545150

13. Johansson MA, Reich NG, Hota A, Brownstein JS, Santillana M, Evaluating the performance of infec-

tious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Sci-

entific Reports 2016; 6:33707. https://doi.org/10.1038/srep33707 PMID: 27665707

14. Niu M, Wang Y, Sun S, Li Y, A novel hybrid decomposition-and-ensemble model based on CEEMD and

GWO for short-term PM2.5 concentration forecasting. Atmospheric Environment 2016; 134:168–180.

15. Chen M-Y, Chen B-T, A hybrid fuzzy time series model based on granular computing for stock price

forecasting. Information Sciences 2015; 294:227–241.

16. Wang P, Zhang H, Qin Z, Zhang G, A novel hybrid-Garch model based on ARIMA and SVM for PM2.5

concentrations forecasting. Atmospheric Pollution Research 2017; 8: 850–860.

17. Zhao N, Liu Y, Vanos JK, Cao G, Day-of-week and seasonal patterns of PM2.5 concentrations over the

United States: Time-series analyses using the Prophet procedure. Atmospheric Environment 2018;

192:116–127.

18. Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statisti-

cal Science 2001; 16(3): 199–231.

19. Murphy KP. Machine Learning: a probabilistic perspective. MIT Press, 2012.

20. Guo P, Liu T, Zhang Q, Wang L, Xiao J, Zhang Q, et al. Developing a dengue forecast model using

machine learning: A case study in China. PLoS Neglected Tropical Diseases 2017; 11:e0005973.

https://doi.org/10.1371/journal.pntd.0005973 PMID: 29036169

21. Scavuzzo JM, Trucco F, Espinosa M, Tauro CB, Abril M, Scavuzzo CM, et al. Modeling dengue vector

population using remotely sensed data and machine learning. Acta Tropica 2018; 185:167–175.

https://doi.org/10.1016/j.actatropica.2018.05.003 PMID: 29777650

22. Althouse BM, Ng YY, Cummings DAT, Prediction of dengue incidence using serach query surveillance.

PLoS Neglected Tropical Diseases 2011; 5:e1258. https://doi.org/10.1371/journal.pntd.0001258

PMID: 21829744

23. Laureano-Rosario AE, Duncvan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale

J, et al. Application of artificial neural networks for dengue fever outbreak predictions in the northwest

coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious Disease 2018;

3:5.

24. Raczko E, Zagajewski B, Comparison of support vector machine, random forest and neural network

classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of

Remote Sensing 2017; 50:144–154.

25. Meyer H, Kulhnlein M, Appelhans T, Nauss T, Comparison of four machine learning algorithms for their

applicability in satellite-based optical rainfall retrievals. Atmospheric Research 2016; 169:424–433.

26. Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M, Machine learning predictive

models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and

support vector machines. Ore Geology Reviews 2015; 71:804–818.

PLOS NEGLECTED TROPICAL DISEASES Random forests and artificial neural networks for dengue forecasting in Colombia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008056 September 24, 2020 13 / 16

https://doi.org/10.1371/journal.pntd.0001648
https://doi.org/10.1371/journal.pntd.0001648
http://www.ncbi.nlm.nih.gov/pubmed/22629476
https://doi.org/10.4018/ijhisi.2018040101
http://www.ncbi.nlm.nih.gov/pubmed/32913425
https://doi.org/10.1186/1471-2334-14-167
http://www.ncbi.nlm.nih.gov/pubmed/24669859
https://doi.org/10.1186/1471-2334-11-166
http://www.ncbi.nlm.nih.gov/pubmed/21658238
https://doi.org/10.1016/j.actatropica.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29545150
https://doi.org/10.1038/srep33707
http://www.ncbi.nlm.nih.gov/pubmed/27665707
https://doi.org/10.1371/journal.pntd.0005973
http://www.ncbi.nlm.nih.gov/pubmed/29036169
https://doi.org/10.1016/j.actatropica.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/29777650
https://doi.org/10.1371/journal.pntd.0001258
http://www.ncbi.nlm.nih.gov/pubmed/21829744
https://doi.org/10.1371/journal.pntd.0008056


27. Statnikov A, Wang L, Aliferis CF, A comprehensive comparison of random forests and support vector

machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9:319. https://doi.org/

10.1186/1471-2105-9-319 PMID: 18647401

28. Nsoesie EO, Beckman R, Marathe M, Lewis B, Prediction of an epidemic curve: A supervised classifica-

tion approach. Statistical communications in infectious diseases. 2011; 3(1):5. https://doi.org/10.2202/

1948-4690.1038 PMID: 22997545

29. Vasquez P, Loria A, Sanchez F, Barboza LA, Climate-driven statistical models as effective predictors of

local dengue incidence in Costa Rica: A generalized additive model and random forest approach. arXiv

2019; 1907.13095.

30. Olmoguez ILG, Catindig MAC, Amongos MFL, Lazan AF, Developing a dengue forecasting model: A

case study in Iligan city. International Journal of Advanced Computer Science and Applications 2019;

10(9):281–286.

31. Carvajal TM, Viacrusis KM, Hernandez LFT, Ho HT, Amalin DM, Watanabe K, Machine learning meth-

ods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan

Manila, Philippines. BMC Infectious Diseases 2018; 18:183. https://doi.org/10.1186/s12879-018-3066-

0 PMID: 29665781

32. Rehman NA, Kalyanaraman S, Ahmad T, Pervaiz F, Saif U, Subramanian L, Fine-grained dengue fore-

casting using telephone triage services. Science Advances 2016; 2(7): e1501215. https://doi.org/10.

1126/sciadv.1501215 PMID: 27419226

33. Freeze J, Erraguntla M, Verma A, Data integration and predictive analysis system for disease prophy-

laxis: Incorporating dengue fever forecasts. Proceedings of the 51st Hawaii International Conference on

System Science 2018; 913–922.

34. Dinh L, Chowell G, Rothenberg R, Growth scaling for the early dynamics of HIV/AIDS epidemics in Bra-

zil and the influence of socio-demographic factors. Journal of Theoretical Biology 2018; 442:79–86.

https://doi.org/10.1016/j.jtbi.2017.12.030 PMID: 29330056

35. Chretien J-P, Riley S, George DB, Mathematical modeling of the West Aftica Ebola epidemic. eLIFE

2015; 4:e09186. https://doi.org/10.7554/eLife.09186 PMID: 26646185
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vigilancia en salud pública enfermedad por virus Zika. PRO-R02.056. Bogota (Colombia): Instituto

Nacional de Salud, 2017. Available from: http://bvs.minsa.gob.pe/local/MINSA/3449.pdf (last accessed

December 16, 2019).

39. Beketov MA, Yurchenko YA, Belevich OE, Liess M, What environmental factors are important determi-

nants of structure, species richness, and abundance of mosquito assemblages? Journal of Medical

Entomology 2010; 47:129–139. https://doi.org/10.1603/me09150 PMID: 20380292

40. Joyce RJ CMORPH: A method that produces global precipitation estimates from passive microwave

and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 2004; 5:487–

503.

41. Koyadun S, Butraporn P, Kittayapong P, Ecologic and sociodemographic risk determinants for dengue

transmission in urban areas in Thailand. Interdisciplinary Perspectives on Infectious Diseases 2012;

2012:907494. https://doi.org/10.1155/2012/907494 PMID: 23056042

42. Reiter P, Climate change and mosquito-borne disease. Environmental Health Perspectives 2001; 109

(supplement 1):141–161. https://doi.org/10.1289/ehp.01109s1141 PMID: 11250812

43. Soghaier MA, Himatt S, Osman KE, Okoued SI, Seidahmed OE, Beatty ME, et al., Cross-sectional

community-based study of the socio-demographic factors associated with the prevalence of dengue in

the eastern part of Sudan in 2011. BMC Public Health 2015; 15:558. https://doi.org/10.1186/s12889-

015-1913-0 PMID: 26084275

44. Kannan Maharajan M, Rajiah K, Singco Belotindos JA, Bases MS. Social determinants predicting the

knowledge, attitudes, and practices of women toward zika virus infection Frontiers in Public Health

2020; 8:170. https://doi.org/10.3389/fpubh.2020.00170 PMID: 32582602

45. Couse Quinn S, Kumar S. Health inequalities and infectious disease epidemics: A challenge for global

health security. Biosecurity and Bioterrorism: Biodefense Srategy, Practice, and Science 2014; 12

(5):263–273.

PLOS NEGLECTED TROPICAL DISEASES Random forests and artificial neural networks for dengue forecasting in Colombia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008056 September 24, 2020 14 / 16

https://doi.org/10.1186/1471-2105-9-319
https://doi.org/10.1186/1471-2105-9-319
http://www.ncbi.nlm.nih.gov/pubmed/18647401
https://doi.org/10.2202/1948-4690.1038
https://doi.org/10.2202/1948-4690.1038
http://www.ncbi.nlm.nih.gov/pubmed/22997545
https://doi.org/10.1186/s12879-018-3066-0
https://doi.org/10.1186/s12879-018-3066-0
http://www.ncbi.nlm.nih.gov/pubmed/29665781
https://doi.org/10.1126/sciadv.1501215
https://doi.org/10.1126/sciadv.1501215
http://www.ncbi.nlm.nih.gov/pubmed/27419226
https://doi.org/10.1016/j.jtbi.2017.12.030
http://www.ncbi.nlm.nih.gov/pubmed/29330056
https://doi.org/10.7554/eLife.09186
http://www.ncbi.nlm.nih.gov/pubmed/26646185
https://doi.org/10.1093/trstmh/trv094
http://www.ncbi.nlm.nih.gov/pubmed/26626342
https://doi.org/10.1371/journal.pntd.0003499
http://www.ncbi.nlm.nih.gov/pubmed/25790245
http://bvs.minsa.gob.pe/local/MINSA/3449.pdf
https://doi.org/10.1603/me09150
http://www.ncbi.nlm.nih.gov/pubmed/20380292
https://doi.org/10.1155/2012/907494
http://www.ncbi.nlm.nih.gov/pubmed/23056042
https://doi.org/10.1289/ehp.01109s1141
http://www.ncbi.nlm.nih.gov/pubmed/11250812
https://doi.org/10.1186/s12889-015-1913-0
https://doi.org/10.1186/s12889-015-1913-0
http://www.ncbi.nlm.nih.gov/pubmed/26084275
https://doi.org/10.3389/fpubh.2020.00170
http://www.ncbi.nlm.nih.gov/pubmed/32582602
https://doi.org/10.1371/journal.pntd.0008056


46. Breiman L, Random forests. Machine learning 2001; 45(1):5–32.

47. Hulme M, New M. Dependence of large-scale precipitation climatologies on temporal and spatial sam-

pling. Journal of Climate, 1997; 10:1099–1113,

48. Papacharalampous GA, Tyralis H, Evaluation of random forests and prophet for daily streamflow fore-

casting. Advances in Geosciences 2018; 45:201–208.

49. Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q, Time series analysis of dengue fever and weather in Guang-

zhou, China, BMC Public Health 2009; 9:395. https://doi.org/10.1186/1471-2458-9-395 PMID:

19860867

50. Chen S-C. Liao C-M, Chio C-P, Chou H-H, You S-H, Cheng Y-H, lagged temperature effect with mos-

quito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical

analysis. Science of The Total Environment 2010; 408(19):469–4075.

51. Cheong YL, Burkart K, Leitao PJ, Lakes T, Assessing weather effects on dengue disease in Malaysia,

International Journal of Environmental Research and Public Health 2013; 10(12):6319–6334. https://

doi.org/10.3390/ijerph10126319 PMID: 24287855

52. Chang K, Chen C-D, Shih C-M, Lee T-C, Wu M-T, Wu D-C, et al., Time-lagging interplay effect and

excess risk of meteorological/mosquito parameters and petrochemical gas explosion on dengue inci-

dence. Scientific reports 2016; 6:35028. https://doi.org/10.1038/srep35028 PMID: 27733774

53. Chen Y, Ong JHY, Rajarethinam J, Yap G, Ng LC, Cook AR. Neighbourhood level real-time forecasting

of dengue cases in tropical urban Singapore. BMC Medicine 2018; 16(1):129. https://doi.org/10.1186/

s12916-018-1108-5 PMID: 30078378

54. Eastin MD, Delmelle E, Casas I, Wexler J, Self C, Intra-and interseasonal autoregressive prediction of

dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. The

American Journal of Tropical Medicine and Hygiene 2014; 91(3):598–610. https://doi.org/10.4269/

ajtmh.13-0303 PMID: 24957546

55. Bostan N, Javed S, Amen N, Eqani SAMAS, Tahir F, Bokhari H, Dengue fever virus in Pakistan: effects

of seasonal pattern and temperature change on distribution of vector and virus. Reviews in Medical

Virology 2017; 27(1):e1899.

56. Oidtman RJ, Lai S, Huang Z, Yang J, Siraj AS, Reiner RC, et al., Inter-annual variation in seasonal den-

gue epidemics driven by multiple interacting factors in Guangzhou, China, Nature Communications

2019; 10:1148. https://doi.org/10.1038/s41467-019-09035-x PMID: 30850598

57. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Spring, Berlin, 2008.

58. Liaw A, Wiener M. Breiman and Culter’s random forests for classification and regression. 2018. Avail-

able from: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (last accessed

May 7, 2020).

59. Peng Z, Letu H, Wang T, Shi C, Zhao C, Tana G, Zhao N, Dai T, Tang R, Shang H, Shi J, Chen L. Esti-

mation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery

over China. Journal of Quantitative Spectroscopy and Radiative Transfer 2020; 240: 106672.

60. Hyndman RJ, Khandakar Y. Automatic time series forecasting: The forecast package for R. Journal of

Statistical Software 2008; 27: 1–22.

61. Reich NG, Lessler J, Sakrejda K, Lauer SA, Iamsirithaworn S, Cummings DAT. Case study in evaluat-

ing time series prediction models using the relative mean absolute error. The American Statistician

2016; 70: 285–292. https://doi.org/10.1080/00031305.2016.1148631 PMID: 28138198

62. Liu Y, Cao G, Zhao N, Mulligan K, Ye X. Improve ground-level PM2.5 concentration mapping using a

random forests-based geostatistical approach. Environmental Pollution 2018; 235: 272–282. https://

doi.org/10.1016/j.envpol.2017.12.070 PMID: 29291527

63. Grziwotz F, Strauß JF, Hsieh C-h, Telschow A. Empirical dynamic modelling identifies different

responses of Aedes Polynesiensis subpopulations to natural environmental variables. Scientific

Reports 2018; 8: 16768. https://doi.org/10.1038/s41598-018-34972-w PMID: 30425277

64. da Cruz Ferreira DA, Degener CM, de Almeida Marques-Toledo C, Bendati MM, Fetzer LO, Teixeira

CP, Eiras AE. Meteorological variables and mosquito monitoring are good predictors for infestation

trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasites Vectors 2017; 10: 78.

https://doi.org/10.1186/s13071-017-2025-8 PMID: 28193291

65. Manica M, Filipponi F, D’Alessandro A, Screti A, Neteler M, RosàR, et al. Spatial and Temporal Hot

Spots of Aedes albopictus Abundance inside and outside a South European Metropolitan Area. PLoS

Neglected Tropical Diseases 2016; 10(6): e0004758. https://doi.org/10.1371/journal.pntd.0004758

PMID: 27333276

66. Mulligan K, Dixon J, Sinn C-L J, Elliott SJ. Is dengue a disease of poverty? A systematic review. Patho-

gens and Global Health 2015; 109(1): 10–18. https://doi.org/10.1179/2047773214Y.0000000168

PMID: 25546339

PLOS NEGLECTED TROPICAL DISEASES Random forests and artificial neural networks for dengue forecasting in Colombia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008056 September 24, 2020 15 / 16

https://doi.org/10.1186/1471-2458-9-395
http://www.ncbi.nlm.nih.gov/pubmed/19860867
https://doi.org/10.3390/ijerph10126319
https://doi.org/10.3390/ijerph10126319
http://www.ncbi.nlm.nih.gov/pubmed/24287855
https://doi.org/10.1038/srep35028
http://www.ncbi.nlm.nih.gov/pubmed/27733774
https://doi.org/10.1186/s12916-018-1108-5
https://doi.org/10.1186/s12916-018-1108-5
http://www.ncbi.nlm.nih.gov/pubmed/30078378
https://doi.org/10.4269/ajtmh.13-0303
https://doi.org/10.4269/ajtmh.13-0303
http://www.ncbi.nlm.nih.gov/pubmed/24957546
https://doi.org/10.1038/s41467-019-09035-x
http://www.ncbi.nlm.nih.gov/pubmed/30850598
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://doi.org/10.1080/00031305.2016.1148631
http://www.ncbi.nlm.nih.gov/pubmed/28138198
https://doi.org/10.1016/j.envpol.2017.12.070
https://doi.org/10.1016/j.envpol.2017.12.070
http://www.ncbi.nlm.nih.gov/pubmed/29291527
https://doi.org/10.1038/s41598-018-34972-w
http://www.ncbi.nlm.nih.gov/pubmed/30425277
https://doi.org/10.1186/s13071-017-2025-8
http://www.ncbi.nlm.nih.gov/pubmed/28193291
https://doi.org/10.1371/journal.pntd.0004758
http://www.ncbi.nlm.nih.gov/pubmed/27333276
https://doi.org/10.1179/2047773214Y.0000000168
http://www.ncbi.nlm.nih.gov/pubmed/25546339
https://doi.org/10.1371/journal.pntd.0008056


67. Tapia-Conyer R, Méndez-Galván JF, Gallardo-Rincón H. The growing burden of dengue in Latin Amer-

ica. Journal of Clinical Virology 2009; 46: S3–S6. https://doi.org/10.1016/S1386-6532(09)70286-0

PMID: 19800563

68. Adams EA, Boateng GO, Amoyaw JA. Socioeconomic and demographic predictors of potable water

and sanitation access in Ghana. Social Indicators Research 2016; 126(2): 673–687.

69. de Janvry A, Sadoulet E. Growth, poverty, and inequality in Latin America: A causal analysis, 1970–94.

The review of Income and Wealth 2000; 46(3): 267–287.

70. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning

applications and challenges in big data analytics. Journal of Big Data 2015; 2:1.

71. Ong J, Liu X, Rajarethinam J, Kok SY, Liang S, Tang CS, et al., Mapping dengue risk in Singapore

using random forest. PLoS Neglected Tropical Diseases 2018; 12(6):e0006587. https://doi.org/10.

1371/journal.pntd.0006587 PMID: 29912940

72. Williams RJ, Zipser D, A learning algorithm for continually running fully recurrent neural networks. Neu-

ral Computation 1989; 1(2):270–280.

PLOS NEGLECTED TROPICAL DISEASES Random forests and artificial neural networks for dengue forecasting in Colombia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008056 September 24, 2020 16 / 16

https://doi.org/10.1016/S1386-6532%2809%2970286-0
http://www.ncbi.nlm.nih.gov/pubmed/19800563
https://doi.org/10.1371/journal.pntd.0006587
https://doi.org/10.1371/journal.pntd.0006587
http://www.ncbi.nlm.nih.gov/pubmed/29912940
https://doi.org/10.1371/journal.pntd.0008056

