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Important efforts are being done to systematically identify the relevant pathways in a metabolic network. Unsurprisingly, there
is not a unique set of network-based pathways to be tagged as relevant, and at least four related concepts have been proposed:
extreme currents, elementary modes, extreme pathways, and minimal generators. Basically, there are two properties that these sets
of pathways can hold: they can generate the flux space—if every feasible flux distribution can be represented as a nonnegative
combination of flux through them—or they can comprise all the nondecomposable pathways in the network. The four concepts
fulfill the first property, but only the elementary modes fulfill the second one. This subtle difference has been a source of errors
and misunderstandings. This paper attempts to clarify the intricate relationship between the network-based pathways performing
a comparison among them.

1. Introduction

A metabolic network can be represented with a stoichiomet-
ric matrix N, where rows correspond to the m metabolites
and columns to the n reactions. Assuming that intracellular
metabolites are at steady state, material balances can be
formulated as follows [1]:

N · v = 0, (1)

where v = (v1, v2, . . . , vn)T is the n-dimensional vector of
flux through each reaction. Each feasible steady state is
represented by a flux vector v. Taking into account these mass
balances and the irreversibility of certain reactions, the space
of feasible steady state flux distributions, or flux space, can be
defined as follows (see glossary for words in italics):

P = {v ∈ Rn : N · v = 0, D · v ≥ 0}, (2)

where D is a diagonal n × n-matrix with Dii = 1 if the flux i
is irreversible (otherwise 0).

The concept of the flux space is the cornerstone of
constraint-based modeling, an approach supported by the
fact that cells are subject to governing constraints that
limit their behavior [2, 3]. In this context, network-based
pathways are used to investigate the modeled metabolism
by the analysis of a finite set of relevant pathways, which
ideally represents all of the metabolic states that a cell can
show. Some outstanding applications of this approach are
enumerated in Table 1.

However, there is not a unique set of network-based
pathways to be tagged as “relevant” and different proposals
have been applied with success: extreme currents, elementary
modes, extreme pathways, and minimal generators. These
concepts are not equivalent, but closely related. There are
three major properties that a set of network-based pathways
can hold: (P1) they can generate the flux space P, (P2)
they can be the minimal set of vectors fulfilling the first
property, and (P3) they can be all the non-decomposable
pathways in the network. The fact that all of the network-
based pathways—elementary modes, extreme pathways, and
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Table 1: Applications of network-based pathways analysis. Partially
extracted from [4–6].

Applications References

Identification of pathways [7, 8]

Determination of minimal medium requirements [9]

Analysis of pathway redundancy and robustness [10–12]

Linkage between structure and regulation. . .

Correlated reactions (enzyme subsets) [11, 13]

Detect excluding reaction pairs [4]

Prediction of transcription ratios [10, 14]

Include regulatory rules [15]

Support for metabolic engineering. . .

Identification of pathways with optimal yields [8]

Evaluation of effect of addition/deletion of genes [16]

Inference of viability of mutants [10, 17]

Detection of minimal cut sets [18]

Suggest operations to increase product yield [19]

Translation of a flux distribution into pathways
activities. . .

Particular solution methods [20, 21]

Alpha-spectrum [22, 23]

Aid in the reconstruction of metabolic reaction
networks. . .

Assignment of function to orphan genes [24]

Detection of infeasible circles [12, 25]

Detection of network dead ends [9, 26, 27]

Support in the reconstruction of metabolic maps [28]

Development of reduced, kinetic models [29–31]

so forth—fulfill the first property but not the others has been
a source of errors, imprecisión, and misunderstandings.

This paper discusses the relationship between the differ-
ent network-based pathways from a theoretical point of view.
We will start defining four pathway concepts and then we will
perform a comparison among them. Finally, we will present
some examples and outline the major conclusions.

2. Results and Discussion

The first attempts to systemically extract a set of pathways
from a given metabolic network were based on the assump-
tion that all of the fluxes were irreversible, or more precisely,
that its dominant direction could be presumed. Convex
algebra shows that in this case the flux space P is a pointed
convex polyhedral cone in the positive orthant Rn+, which can
be generated by non-negative combination of certain vectors,
its edges, or extreme rays [32]. See Figure 1 for a geometric
illustration of the concept.

Extreme rays: pointed cone

v1v2

v3

(a)

Extreme rays: non-pointed cone

v1

v2

v3

(b)

Figure 1: Extreme rays of two flux spaces.

These extreme rays were flux vectors, or pathways, with
a remarkable property (P1): the extreme rays generate the
flux space P; that is, every flux distribution v in P can be
represented as a non-negative combination of fluxes through
these pathways (ek denotes the extreme rays):

P =
⎛
⎝v : v =

e∑

k

wk · ek, wk ≥ 0

⎞
⎠. (3)

Notice that, in general, a given v cannot be uniquely
decomposed into an activity pattern w, but a space of
valid solutions exists [22, 23]. This is also true for the rest
of generating sets that will be introduced in subsequent
sections.

Moreover, the set of extreme rays had two additional
properties: (P2) it was the smallest (minimal) generating set
of P, and (P3) the extreme rays were all the non-decomposable
vectors in P, those that cannot be decomposed in simpler
vectors [6]. A non-decomposable vector is a minimal set
of reactions that form a “functional unit”; if any of its
participant reactions is not carrying flux, the others cannot
operate alone. These functional units are the simplest steady-
state flux distributions that cells can show, and the rest of
feasible states can be seen as the aggregated action of these
units. This property makes it possible to investigate the
infinite behaviors that cells can show by inspection of the
finite set of non-decomposable vectors.

But what happens if not all fluxes can be assumed to be
irreversible? If so, the extreme rays may lose these properties.
Moreover, a set of vectors holding the three properties
simultaneously (P1, P2, and P3) will not exist; there will be
sets fulfilling P1 and P2, or P1 and P3, but not P2 and P3 in
a general case.

3. Different Network-Based Pathways

3.1. Extreme Currents. Extreme currents are probably the
first attempt to define a set of network-based pathways
[33]. Their computation is based on splitting up each
reversible reaction into two irreversible ones. Thus, if fluxes
are reordered to separate the irreversible fluxes vI and the
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reversible ones vR, the flux space (2) is augmented (N =
[NINR]):

Prc=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v∈Rn+r :
(

NI NR −NR

)
·

⎛
⎜⎜⎝

vI

vR

v′R

⎞
⎟⎟⎠=0,

⎛
⎜⎜⎝

vI

vR

v′R

⎞
⎟⎟⎠≥0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(4)

The extreme rays of the cone Prc are defined as the extreme
currents of P. Notice that Prc is a pointed cone in the positive
orthant Rn+r , so its extreme rays have all of the properties
mentioned above (P1–P3). However, Prc lives in a higher-
dimensional vector space (augmented in one dimension for
each split reversible reaction) and the extreme currents lose
their properties when they are translated to the original
vector-space.

In fact, it has been recently shown that the set of extreme
currents (ECS) coincides with the set of elementary modes,
which will be introduced below, when it is translated to
the original vector-space [34]—when computing the ECS
a set of r spurious cycles appear (pathways formed by the
forward and backward reaction of each reversible flux);
however, these pathways are not considered meaningful in
most applications [35] and they disappear when the ECs are
expressed in the original vector-space Rn.

3.2. Elementary Modes. The concept of elementary
modes was introduced to extend the property of non-
decomposability of the extreme rays (P3) to networks
with reversible fluxes [7, 8]. Hence, a flux vector e is an
elementary mode (EM) if and only if [36]

(C1) e ∈ P,

(C2) there is no nonzero vector v ∈ P such that the
support of v supp(v) is a proper subset of the
support of e supp(e). In other words, e cannot
be decomposed as a positive combination of two
“simpler” vectors v′ and v′′ in P that contain zero
elements wherever e does and include at least one
additional zero component each. This condition
is the so-called nondecomposability, simplicity, or
genetic independence.

Thereby, the set of elementary modes (EMS) is defined as
the set of all the nondecomposable vectors in the flux space
(P3). This definition implies that the EMS fulfills property
P1, as in (3), but also a more restrictive condition due
to C2: each flux distribution can always be represented as
a non-negative combination of elementary modes without
cancelations [36]:

P =
⎛
⎝v : v =

e∑

k

wk · ek,wk ≥ 0

⎞
⎠ without cancelations (∗).

(5)

(∗) If the sum runs over two or more indices k, all of the ek have
zero components wherever v has zero components and include
at least one additional zero each.

That means that the elementary modes are all the
simple states, or functional units, that a cell can show (the
non-decomposable vectors) and the rest of feasible states
can be seen as its strictly aggregated action, that is, its
aggregated action without cancelations. The “no cancelation
rule” is relevant for several applications of network-based
pathways. The no cancelation rule is what makes it possible
to investigate the infinite behaviors that cells can show by
simply inspection of the finite set of elementary modes,
because there is no possibility of cancelations of reversible
fluxes. This allows to answer many interesting questions in
an easy manner; consider, for example the following:

(i) Which reactions are essential to produce the com-
pound Y? Those that participate in all of the elemen-
tary modes producing Y.

(ii) Is there a route connecting the educt A with the
product Y? Only if there is an elementary mode
connecting them.

(iii) Which are the capabilities of the network if a
reaction r is not carrying flux or has been knocked-
out? The feasible states in these circumstances are
only those that result from aggregating, with no
cancelations, the elementary modes not involving r
(i.e., the consequences of r not carrying flux can
be directly predicted ignoring the elementary modes
participated by r).

(iv) Which is the optimal yield to produce Y from
A? The (stoichiometrically) optimal pathway is the
elementary mode consuming A and producing Y
with the best yield.

As we will see in subsequent sections, the main difference
among network-based pathways is that all of them satisfy
(3), but only the elementary modes satisfy (5), and this fact
determines their practical applications.

3.3. Minimal Generators. We have seen that the elementary
modes generate the flux space, as in (3), but usually they
are not the smallest set satisfying this condition because they
have to fulfill the most exigent condition of (5). Which is
then the minimal set of vectors that generates P by non-
negative combination? The term minimal generating set
(MGS) has been recently coined to refer to this set [37].
It was also shown how to obtain an MGS that is subset of
EMS. However, in general there is not a unique minimal
generating set: different MGSs may exist within the EMS,
and even vectors that are not EMs can be part of an MGS.
Both cases will be discussed in following sections. Yet, the
concept of the minimal generating set also arises from a
different point of view. It is well known that the elementary
modes are not systemically independent because it is possible
to represent some modes as non-negative combination of
others [5]. Clearly, dependent modes that are not necessary
to fulfill (3) can be removed. Thus, any resultant irreducible
subset of the elementary modes is a minimal generating set.
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In summary, a set of minimal generators fulfill prop-
erties P1 and P2, whereas the elementary modes fulfill P1
and P3. The elementary modes include additional non-
decomposable vectors to fulfill P3, which are redundant in
(3) but necessary in (5).

The fact that an MGS does not fulfill (5) reduces its
usability for analysis of the underlying metabolism. Remark-
ably, the questions mentioned in the previous section cannot
be easily addressed using the MGS because the cancelation
of reversible fluxes hides simple pathways. For example,
the MGS has to be recalculated after a gene deletion, and
similar difficulties arise in other applications. The advantage
of the MGSs against the EMS is its reduced size: considering
the central carbon metabolism of E. coli, the computation
of the EMS returns more than 500 000 EMs, whereas an
MGS contains around 3000 MGs [34]. This also implies
that obtaining the MGS is computationally more efficient.
Thereby, the MGS will be preferred in those applications
that just require a set of vectors generating the fluxspace.
For instance, the MGS has been used to perform phenotype
phase-plane analysis [37] and it can be used to extract
the minimal connections between extracellular compounds,
information that can then be used to develop unstructured,
kinetic models [29–31, 38].

3.4. Extreme Pathways. As it happens with the extreme
currents, extreme pathways are obtained in an augmented
vector-space [35]; however, only the internal fluxes are
decomposed in both forward and backward directions (the
exchange fluxes, those that connect internal and external
metabolites with one-to-one correspondence [4], are kept
as reversible). Hence, if fluxes are reordered to separate the
irreversible internal fluxes vI, the reversible ones vR, and the
exchange fluxes vB, as v = [vI vB vR]T, the flux space (2) can
be reformulated as follows (where N = [NI NB NR]):

Prc=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v∈Rn+r :
(

NI NB NR −NR

)
·

⎛
⎜⎜⎜⎜⎜⎜⎝

vI

vB

vR

v′R

⎞
⎟⎟⎟⎟⎟⎟⎠
=0,

⎛
⎜⎜⎜⎜⎜⎜⎝

vI

vB

vR

v′R

⎞
⎟⎟⎟⎟⎟⎟⎠
≥0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(6)

In this augmented vector-space, and only there, the set
of extreme pathways (EPs) is a subset of the elementary
modes that is systemically independent [5]. The EPs are still
capable of generating P, as in (3), because only dependent
elementary modes are discarded. However, the extreme
pathways are not systemically independent in the original
one (and even the ECs, which are equivalent to the EMs, are
systemically independent in the augmented space where they
are obtained). Therefore, they are not the irreducible subset
of the elementary modes in the original vector-space; that is,
they are not the minimal generating set [37]. Unfortunately,
this notion was unclear in the literature until recently.

The extreme pathways fulfill property P1, but not P2 nor
P3 in the original vector-space. As it happens with the MGS,
the fact that the EPS does not fulfill (5) reduces its usability
in certain applications. Their advantage with respect to the

EMS is its smaller size, but it must be kept in mind that, in
general, the MGS will be smaller than the EPS (and never
larger).

Example: Two Different Vector-Spaces. Consider the small
network depicted in Figure 2, Case 2A. The three EPs of
this network represented in the augmented vector-space
{v1, v2, v3,−v3} are E1 = (1 0 1 0), E2 = (0 1 0 1),
and E3 = (1 1 0 0). These three vectors are systemically
independent. However, when translated to the original
vector-space {v1, v2, v3}, these vectors are E1 = (1 0 1), E2 =
(0 1 −1) and E3 = (1 1 0), which are not longer systemically
independent, since E1 = E2 + E3. Figure 2 also illustrates the
systemic dependancy of the EPs.

4. Comparison among
Network-Based Pathways

This section is devoted to the comparison of the network-
based pathways described above: extreme currents, minimal
generators, elementary modes and extreme pathways. The
case where all of the fluxes are irreversible will be introduced
first to contextualize the problem; then, the presence of
reversible fluxes will be considered and the differences will
become apparent (see Figure 2).

Reference Vector-Space. Hereinafter we consider the original
vector-space as the reference one: all of the generating sets
will be expressed as elements of the vector-space Rn where
each flux corresponds to an axis. We choose Rn because it is
the original space of the fluxes that connect the metabolites of
the network, and thus it is the meaningful one. For instance,
in the previous example the EPs expressed in the augmented
vector-space were unable to capture the fact that pathway E1
can be seen as a combination of E2 and E3 (E1 = E2 + E3).
Notice also that the relevant difference between equations
(3) and (5), which depends on the cancelation of reversible
fluxes, cannot be easily observed in the augmented vector-
spaces. Since ECs and EPs are computed in augmented
vector-spaces, once obtained, they have to be translated
to Rn, simply merging again the decomposed reversible
fluxes. This process also removes the spurious cycles, those
pathways formed only by the forward and backward reaction
of each reversible flux and appearing as EPs and ECs in the
augmented vector-spaces.

4.1. Case 1: All Fluxes Are Irreversible. As explained in a
previous section, when all of the reactions are irreversible,
the flux space P is a convex cone that satisfies two conditions:
(a) it is in the positive orthant R+ and (b) it is a pointed cone.

Condition (b) implies that P can be generated by
non-negative combination of its extreme rays (3) (more
details below). In fact, the extreme rays always belong to
every generating set because by definition they cannot be
generated by non-negative combination of other vectors
within the cone (see glossary). Thus, if the extreme rays
are able to generate the cone, as it happens in this case,
they are necessarily the minimal generating set. On the
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Case 1

All fluxes irreversible

The cone • exists in R+

• is pointed

•MGS is unique
• EPS = EMS = MGS

Example

v1 = v2 + v3, vi ≥ 0

MG, EM, EP

v1

v2

v3

MG, EM, EP

• EMs: 2
•MGs: 2
• EPs: 2

v1

v2

v3 (1, 0, 1)

(1, 1, 0)

v1

v3
(1, 0, 1)

(1, 1, 0)

Case 2A

Reversible fluxes, no reversible vector

The cone
•may not exist in R+

• is pointed

•MGS is unique
• EMS ⊇ EPS ⊇MGS

If all exchange v’s are irrev. =⇒ EMS = EPS
If all internal v’s are irrev. =⇒ EPS =MGS

Example (2A)

v1 = v2 + v3, v1 ≥ 0
v2 ≥ 0

EM, EP

v1

v2

v3

MG
EM
EP

MG, EM, EP

• EMs: 3
•MGs: 2
• EPs: 3

If v1, v2, and v3 are
considered as exchange
fluxes =⇒ 2 EPs

v1

v2

v3 (1, 0, 1)

(0, 1,−1)
(1, 1, 0)

v1

v3 (1, 0, 1)

(1, 1, 0)

(0, 1,−1)

Case 2B

Reversible fluxes, reversible vector

The cone • does not exist in R+

• is non-pointed

•MGS is not unique
• EMS ⊇ EPS ⊇MGS

Common:
EMS (ECS) ⊃ EPS ⊃ every MGS

Example

v1 = v2 + v3, v3 ≥ 0

MG, EM, EP
MG, EM, EP

v1

v2

v3

MG
EM
EP

MGa, EM, EP

• EMs: 4
•MGs: 3
• EPs: 4

MGS not unique (a/b)

Adding 1 of 2 extra
EMs gives an MGS

v1
v2

v3

(0,−1, 1)

(1, 0, 1)

(−1,−1, 0)

(1, 1, 0)

v1

v3
(0,−1, 1)

(1, 1, 0)

(1, 0, 1)

(−1,−1, 0)

Figure 2: Case-based scheme of the different network-based pathways. In each example metabolites are represented with circles connected
with thin arrows that represent the fluxes. The reversible fluxes are double arrowed (solid arrowhead defines the sign criteria). The blue thick
arrows denote generating vectors that correspond to extreme rays of the cone and the red ones to the rest of generating vectors. The axis at
the bottom depicts the flux-space over {v1, v2, v3}, blue area, and its generating vectors.
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other hand, the extreme rays are always non-decomposable
vectors of P (since they cannot be generated by non-negative
combination). Moreover, condition (a) implies that the
intersections of the cone with the (positive or negative) axis
of the vector-space, which are potential non-decomposable
vectors, cannot be interior points of P. Thus, the extreme
rays will be all the non-decomposable vectors in P.

These two conditions imply that in this case the extreme
rays are not only the minimal generating set of the flux
space (P1 and P2), but also the set of all non-decomposable
vectors (P3). Since the ECs and the EPs are the extreme rays
of two cones defined in augmented vector-spaces where the
reversible fluxes are decomposed, it is obvious that, if there
are no reactions to be decomposed, the ECs and EPs are the
extreme rays of the original cone P. Therefore the following
is maintained.

Rule 1. If all fluxes are irreversible, all the generating sets are
equivalent, EMS = ECS = EPS = MGS, and coincide with the
extreme rays of the flux space P.

4.2. Case 2: There Are Reversible Fluxes. Now we consider
the situation where certain fluxes are reversible. The flux
space P is still a convex cone, but it is not necessarily in
the positive orthant R+ and it can be non-pointed. If one
or more reversible reactions are effectively reversible—that
is, both forward and backward directions can be realized
by flux distributions—the cone will not be in the positive
orthant (otherwise P would remain a pointed one in the
positive orthant as in Case 1). Then, two situations are
possible: Case 2A, the cone is pointed, and Case 2B, it is
not.

Consider the lineality space of P, defined as
lin.space(P) := {x ∈ Rn | A · x = 0}. It represents
the linear subspace contained in the cone and allows to
characterize the cone as follows: P is pointed if lin.space
(P) = {0}, otherwise non-pointed. Hence, P will be a non-
pointed cone if a vector x and its opposite –x exist in P. These
vectors would involve only reversible fluxes and represent
reversible vectors that can operate in both directions. Thus
P is non-pointed cone if and only if it contains a reversible
vector. It is also possible to check whether a cone is pointed
inspecting K, the kernel of N, arranged in a suitable way (see
[37] for details).

The more important consequence of this classification is
the following: a pointed cone P can be generated by non-
negative combination of its extreme rays, but this no longer
true for a non-pointed one. A non-pointed cone still can be
generated by non-negative combination, but a unique MGS
will not exist.

4.3. Case 2A: Reversible Fluxes but Not Reversible Vectors. If
there are reversible fluxes but not a reversible vector, the
flux-space P is still a pointed cone and it can be generated
by its extreme rays [39]. As explained above, if the extreme
rays generate the cone, they are necessarily the minimal
generating set because they belong to every generating set by
definition.

Rule 2. If the flux space P does not contain a reversible vector,
a unique MGS exists and it coincides with the extreme rays
of P.

However, if there are reversible fluxes, and they are
effectively used in both directions, the cone is not restricted
to the positive orthant R+. This implies that the intersections
of vector-space axis with the cone will be non-decomposable
vectors of P. That is, there are non-decomposable vectors
in P that are not extreme rays. The EMS sill contains the
extreme rays, which are always non-decomposable, but could
also contain other non-decomposable vectors. Notice that
these extra EMs are necessary to generate the flux space P
without cancelations (5), but can be redundant to fulfill (3).

Rule 3. The EMS (ECS) is always a superset of the extreme
rays of the flux space P. If there are reversible fluxes, more
EMs than extreme rays may exist.

By Rules 2 and 3 it follows that, if the flux space P does
not contain a reversible vector, the MGS is a subset of the
EMS. Moreover, those EMs not belonging to the MGS will
be systemically dependent and the MGS will be the unique
irreducible subset of the EMS.

Rule 4. If the flux space P does not contain a reversible
vector, the unique MGS is the irreducible subset of the EMS.
It can be extracted from the EMS selecting the systemically
independent vectors (see the appendix).

This property was incorrectly assigned to the extreme
pathways in the past, but these are systemically independent
only in an augmented vector-space and not in the original
one (see example below). The EPs are the extreme rays of
the cone obtained when the internal, reversible reactions are
split, whereas the EMs (ECs) are the extreme rays of the cone
obtained when all of the reversible reactions are split. This
difference determines the relationship among the concepts
(Figure 3).

Rule 5. If the flux space P does not contain a reversible vector,
the EPS can be a subset of the EMS, but in general it is not the
MGS. That is, EMS (ECS) ⊇ EPS ⊇ MGS, and the following
two particular cases exist.

(a) If all exchange fluxes are irreversible, EMS (ECS) =
EPS.

(b) If all internal fluxes are irreversible, EPS = MGS.

The two rules can be rephrased as follows

(a) EPS can be a proper subset of the EMS ⇐⇒ there are
reversible exchange fluxes.

(b) MGS can be a proper subset of the EPS ⇐⇒ there are
reversible internal fluxes.

Proof Outline. (a) If all of the reversible fluxes are internal,
the EPs and the ECs (EMs) are the extreme rays of the same
cone. (b) If all of the internal fluxes are irreversible, the EPs
are the extreme rays of the original cone, which coincide with
the extreme rays due to Rule 2.
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No

Yes

Yes

No

No

Yes

Yes

No

Cone EMS & MGS EPS C1
A. always in R+

B. pointed

A. not always in R+

B. pointed

A. not in R+

B. non-pointed

EMS (ECS) = MGS
MGS is unique

EMS ⊇MGS
unique MGS

EMS ⊇ a MGS
not unique MGS

C2A

C2B

EPS = EMS = MGS

EPS = EMS

EPS = an MGS

EMS ⊇ EPS ⊇ an MGS

St
ar

t

All fluxes
irreversible?

Reversible vector
x and −x in cone

All exchange v’s
irreversible?

All internal v’s
irreversible?

Figure 3: Relationship between different network-based pathways.

4.4. Case 2B: Reversible Fluxes and a Reversible Vector. If the
reversible fluxes form a reversible vector, the convex cone
Pr is non-pointed. A non-pointed cone can be represented
as Pr = H + Q, where H is the linear space lin.space(Pr),
and Q is a pointed subcone, with Q⊆ H⊥ (H⊥ denotes the
orthogonal complement of H). In fact, this is the general
representation of a convex polyhedral cone and Cases 1 and
2A are particular cases where H = {0}. Thus, a non-pointed
cone can be generated as follows [39]:

Pr =
⎧⎨
⎩v : v =

n f∑

k

λk · fk +
nb∑

j

β j · xj, λk ≥ 0

⎫⎬
⎭, (7)

where fk are the “irreversible” generating vectors, for which
its opposites are not contained in Pr, and xj are the
“reversible” ones, for which its opposite−xj is also contained
in Pr. Vectors xj must form a base of H, whereas vectors fk

generate the sub-cone Q. Notice that Pr can still be generated
by non-negative combination, as in (3), using fk, xj, and
−xj as generating vectors. Unfortunately, there is a price
to pay for the cone being non-pointed: the set of minimal
generating vectors is not unique anymore.

In fact, a minimal generating set of Pr is obtained
choosing an arbitrary base {xj} of H, and taking one
arbitrary ray fk from each minimal proper face of the cone
[39]. When the cone is pointed, there are no vectors {xj} and
the minimal proper faces are the extreme rays, so they are
uniquely defined.

The extreme rays of Pr will be present in any generating
set—EMS, EPS, or an MGS—because they cannot be
represented as non-negative combination of other vectors in
Pr. However, they are insufficient to generate a non-pointed
cone, they could even not exist (e.g., if all fluxes are reversible,
the cone is an n-dimensional vector-space generated only by

vectors xj and −xj). Additional vectors {xj} and {fk} must
be combined with the extreme rays to form an MGS, but the
choice is not unique.

Rule 6. If the flux space Pr contains a reversible vector, its
extreme rays are not a complete generating set and there is
not a unique MGS.

However, it is still possible to define a MGS containing
only non-decomposable vectors, and thus being a subset of
the EMS. This kind of MGS can be obtained with a lexico-
smallest representation [40] or extracted from the set of EMs,
as explained in the appendix.

Rule 7. If the flux space Pr contains a reversible vector, an
irreducible subset of the EMS constitutes an MGS formed only
with non-decomposable vectors.

Notice that other MGSs exist. Indeed, even more than
one MGS formed with different non-decomposable vectors
may exist, since there is not necessarily a unique irreducible
subset of EMS. Both situations will be illustrated in subse-
quent examples.

With respect to the EPS, Rule 5 should be rephrased
recalling that the MGS is no longer unique. Moreover, since a
reversible vector will be (a) always participated by at least one
internal flux—a reversible vector only with external fluxes
has little sense and (b) in most cases also participated by
external ones (except that if all of the reversible vectors are
futile cycles), a common situation arises where EMS (ECS)
⊃EPS ⊃ an MGS.

Rule 8. If the flux-space Pr contains a reversible vector, the EPS
can be a subset of the EMS, but in general the EPS is not an
MGS. The most common case will be EMS (ECS) ⊃EPS ⊃ an
MGS.
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4.5. Examples. Some examples will be used to illustrate the
different cases described above. The first examples (1 to
5) use a simple network taken from Papin et al. [5]. The
network has 6 reactions—3 internal and 3 exchange—and
three metabolites, so it has 3 degrees of freedom. If all of
the reactions were reversible, the kernel of N would provide
a basis of the flux space formed by three reversible vectors.
Herein we consider five cases where different reactions are
irreversible (results are depicted in Figure 4).

Example 1. In the first example all fluxes are assumed to be
irreversible (Case 1). In this case, the flux space is a pointed
cone in R+ and all of the network-based pathways—ECS,
EMS, EPS, and MGS—are equivalent.

Example 2. Now the exchange flux v4 is assumed to be
reversible. This example corresponds to Case 2A (the flux
space is a pointed cone not in R+). In this case the EMS
can be a superset of the MGS, as indeed happens in this
example: EM4 is systemically dependent (EM4 = MG1 +
MG2), so it is an EM but not a MG. On the other hand,
the EPS is equal to the MGS because the internal fluxes are
all irreversible. EM4 is not an EP because the reversible flux
being cancelled in MG1 + MG2 is an exchange, so EM4 is
systemically dependent in the vector-space where EPs are
computed.

Example 3. In this third example the exchange flux v4 and
the internal flux v2 are reversible. This is a general case and
therefore, EMS ⊇ EPS ⊇ MGS. EM5 is neither an EP nor an
MG (EM5 = MG1 + MG2). EM4 is not a MG (EM4 = MG3
+ MG2), but it is an EP; one of the fluxes cancelled in MG3
+ MG2 is an internal flux, so this cancelation cannot be done
in the augmented vector-space where the EPs are computed.

Example 4. In this example only two internal fluxes, v1 and
v3, are reversible. Again, the EMS is a superset of the MGS:
EM4 is not an MG because it is systemically dependent (EM4
= MG3 + MG2). On the other hand, as all of the reversible
fluxes are internal, the EPs and the EMs are necessarily
equivalent.

Example 5. Now there are four reversible fluxes—v1, v2, v5,

and v6— that define a reversible vector. This corresponds to
Case 2B, where the flux space is a non-pointed cone. There
are 7 EMs and 5 of them are also EPs. The two vectors that
form the reversible vector are extreme rays in this example.
To form an MGS they need to be combined with 2 other
vectors, but the choice is not unique. For instance, 2 subsets
of EMs are minimal generating sets, MGS1 and MGS2.

Example 6. Klamt and Stelling use a simple example, referred
to as N2 in their article, to investigate the relationship
between the EMS and the EPS [4]. This network has 9
reactions (3 exchanges) and 6 metabolites. After computing
the EMS, the EPS, and the MGS, it turns out that there
are 8 EMs and 5 EPs (the extra EM9/EP6 in [4] disappears
in the original vector-space because it is a spurious cycle
caused by decomposing the reversible fluxes). Yet, the MGS

contains only 4 vectors, indicating that there is an EP that
is not systemically independent: it can be checked by simple
inspection that EP1 = EP2 + EP4 (when they are represented
in the original vector-space).

Example 7. Another example to be analyzed is the small
network used by Schilling et al. [35]. We obtained 7 EMs
and the 5 relevant EPs given in the paper. Again, the EPs are
not systemically independent when translated to the original
vector-space (EP2 = EP3 + EP5) and 4 vectors are sufficient
to form an MGS. It turns out that the MGS is not unique
because there is a reversible vector in the flux-space (in fact,
the reversible vector defines two EPs: EP3 and EP4 use the
same reactions but in opposite directions).

Example 8. We have also analyzed the metabolic network
of CHO cells given in [31]. The network has 24 reactions
(9 reversible) and 18 internal metabolites, so it has 6
degrees of freedom. There are 18 EMs and 8 EPs, but
only 6 vectors form the unique MGS (see supplementary
file, Figure 2 in supplementry material available online
at doi:10.1155/2010/753904). The metabolic pathways that
correspond to the MGs are given in the supplementary file,
Figure 1.

5. Conclusions

The purpose of network-based pathways analysis is to iden-
tify a finite set of systemic pathways in a metabolic network,
and then use these pathways to study the cell metabolism.
In this paper four similar definitions of network-based
pathways have been compared.

We have seen that all of the flux states of a given metabolic
network can be represented as an aggregation of flux through
its elementary modes, which are all the simple, or non-
decomposable, pathways in the network. Nevertheless, the
set of elementary modes is not the smallest set of pathways
fulfilling this property; this role corresponds to the so-called
minimal generating sets. In certain cases there is a unique
minimal generating set, but in general there are several
alternatives. Interestingly, the set of elementary modes can
be reduced by eliminating modes that are systemically
dependent, resulting in a minimal generating set formed only
with elementary modes. It has been also highlighted that,
contrarily to what has sometimes been stated, the extreme
pathways are not the minimal generating set, because they are
usually systemically dependent in the original vector-space.

The minimal generating sets can be of use in applications
where a set of generating vectors are required. In these cases
they will be preferred due to its reduced size and because
their computation is more efficient. For instance, minimal
generators are suitable for extracting the fundamental con-
nections between extracellular compounds, information that
can be used to develop unstructured, kinetic models [29–
31, 38]. However, the analysis of the elementary modes is
more powerful. The fact that the set of elementary modes
comprises all of the simple pathways in the network—its
functional states—makes it possible to investigate the infinite
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Example 1
All v’s are irreversible

1

v1

v2 v3

v6

v4 v5

MG1

MG2
MG3

EMs: 3
EPs: 3
MGs: 3

N =

⎡
⎢⎣
−1 1 0 1 0 0
1 0 1 0 −1 0
0 −1 −1 0 0 1

⎤
⎥⎦

All fluxes v’s are irreversible

=⇒MGS is unique
=⇒ EPS = EMS = MGS

Example 2
All internal v’s are irreversible

2A

v1

v2 v3

v6

v4 v5

MG1

MG2 MG3

EM4

EMs: 4 EPs: 3 MGs: 3

EM4 = MG1 + MG2

Canceled v’s are
exchange fluxes
=⇒ EM4 is not an EP

All int. v’s are irreversible
=⇒ vector space is not
expanded to get the EPS

1
1
0
0
1
1

1
0
0
1
1
0

0
1
0
−1
0
1

= +

Example 3
Mixed int./ext v’s are revers.

2A

v1

v2 v3

v6

v4 v5

MG1

MG2

MG3

EM5

EM4
EP4

EMs: 5 EPs: 4 MGs: 3

General case =⇒ EMS ⊇ EPS ⊇ an MGS

EM4 = MG3 + MG2
EM4 is systemically indep.
(only) in the expanded space
=⇒ it is EP4 (not MG)

EM5 = MG1 + MG2
(As in ex. 2, not an EP)

Int.

0
(0)
(0)
1
0
1
1

0
(0)
(1)
1
1
1
0

0
(1)
(0)
0
−1
0
1

�= +

v2

−v2

Example 4
Only internal v’s are revers.

2A

v1

v2 v3

v6

v4 v5

MG1

MG2

MG3

EM4
EP4

EMs: 4
EPs: 4
MGs: 3

All exchange v’s are irrev. =⇒ EMS = EPS

EM4 = MG3 + MG2

v’s are internal
=⇒EM4 is an EP

Example 5
Reversible vector

2B

v1

v2 v3

v6

v4 v5

MG4a

MG3a
EM7

MG1
MG2

MG4b MG3b

EMs: 7 EPs: 5 MGs: 4

There is a reversible mode =⇒MGS is NOT unique

MGS1: MG1, MG2, MG3a, MG4a
MGS2: MG1, MG2, MG3b, MG4b

Notice that
MG3b = MG1 + MG3a
MG4b = MG2 + MG4a
MG3a = MG3b + MG2
MG4a = MG4b + MG1

(MG1 = −MG2)

Figure 4: Examples illustrating the differences among network-based pathways.
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behaviors that cells can show by simply inspecting them. This
makes it easy to answer several questions: which reactions
are essential to produce a certain compound, which will be
the capabilities of the network if a reaction is knock-out,
and so forth. Answering these questions using the minimal
generators or the extreme pathways may be difficult because
one has to take into account the possible cancelations of
reversible fluxes.

Significant efforts are being done to improve network-
based pathways analysis, particularly in the context of
genome-scale metabolic network, where their more criti-
cal limitation appears: when the number of reactions in
the network grows, the number of pathways dramatically
increases, reducing understandability and even becoming
not computable [5, 6]. Recent works have improved the
computation algorithms [41, 42], and proposed methods to
get particular subsets of pathways [43] and to decompose
large networks in modules [44, 45]. New concepts of
pathways have been also recently introduced. Kaleta et al.
have introduced “elementary flux patterns”, which explicitly
takes into account possible steady-states fluxes through a
genome-scale network when analyzing pathways through
a subsystem, thus allowing the application of many (not
all) elementary-mode-based tools to genome-scale networks
[46]. Barrett et al. have used Monte Carlo sampling in
conjunction with principal component analysis to obtain a
low-dimensional set of pathways generating the flux space of
genome-scale networks [47].

Most applications of network-based pathway analysis are
found not only in the context of microbial production [9,
11, 12, 17, 20], but also in botany [48, 49] or in biomedicine
[50, 51]. The number of applications increases steadily, and
we believe that this will continue in the foreseeable future.

Glossary Box

Flux Distribution. The values of every metabolic flux of a
given network at a particular (steady) state form a flux
distribution.

Flux Space. The space P that contains all of the feasible flux
distributions of a given metabolic network is the flux space.
The flux space is often a convex polyhedral cone (2).

Convex Polyhedral Cone. A nonempty set of points P⊆ Rn is
a convex cone if and only if any non-negative combination of
elements from P remains in P. A convex cone P is polyhedral
if, for some matrix A, P = {x ∈ Rn | A · x ≤ 0}. A convex
polyhedral cone P is the set of solutions of a homogeneous
system of inequalities (or the intersection of finitely many
affine half-spaces).

Cone. For brevity, we use the term “cone” to refer to a convex
polyhedral cone.

Nonnegative Generation. The Farkas theorem asserts that a
convex cone is polyhedral if and only if it is finitely generated.

A cone is finitely generated if there exist a set of vectors G =
{gi} that generate it by non-negative combination.

Generating Set. Any set of vectors G in P that generates P by
non-negative combination is a generating set of P. The EMS,
the ECS, the EPS, and the MGSs are generating sets of P.

Lineality Space. Let P be a convex polyhedral cone, P = {x ∈
Rn | A · x ≤ 0}. Then, lin.space(P) = {x ∈ Rn | A · x = 0}
is called the lineality space of P. It is the t-dimensional linear
subspace contained in the cone.

Reversible Vectors. The lineality space, lin.space(P), contains
the nonzero vectors r in P whose opposite −r is also in
P. These involve only reversible fluxes and represent flux
distributions that can operate in both directions. They can
be called reversible vectors.

Pointed Cone. A convex polyhedral cone P is said to be
pointed if lin.space(P) = {0}. In other words, a cone is
non-pointed if it contains a reversible vector, and pointed
otherwise.

Generation of a Pointed Cone. A pointed cone P can be
generated by non-negative combination of its extreme rays,
which is the unique, minimal generating set of P (MGS).

Generation of a Nonpointed Cone. A non-pointed cone P can
still be generated by convex combination of a set of vectors,
but there is no longer a unique MGS.

Extreme Rays or Edges. A vector d is a ray of the convex
polyhedral cone P if for all x ∈ P, x+λ·d ∈ P for each λ ≥ 0.
If a ray d cannot be expressed as non-negative combination
of other rays in P, it is an extreme ray. In metabolic pathway
analysis, extreme rays are important because (i) if the cone is
pointed, the extreme rays are the unique MGS. In the general
case, the extreme rays (ii) belong to every generating set of P,
and (iii) they are always non-decomposable.

Nondecomposability. Given a cone P, a vector n ∈ P is
non-decomposable if it cannot be represented as a positive
combination of two vectors v′ and v′′ in P that contain zero
elements wherever n does and include at least one additional
zero each. These vectors represent the simple states or
functional units that a cell can show; the rest of feasible states
can be seen as its aggregated action without cancelations.
This property is relevant in several applications. All the
generating set may contain non-decomposable vectors, but
only the EMS is the set of all of the non-decomposable
vectors in P.

Systemic Independence. A set of vectors I are systemically
independent if no vector in I can be represented as a non-
negative combination of others. The extreme rays are always
a systemically independent set of vectors.
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Irreducible Subset. Given a generating set G of P that is not
systemically independent, every smallest subset of G that
generates G, and therefore P, is an irreducible subset of G.
If the cone is pointed, there is a unique irreducible subset for
every generating set and it coincides with the extreme rays of
the cone, but if the cone is non-pointed, several irreducible
subsets may exist.

(Flux) Vector-Space. The term (flux) vector-space refers to
the space with the metabolic fluxes as axis. The original flux
vector-space has dimensions n (n is number of reaction in the
network), but some network-based pathways are computed
in auxiliary vector-spaces of higher dimension.

Appendix

Computation of Network-Based Pathways

The elementary modes can be computed with Metatool [13]
and cellNetAnalyzer [52], both running under MATLAB. The
extreme pathways can be computed using expa [53]. Minimal
generating sets can be obtained using SNA [54], a software
package running under Mathematica, or using ccd [55] as
reported in [40]. In addition, we describe a simple method to
get an MGS from the EMS extracting an irreducible subset.

Extracting an MGS from the EMS. The procedure can be
outlined with the following pseudocode:

for each elementary mode ei in E

define A = [M Er]

if (there is no w ≥ 0 | A ·w = e) then: add ei to M

end

where E is the matrix formed with EMs as columns, Er is the
submatrix of E with only columns after i, and M is the matrix
collecting the MGs (thus empty on first iteration).

If the cone is pointed, the resultant set is the unique MGS
(and coincides with the extreme rays of the cone). Otherwise,
it is a nonunique MGS formed with non-decomposable
vectors.
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