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ABSTRACT

Analysis of RNA-seq data often detects numerous
‘non-co-linear’ (NCL) transcripts, which comprised
sequence segments that are topologically inconsis-
tent with their corresponding DNA sequences in
the reference genome. However, detection of NCL
transcripts involves two major challenges: removal
of false positives arising from alignment artifacts
and discrimination between different types of NCL
transcripts (trans-spliced, circular or fusion tran-
scripts). Here, we developed a new NCL-transcript-
detecting method (‘NCLscan’), which utilized a step-
wise alignment strategy to almost completely elim-
inate false calls (>98% precision) without sacrific-
ing true positives, enabling NCLscan outperform 18
other publicly-available tools (including fusion- and
circular-RNA-detecting tools) in terms of sensitivity
and precision, regardless of the generation strategy
of simulated dataset, type of intragenic or intergenic
NCL event, read depth of coverage, read length or
expression level of NCL transcript. With the high ac-
curacy, NCLscan was applied to distinguishing be-
tween trans-spliced, circular and fusion transcripts
on the basis of poly(A)- and nonpoly(A)-selected
RNA-seq data. We showed that circular RNAs were
expressed more ubiquitously, more abundantly and
less cell type-specifically than trans-spliced and fu-
sion transcripts. Our study thus describes a robust
pipeline for the discovery of NCL transcripts, and
sheds light on the fundamental biology of these non-
canonical RNA events in human transcriptome.

INTRODUCTION

Technological advances in transcriptome sequencing have
enabled biologists to better understand transcriptomes in

a global manner. Comparative transcriptomics through the
lens of high-throughput RNA sequencing (RNA-seq) has
discovered a considerable number of ‘non-co-linear’ (NCL)
transcripts, which are composed of sequence segments that
are topologically inconsistent with the corresponding DNA
sequences in the reference genome. An NCL transcript
may consist of sequence segments either from a single gene
but ordered inconsistently with the reference genome (i.e.,
intragenic NCL transcripts) or from two or more non-
adjacent genes with distant regions of DNA (i.e., intergenic
NCL transcripts), by means of genetic rearrangements or
post-transcriptional events. Genetic rearrangement events
may generate fusion transcripts/genes at the DNA level,
while post-transcriptionally NCL transcripts (PtNCL tran-
scripts) are produced during post-transcriptional RNA pro-
cessing (e.g., trans-splicing or cis-backsplicing). Fusion and
trans-spliced transcripts are usually called ‘chimeric tran-
scripts’ or ‘chimeras’ because both of them comprise of se-
quence segments from different genes or precursor mRNAs
(pre-mRNAs) (1). Figure 1 summarizes the categorization
of NCL transcripts in transcriptome.

Fusion genes have been reported to be associated with
malignant hematological disorders and sarcomas (2–5). The
most prominent example is the BCR-ABL1 fusion gene,
which is a key factor of adult acute lymphoblastic leukemia
cases and an effective biomarker for chronic myeloid
leukemia (6–9). Other examples, such as ETV6-NTRK3
in breast carcinoma (10), BCAS4-BCAS3 in breast can-
cer (11), TMPRSS2-ERG/ETS in prostate cancer (12,13),
EML4-ALK in lung cancer (14), MYB-NFIB in head and
neck tumors (15) and VTI1A-TCF7L2 in colorectal cancer
(16), emphasize the critical importance of fusion genes in
cancer detection and diagnosis.

PtNCL transcripts, as mentioned above, can be generated
through trans-splicing or cis-backsplicing. Trans-splicing
can take place between separate pre-mRNAs either of a
single gene (i.e., intragenic trans-splicing) or among differ-
ent genes (i.e., intergenic trans-splicing) (17,18). Two promi-
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Figure 1. Categorization of NCL transcripts.

nent examples of intergenic trans-spliced RNAs are JAZF1-
SUZ12 and SLC45A3-ELK4, which have been reported to
be associated with anti-apoptotic function (1,19,20) and
prostate cancer (1,21), respectively. In addition, tsRMST,
which is produced via intragenic trans-splicing, plays a role
in pluripotency maintenance of human embryonic stem
cells, as evidenced by our recent discovery (22). On the
other hand, cis-backsplicing occurs within a single pre-
mRNA, leading to the formation of circular RNA (cir-
cRNA) (23,24). CircRNAs have been observed in diverse
species (25–28), some of them are evolutionarily conserved
between species (26,28–32). CDR1as/ciRS-7 and circRNA
of Sry, two representative examples of circRNA in mam-
mals, were demonstrated to function as microRNA sponges
(29,33). In addition, circRNAs may play regulatory roles
during aging of the central nervous system (31) or cell pro-
liferation (34), and may store, sort or localize RNA-binding
proteins (29,35). These findings suggest that circular RNA
is an ancient, essential and fine-tuned member in the roster
of functional transcripts.

Computational strategies for the identification of NCL
transcripts have been proposed to facilitate RNA-seq-based
studies (36–42) and have enabled the discovery of thousands
of NCL transcript candidates in diverse species (43–53).
However, false positives arising from sequencing or align-
ment errors appear to be unavoidable (48,54,55). Discrep-
ancies among the NCL transcript candidates identified by
different strategies imply that a large proportion of candi-
dates may be spurious (40,56–58). Similarities among par-
alogous genes or repetitive sequences often lead to ambigu-
ities during short-read mapping, which are often misinter-
preted as NCL events (59). It remains a major challenge to
effectively eliminate such false calls and detect genuine ones
without losing sensitivity. Also, most previous studies focus
on identifying either intergenic or intragenic NCL events.
There thus remains a need for a robust pipeline capable of
identifying both intergenic and intragenic NCL transcripts
with high sensitivity and precision from RNA-seq data.

To address these issues, we developed a new method,
NCLscan, which achieves the goal through a series of
knowledge-based processes and integrates different map-
ping algorithms to enable the stepwise elimination of spu-
rious events without losing sensitivity. NCLscan was found
to be superior to 18 other currently available tools in terms
of sensitivity and precision, when used to detect intragenic
or intergenic NCL events in several benchmark datasets, in-
cluding real and simulated datasets with different strategy
choices for generating simulated dataset, depths of cover-
age, read lengths and expression levels of NCL transcripts.
With the high accuracy, NCLscan was applied to distin-
guishing between different types of NCL transcripts (i.e.,
trans-spliced, circular or fusion transcripts) and then in-

vestigating these three types of NCL transcripts in terms
of the prevalence, expression level and expression breadth
by comparing the composition and populations of NCL
transcripts between RNA samples with different treatments
(i.e., poly(A)- and nonpoly(A)-selected RNA-seq data)
from diverse human cell types. This comparative analysis re-
vealed some endogenous features of NCL transcripts, which
allowed us to distinguish between circular RNAs, trans-
splicing events and fusion transcripts. NCLscan promises
to facilitate the comprehensive characterization of various
types of NCL transcripts on a transcriptome-wide scale.

MATERIALS AND METHODS

Data retrieval and availability

The human genomic sequences (hg19/GRCh37 assembly)
and annotated transcripts were downloaded from the GEN-
CODE project (version 19) at http://www.gencodegenes.
org/releases/19.html. Datasets A and C (see Table 1)
were downloaded from the website of the FusionMap
group at http://www.arrayserver.com/wiki/index.php?title=
FusionMap (60) and from the NCBI Sequence Read
Archive at http://www.ncbi.nlm.nih.gov/sra under the ac-
cession number SRP003186 (61), respectively. Dataset B
(negative dataset; Table 1) was provided from the author
of (57). The links and the used parameters of the tools ex-
amined in this study were listed in Supplemental Table S1.
The simulated datasets generated in this study are avail-
able from our ftp site at ftp://treeslab1.genomics.sinica.edu.
tw/NCLscan. The poly(A)-/nonpoly(A)-selected RNA-seq
(see Table 2) and SOLiD-based DNA-PET (1, 10 and 20 kb
libraries) data were downloaded from the ENCODE con-
sortium (62) at https://www.encodeproject.org/. NCLscan
was implemented under the Bio-Linux (Ubuntu 14.04) or
Mac operating systems on a 64-bit machine with ≥10
GB RAM. The NCLscan program, document and test
dataset are publicly accessible from GitHub at https://
github.com/TreesLab/NCLscan or our FTP site at ftp://
treeslab1.genomics.sinica.edu.tw/NCLscan.

The NCLscan pipeline

As shown in Figure 2A, NCLscan first aligned RNA-seq
reads against the human reference genome (GRCh37) and
annotated transcripts (GENCODE version 19) using BWA
(63) with default parameters. The unmapped reads were
aligned against the genome and transcripts using Novoalign
(Novocraft Technologies) with the parameters: -r A 1 -
n 30. Both ends of the unmapped paired-end reads were
then joined end to end, to form concatenated sequences.
These concatenated sequences were aligned against the ref-
erence genome using BLAT (64) with default parameters.
The concatenated sequences with two split sequence seg-
ments that were linearly inconsistent with the reference
genome were retained. The pipeline did not consider read-
through gene fusions. To this end, concatenated sequences
in which the distance between two split segments on the
same strand of the same chromosome was <2 Mbp were
discarded. In addition, a concatenated sequence satisfied
one of the two criteria was not considered: (i) the con-
catenated sequence mapped to an unplaced (undetermined)

http://www.gencodegenes.org/releases/19.html
http://www.arrayserver.com/wiki/index.php?title=FusionMap
http://www.ncbi.nlm.nih.gov/sra
ftp://treeslab1.genomics.sinica.edu.tw/NCLscan
https://www.encodeproject.org/
https://github.com/TreesLab/NCLscan
ftp://treeslab1.genomics.sinica.edu.tw/NCLscan
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contig; and (ii) the donor (or acceptor) side of the concate-
nated sequence mapped to more than one positions with
similar BLAT mapping scores (the score difference between
matches <5). Subsequently, all possible ‘putative NCL ref-
erences’ with putative NCL junction sites were made ac-
cording to the information of BLAT alignment output and
GENCODE annotation. In a retained sequence, the NCL
junction site had to locate at the splicing junction of an an-
notated exon and the corresponding putative NCL refer-
ence had to be no longer than the read length with insert
sizes (e.g., 1000 bp in this study; Figure 2B and C). Reads
that could not be mapped to the genome or annotated tran-
scripts were aligned against these putative NCL references
using Novoalign with the following parameters: -r A 1 -g
99 -x 99. There are two types of read that match to a puta-
tive NCL reference: encompassing reads and junction reads.
A putative NCL reference was retained if it satisfied all of
the following criteria: (i) all reads that match to the putative
NCL reference must not have an alternative co-linear expla-
nation within a single gene or between two close genes; (ii) at
least one junction read supports the putative NCL junction
of the putative NCL reference, which must span the NCL
junction boundary by ≥10 bp on both sides of the junc-
tion site; and (iii) the collection of supporting reads (includ-
ing encompassing and junction reads) must span the NCL
junction boundary by ≥50 bp (default value; the span range
is a user-assignable parameter) on both sides of the junc-
tion site (Figure 2D). Of note, the default value was set be-
cause the read lengths of most currently-available RNA-seq
reads were >50 bp. Finally, since different BLAT parame-
ters may generate different alignment results, the retained
NCL references were aligned against the reference genome
using BLAT with a different set of parameters (-titleSize =
9 -stepSize = 9 -repMatch = 32768). Only the NCL tran-
script candidates that did not contain alternative co-linear
explanations were reported in the final output.

Generation of simulated datasets

Simulated NCL transcripts were selected from the anno-
tated genes (GENCODE version 19). The genes would
be considered to be the source of simulated NCL tran-
scripts only when they satisfied both of the following cri-
teria: (i) they must not be in the blacklist provided by
FusionMap (e.g., pseudogenes, mitochondrial or riboso-
mal genes) (60); (ii) for intergenic NCL events, the gene
pairs must not belong to the same gene families; and (iii)
the distance between paired genes on the same strand of
the same chromosome must not be <2 Mbp. The junction
site in each simulated NCL transcript was random and lo-
cated at the boundary of an annotated exon. In addition,
the length of simulated NCL transcripts should be ≥500
bp and the upstream and downstream sequences should
be longer than 100 bp (59). After the simulation process,
we obtained 100 intragenic NCL transcripts and 100 in-
tergenic NCL transcripts. The co-linear transcripts were
obtained from the annotated protein-coding genes which
met two criteria: (i) possessed a status of ‘known’; and (ii)
≥300 bp in length. Based on the co-linear transcripts and
the 200 simulated intragenic/intergenic NCL transcripts,
we used Mason v.0.1.2 (65) to generate paired-end RNA-

seq reads (INS = 170 bp, SD = 20) with different depths
of coverage (5-, 10-, 20- and 50-fold) and different read
lengths (2 × 50, 2 × 100 and 2 × 150 bp). In addition,
to evaluate the performance and accuracy of NCL tran-
script identification tools under different expression levels,
we also generated paired-end RNA-seq reads from the 200
intragenic/intergenic NCL transcripts with 5-, 10-, 20-, 50-,
100-, 150- and 200-fold expression levels, and then mixed
these simulated reads with a RNA-seq dataset (used as
background data) generated from the co-linear transcripts.
Of note, the Mason parameters were the same as those used
in the Bowtie2 paper (66).

Accuracy measurement of NCL-transcript identification
tools

Sensitivity (Sn), precision (Sp) and F1 values are defined as
follows:

Sn = TP
TP + FN

,

Sp = TP
TP + FP

and

F1 = 2 × TP
2 × TP + FP + FN

.

TP (true positive), FP (false positive) and FN (false neg-
ative) represent the number of correctly identified NCL
events, the number of incorrectly identified NCL events and
the number of missing NCL events, respectively. Sn, Sp, and
F1 values all range from 0 to 1; higher value indicates higher
level of accuracy. In consideration of mapping criteria of
each tool, for each simulated or validated fusion transcript,
a true positive hit was recorded when the distance between
the correct NCL junction site and junction site identified by
the tested tool was <10 bp (59).

Detection of genomic structure variations

To examine whether certain identified circRNAs were po-
tentially derived from SVs, we used SVDetect (67), which
can identify SVs from paired-end/mate-pair NGS data gen-
erated by the SOLiD platform, to detect SVs based on
the K562 DNA-PET data from the ENCODE project. If
an identified circRNA overlapped any breakpoint regions
±1000 bp of a detected SV, such an intragenic event was
regarded as a potential SV-derived NCL event. Of the 8915
circRNA candidates detected in K562 cells, 594 were identi-
fied as potential SV-derived NCL events (Supplemental Ta-
ble S2).

RESULTS

Identification of NCL transcripts
NCLscan identifies NCL transcripts from paired-end
RNA-seq data. The overall schematic of NCLscan is de-
picted in Figure 2A. Firstly, co-linearly matched reads are
eliminated by mapping the RNA-seq reads against the ref-
erence genome and well-known transcripts (i.e., annotated
coding and non-coding transcripts in GENCODE) using
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a stepwise alignment strategy, which integrates two read-
mapping algorithms (‘Materials and Methods’ section; Fig-
ure 2A). Next, the two ends of each unmapped read are con-
catenated to generate a continuous sequence. Each concate-
nated sequence is then aligned against the reference genome
using BLAT (64). Only concatenated sequences that con-
tain NCL segments are retained after this step (‘Materi-
als and Methods’ section). For each retained sequence, we
make ‘putative NCL references’ with putative NCL junc-
tion sites (Figure 2B and C) on the basis of the correspond-
ing BLAT alignment result and GENCODE annotation. Of
note, we only consider candidates in which splice junctions
agree to well-known junction sites, because such candidates
are more reliable than those with junction sites not match-
ing exon boundaries (22,32,43,52). All possible combina-
tions of transcript isoforms are considered while making the
putative NCL references. To avoid the putative NCL refer-
ences inferred from reads with an abnormal inner size, we
limit the putative NCL references to 1000 bp in length (Fig-
ure 2B and C). Subsequently, reads that cannot be mapped
to the genome or transcriptome (i.e., unmapped reads in
Figure 2A) are aligned against the putative NCL references.
There are two types of reads that can be mapped to a puta-
tive NCL reference: ‘encompassing read’, which connects
two parental transcript segments but doesn’t support the
NCL junction site, and ‘junction read’, which overlaps the
junction site. A putative NCL reference will be retained if it
satisfies all of the following criteria: (i) all reads that match
to the putative NCL reference must not have an alterna-
tive co-linear explanation, (ii) at least one junction read sup-
ports the putative NCL reference and (iii) the NCL junction
boundary must be supported by read evidence (including
encompassing and junction reads) spanning across 50 bp on
both sides of the junction site (Figure 2D). Of note, the third
rule is used to eliminate skew mapping between reads and
the corresponding putative NCL reference. Since the use of
BLAT-alignments with different sets of parameters could be
more effective at detecting possible co-linear explanations
of an expressed sequence than single operation with default
parameters (32), the retained references are aligned against
the reference genome using a different set of BLAT param-
eters (‘Materials and Methods’ section) to further remove
potential false calls. Only the candidates that meet all the
requirements are considered as high-confidence NCL tran-
scripts, which are used in the following analyses.

Sensitivity and precision of NCLscan for intergenic NCL
transcript detection

We first assess the accuracy of NCLscan at detecting in-
tergenic NCL transcripts based on two simulated datasets
(i.e., Datasets A (60) and B (57,58)), which were generated
by different methods. Dataset A, which is a semi-artificial
dataset generated by the FusionMap group (60), contains
a set of artificial 75-bp paired-end reads generated accord-
ing to 50 simulated fusion transcripts and a background
set of real RNA-seq reads that is not expected to harbor
any fusion events and has been applied to evaluation of
fusion-identification tools (57–60). Dataset B is an artificial
dataset provided by Carrara et al. (57,58), in which 100-bp
paired-end reads were built by BEERS (68) based on well-
annotated co-linear transcripts. Dataset B is regarded as a
negative dataset, as it does not contain any fusion events.
Thus, it is particularly useful for assessing the number of
false calls reported by fusion-identification tools (57,58).
With respect to the size of each dataset, Dataset A is a small
collection of 0.057 million reads (Table 1), which can be
used to efficiently evaluate the accuracy of fusion-detecting
tools. In contrast, Dataset B, which contains 70 million
reads, is much closer to real datasets (Table 1).

We used these two simulated datasets to compare
NCLscan with 15 publicly-available tools, including Break-
Fusion (69), ChimeraScan (70), CRAC (71), deFuse (38),
FusionAnalyser (41), FusionFinder (37), FusionHunter
(72), FusionMap (60), FusionQ (73), MapSplice2 (74),
STAR (75), segemehl (76), SOAPfuse (59), TopHat-Fusion
(36) and TopHat-Fusion-post (36). All tools for evaluation
were used with default parameters or the parameters sug-
gested by the authors (Supplemental Table S1). We then
evaluated the performance of each tool based on sensitivity
(Sn), precision (Sp) and F1 score (‘Materials and Methods’
section). For Dataset A, NCLscan exhibited the greatest
precision and F1 score, and the third highest sensitivity (Sn
= 0.86) among 16 tools (Figure 3A). It is worth noting that
NCLscan did not identify any false positives (Sp = 1); fur-
thermore, although STAR and TopHat-Fusion had better
sensitivity than NCLscan, their advances in sensitivity were
subject to the trade-off in precision (Sp = 0.79 for STAR; Sp
= 0.2 for TopHat-Fusion) (Figure 3A). Moreover, although
FusionHunter and ChimeraScan also exhibited 100% pre-
cision (Sp = 1) on Dataset A, they were not satisfying with
respect to sensitivity (both Sn < 0.4) (Figure 3A). Overall,
NCLscan exhibited the highest F1 score (Figure 3A), indi-
cating its superiority in terms of sensitivity and precision.

Table 1. RNA-seq datasets for evaluating the accuracy of fusion-identification tools

Dataset Dataset type Read type Number of reads Reference

A Simulated data 75-bp paired-end 57 209 (60)
B Simulated data 100-bp paired-end 70 000 000 (57,58)
Ca Real data 50-bp paired-end 8 412 431 (MCF-7) (61)

6 800 166 (KPL-4)
13 515 132 (BT-474(1))

7 915 382 (BT-474(2))
9 048 352 (SK-BR-3(1))
9 097 152 (SK-BR-3(2))

aThe dataset includes RNA-seq reads from four cell lines: MCF-7, KPL-4, BT-474 and SK-BR-3.
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Figure 3. Comparison of the accuracy of 16 tools for detecting intergenic NCL transcripts based on (A) Dataset A, (B) Dataset B and (C) Dataset C.
Datasets A and B are simulated datasets; Dataset C is a real dataset. The results for CRAC and FusionQ on Dataset B represent only one half and one
fifth of the RNA-seq reads, respectively, for the reason that the two tools could not finish the calculation of the whole reads of Dataset B within 1 week.
For the same reason, the result of FusionQ on Dataset C is not available. NA, not available.

For Dataset B, while most tools detected an enormous num-
ber of false NCL events (e.g., TopHat-Fusion detected >180
000 events; Figure 3B), NCLscan didn’t report any false
calls. Since Dataset B is a negative dataset, any NCL events
detected in this dataset must be false positives. The result
revealed that the existing fusion-detecting tools generally
have severe problems with false positives, particularly when
detecting fusion transcripts in a large dataset. In contrast,
NCLscan still kept 100% precision on a large dataset, indi-
cating the robustness of NCLscan for detecting NCL events
with high accuracy. It should be noted that CRAC and Fu-
sionQ could not finish analyzing Dataset B after more than

1 week had elapsed, and so the results shown for the two
tools were for only part of this dataset; even so, hundreds
of false fusions were delivered by the two tools (Figure 3B).

Furthermore, we applied the 16 tools to a real RNA-seq
dataset (Dataset C). This dataset contains 50-bp paired-end
reads from four breast cancer cell lines (Table 1), in which 22
non-read-through fusion transcripts (e.g., the fusion events
with a distance of ≤2 Mbp between paired genes on the
same strand of the same chromosome were not consid-
ered) were experimentally validated by both RT-PCR and
array comparative genomic hybridization (aCGH) (Supple-
mental Table S3) (61). Since the authenticity of the ob-
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served NCL events were often hampered by in vitro arti-
facts (22,32,45,77,78), the identified fusion events that have
passed multiple experimental validations were more likely
to be genuine than those did not. We found that NCLscan
achieved high sensitivity, which was able to detect 20 out
of the 22 fusion events (Figure 3C). SKA2-MYO19 was
not reported by NCLscan because of the ambiguous align-
ments with an alternative co-linear explanation or mapping
to an unplaced (undetermined) contig. LAMP1-MCF2L
was missed due to the skew mapping between reads and
the corresponding putative NCL reference (Supplemental
Figure S1A). Of note, if the smaller size of the span range
(e.g., 30 bp) was set, LAMP1-MCF2L could be detected by
NCLscan but the number of the identified NCL candidates
would be increased, increasing the risk of accepting false
positives (Supplemental Figure S1B). Although TopHat-
Fusion detected all 22 known fusions, it should be noted
that TopHat-Fusion reported as many as 630 812 candi-
dates. In view of the high false-positive rates of TopHat-
Fusion when applied to the simulated datasets (Datasets A
and B; Figure 3A and B), users of this tool may need to
make extra efforts to reduce potential false calls. NCLscan
was also applied to another read RNA-seq data from the
prostate cancer cell line VCaP and successfully detected all
the three non-read-through fusion transcripts that were val-
idated by both qRT-PCR and fluorescence in situ hybridiza-
tion (FISH) (48) and collected in the ChiTARS database
(79) (Supplemental Tables S3 and S4), further support-
ing the high level of sensitivity of NCLscan. On the other
hand, some tools capable of detecting intergenic NCL tran-
scripts also delivered a great number of intragenic NCL
events from Dataset C (i.e., NCLscan, STAR, MapSplice2,
CRAC, segemehl and TopHat-Fusion) (Supplemental Ta-
ble S5). This suggests that there remains a considerable
number of uncharacterized intragenic NCL transcripts (or
circRNAs) awaiting further discovery within cancer sam-
ples.

Sensitivity and precision of NCLscan for simultaneously de-
tecting intergenic and intragenic NCL transcripts

We emphasize that NCLscan is also capable of detecting
intragenic NCL transcripts. To further evaluate the sen-
sitivity and precision of NCLscan for simultaneously de-
tecting intergenic and intragenic NCL transcripts, we ap-
plied NCLscan and eight other tools (STAR, MapSplice2,
CRAC, segemehl, TopHat-Fusion, find circ (29), CIRCex-
plorer (80) and CIRI (81)) to simulated RNA-seq datasets.
Of note, find circ, CIRCexplorer and CIRI were designed
for detection of intragenic NCL transcripts (circRNAs)
only. We used short-read simulator Mason (65) to gener-
ate artificial paired-end RNA-seq reads from the mix of
the following transcripts: (i) 100 simulated intergenic NCL
transcripts, (ii) 100 simulated intragenic NCL transcripts
and (iii) well-annotated co-linear transcripts, and simulated
a variety of data conditions of different read depths (5-
, 10-, 20- and 50-fold) and of different read lengths (2 ×
50, 2 × 100 and 2 × 150 bp) (‘Materials and Methods’
section). The identification results of these tools were re-
ported in Supplemental Table S6. As expected, Sn values in-
creased with increasing depth or length of reads, regardless

of whether intragenic or intergenic NCL transcripts were
detected (Figure 4A). In terms of sensitivity with shorter
reads (e.g., 2 × 50 bp), NCLscan and TopHat-fusion were
effective at detecting intragenic events, whereas MapSplice2
appeared to yield good sensitivity for detecting intergenic
ones. For longer reads (e.g., 2 × 150 bp), NCLscan, STAR,
TopHat-fusion, segemehl and the three circRNA-detecting
tools (i.e., find circ, CIRCexplorer and CIRI) represented
comparable sensitivity for detecting intragenic events; Map-
Splice2 was more sensitive for detecting intergenic events
than for detecting intragenic ones, whereas segemehl exhib-
ited the reverse trend (Figure 4A). As for Sp, NCLscan re-
ported zero false calls on all tested datasets under differ-
ent simulated conditions (Supplemental Figure S2), yield-
ing the highest precision (all Sp = 1) among the tested tools
(Figure 4A). Obviously, NCLscan was much more precise
than the tool (i.e., CIRCexplorer) that exhibited the second
best precision (all Sp < 0.72; Figure 4A and Supplemental
Figure S3A). With the exception of NCLscan, the Sp val-
ues appeared to be affected by read depth and length (Fig-
ure 4A), in which the number of false positives markedly
increased with increasing depth of reads and marginally
decreased with increasing length of reads (Supplemental
Figure S2). In contrast to NCLscan with no false pos-
itives, all the other tested tools identified a considerable
number of false positives (Supplemental Figure S2), which
severely reduced the Sp values and then F1 scores under
varied simulated conditions (Figure 4A). For example, al-
though TopHat-fusion generally had higher Sn values than
the other tools, it yielded the lowest Sp, resulting in a rela-
tively poor balance between sensitivity and precision (all F1
scores < 0.1; Figure 4A). In general, NCLscan had com-
parable Sn values and the highest Sp values without com-
promising the false positive rate, exhibiting the best balance
between sensitivity and precision on all tested datasets.

We further explored the effect of expression level on the
sensitivity and precision of NCL transcript identification.
We utilized Mason to generate paired-end reads from the
aforementioned 100 simulated intragenic and 100 simulated
intergenic NCL transcripts with different expression lev-
els (5- to 200-fold), and then mixed these datasets with the
same background dataset generated from co-linear tran-
scripts (‘Materials and Methods’ section). The identifica-
tion results of the examined tools were listed in Supplemen-
tal Table S6. For all examined tools, sensitivity generally in-
creased with increasing expression level of NCL transcript;
however, this tendency weakened when NCL transcript ex-
pression level reached 100-fold or greater (Figure 4B and
Supplemental Figure S3B). In general, TopHat-fusion ex-
hibited the highest Sn values, but it still possessed the low-
est Sp and F1 values for all tested datasets. With the excep-
tion of TopHat-fusion, for intragenic events, NCLscan was
more sensitive at lower expression levels, whereas NCLscan,
STAR, segemehl and the three circRNA-detecting tools
yielded comparable sensitivity at higher expression lev-
els (Figure 4B). For intergenic event, while NCLscan,
STAR, MapSplice2 and segemehl exhibited the compara-
ble sensitivity for detecting events at lower expression levels,
NCLscan, STAR and MapSplice2 appeared to be effective
for detecting ones at higher expression levels (Figure 4B).
These results indicated that our method exhibited compar-
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ative sensitivity at all simulated expression levels. Impor-
tantly, while the other tools suffered poor precision, we em-
phasized that NCLscan maintained the highest Sp values
and F1 scores on the tested datasets, regardless of the ex-
pression level of NCL transcripts (Figure 4B and Supple-
mental Figure S3B).

Regarding the NCLscan identification on the 19 simu-
lated datasets (see Supplemental Table S6), the true events
were not reported by NCLscan because of the following
reasons (which were not mutually exclusive): (i) a low level
of read depth or NCL transcript expression (ii) skew map-
ping (see also Supplemental Figure S1A); and (iii) ambigu-
ous alignments with very close mapping scores between
matches (see ‘Materials and Methods’ section; an example
was given in Supplemental Table S7). On the other hand,
NCLscan yielded three false positives on two of these sim-
ulated datasets (Supplemental Table S6). The reason was
that the simulator (i.e., Mason) had randomly added a rea-
sonable proportion of mismatches into the generated reads
for simulating real reads (65). It was possible that a gen-
erated read matched to a false position with a higher map-
ping score than all the other possible alignments (‘Materials
and Methods’ section), thus yielding false positives (Sup-
plemental Table S7). We emphasized that NCLscan yielded
only three false positives on these 19 simulated datasets,
supporting its high level of precision.

Taken together, our results reveal that NCL transcript-
identification tools are often susceptible to false-positive de-
tections. In contrast, NCLscan, while retaining compara-
ble sensitivity, significantly outperforms the other tools in
terms of precision (all P-values < 10−15 by the two-tailed
Fisher’s exact test), regardless of read depth, read length
or NCL transcript expression level. NCLscan thus achieves
the highest F1 scores on all simulated datasets, indicating
its superior performance with a good balance between sen-
sitivity and precision.

Discrimination between circRNAs, trans-spliced RNAs and
fusion transcripts

We next applied NCLscan to NCL transcript identifi-
cation using six real datasets, each of which contained
both poly(A)- and nonpoly(A)-selected RNA-seq data (Ta-
ble 2), from the ENCODE project (82). These datasets com-

prised of multiple types of cultured cell lines (including pri-
mary, immortalized and stem cells; Table 2). The poly(A)-
and nonpoly(A)-selected RNA samples were generated by
the same laboratory (82). The nonpoly(A)-selected sam-
ples were derived from ribo-and poly(A)-depleted RNA.
It has been shown that most trans-spliced RNA products
are polyadenylated, but circRNAs are not (25,28,32,78,80).
Therefore, it is possible to classify the detected NCL tran-
script candidates into the following four groups based on
their presence status in poly(A)- and nonpoly(A)-selected
data (see also Supplemental Table S8).

Group I: intragenic events detected in poly(A)-selected
data, which were expected to be intragenic trans-spliced
RNAs.

Group II: intergenic events detected in poly(A)-selected
data, which were expected to be intergenic trans-spliced
RNAs or fusion transcripts.

Group III: intragenic events detected in nonpoly(A)-
selected data, which were expected to be circRNAs.

Group IV: intergenic events detected in nonpoly(A)-
selected data, which were expected to be fusion transcripts.

As shown in Figure 5A, we observed that NCL tran-
scripts in Group III (predicted circRNA products) were
more common than those in the other groups; this trend
was independent of cell type and read depth of RNA-seq
data. This suggests that circRNAs might be the predomi-
nant type of NCL RNA products. However, one might con-
sider that some of the events in Group III could in fact
be trans-spliced rather than circRNAs, due to the incom-
plete depletion of poly(A)-tailed RNAs. To address this, we
calculated the ratio of the number of intergenic events to
that of intragenic ones in each sample. Based on the facts
that events in Groups II and IV were definitely not circR-
NAs and that both Groups I and II were highly probable to
be trans-splicing events, we speculated that if trans-splicing
events contributed highly to the candidates detected in the
nonpoly(A)-selected samples, the quantity ratio of intra-
genic to intergenic events in nonpoly(A)-selected sample
(i.e., Group III versus Group IV) should be comparable to
the ratio in poly(A)-selected sample (i.e., Group I versus
Group II). However, this analysis showed that the quantity
ratio of intragenic-to-intergenic events was much higher in
nonpoly(A)-selected samples than in poly(A)-selected ones
(all P-values < 10−15 by the two-tailed Fisher’s exact test;

Table 2. Poly(A)- and nonpoly(A)-selected RNA-seq data used in this study

Sample Description Biosample type Sex (life stage)
Poly(A)-selected
dataa

Nonpoly(A)-selected
dataa

H1 Human embryonic stem cell stem cell Male (embryonic) SRR307911, SRR307923,
SRR307912 SRR307924

K562 Chronic myelogenous leukemia immortalized cell Female (adult) SRR315336, SRR307930,
SRR315337 SRR307931

BJ Skin fibroblast immortalized cell Male (newborn) SRR307903,
SRR307904

SRR317065

HepG2 hepatocellular carcinoma immortalized cell Male (child) SRR307926, SRR307913,
SRR307927 SRR307914

HUVEC
Umbilical vein endothelial cell primary cell Male (newborn) SRR307905,

SRR307906
SRR317067

NHEK Epidermal keratinocytes primary cell Female (unknown) SRR315327 SRR315321,
SRR315322

aThe RNA-seq data were downloaded from the ENCODE project (62).



e29 Nucleic Acids Research, 2016, Vol. 44, No. 3 PAGE 10 OF 16

A

B

C

1

10

100

1000

10000

H1 K562 BJ HepG2 HUVEC NHEK
0

1

10

100

1,000

Group I (intragenic; poly(A)+)
Group II (intergenic; poly(A)+)
Group III (intragenic; nonpoly(A))
Group IV (intergenic; nonpoly(A))

Group I (intragenic; poly(A)+)
Group II (intergenic; poly(A)+)
Group III (intragenic; nonpoly(A))
Group IV (intergenic; nonpoly(A))

102

103

104

N
um

be
r o

f d
et

ec
te

d 
N

C
L 

R
N

A 
ev

en
ts

 ( 
   

  )
N

um
be

r o
f d

et
ec

te
d 

N
C

L 
R

N
A 

ev
en

ts
 ( 

   
  )

102

103

10

1

10

1

0

Ev
en

ts
 p

er
 m

illi
on

 R
N

A-
se

q 
re

ad
s

(       )

Ev
en

ts
 p

er
 m

illi
on

 R
N

A-
se

q 
re

ad
s

(       )

+

102

10

1

0

10

20

30

40

50

60

Non-Poly(A) Poly(A)

%

H1
K562
BJ
HepG2
HUVEC
NHEK

CircRNA events also 
detected in poly(A)+ data

Intragenic trans-spliced RNA events 
also detected in nonpoly(A) data

Figure 5. Distinctions between trans-splicing events, circular RNAs and fusion transcripts based on poly(A)- and nonpoly(A)-selected RNA-seq data. (A)
Numbers of the identified Groups I to IV NCL events (see the text) in the six cultured cell lines (Table 2). (B) Quantity ratio of intragenic to intergenic
NCL RNA events. (C) Percentages of circular RNA candidates (Group III) observed in poly(A)-selected samples and those of intragenic trans-spliced
transcript candidates (Group I) observed in nonpoly(A)-selected samples.



PAGE 11 OF 16 Nucleic Acids Research, 2016, Vol. 44, No. 3 e29

Figure 5B). In addition, we found that only a small fraction
(0.9–2.9%) of events in Group III were detected in poly(A)-
selected sample (Figure 5C), in agreement with a previ-
ous report (28). These results suggested that most events in
Group III should belong to circRNAs.

Intriguingly, in contrast to the low percentage of events
in Group III detected in poly(A)-selected sample, a consid-
erable fraction (22.2–56.6%) of events in Group I were also
detected in nonpoly(A)-selected sample (Figure 5C). Since
trans-spliced transcripts and circRNAs have been shown to
be able to share the same junctions (32), the events detected
in both Groups I and III may be attributed to both trans-
splicing and circRNA products. Our results thus suggest
that a considerable proportion of intragenic trans-spliced
RNAs (i.e., Group I) may share the same NCL junctions
with circRNAs (i.e., Group III).

Moreover, genomic structural variations (e.g., insertions,
duplications and translocations) can also create scrambled
exons (54,83,84), which may contribute false positives in
the identified circRNA candidates. To address this possi-
bility, we detected potential structure variations (SVs) by
analyzing DNA paired-end tags (DNA-PETs) from K562
cells (62) using SVDetect (67). We examined the circRNA
candidates (i.e., the Group III candidates; Supplemental Ta-
ble S4), which were detected from the same sample (K562
cells), and found that only 6.7% of them (594 out of 8915
events) might be formed by the detected SVs (Supplemen-
tal Table S2; ‘Materials and Methods’ section). This sug-
gested that most identified intragenic events in nonpoly(A)-
selected samples might not be subject to the consequences
of SVs.

We next examined the cell-type specificities and expres-
sion levels of the four groups of NCL transcripts. Gen-
erally, the majority (>70%) of NCL transcripts were de-
tected in only one cell type (Figure 6A), and a considerable
percentage of them were supported by a small number of
reads (Figure 6B and Supplemental Figure S4). Compar-
isons of NCL transcripts in the four groups revealed two
observations: (i) intragenic NCL transcripts (Groups I and
III) tended to present in more cell types and supported by
more reads than intergenic ones (Groups II and IV); and (ii)
for intragenic NCL events, circRNAs (Group III) tended to
exhibit less cell type-specificity (Figure 6A) and higher ex-
pression level (Figure 6B and Supplemental Figure S4) than
intragenic trans-spliced transcripts (Group I). Of particu-
lar importance, more than a quarter of circRNAs (27.8%;
4468 out of 16 063 events) could be detected in multiple cell
types (Figure 6A). Our results suggest that circRNAs ex-
hibit a greater expression breadth and a higher expression
level than other groups of NCL transcripts, also reflecting
that the number of the detected circRNA events is much
greater than those of the detected trans-splicing and fusion
transcript events (Figure 5A). Moreover, 17.7% (2849 out
of 16 063 events) of the circRNAs identified by NCLscan
were also detected in different cell types by Guo et al. (28),
and over half (51%, 2527 out of 4975 events) of the detected
circRNAs in H1 human embryonic stem cells were also de-
tected from H9 human embryonic stem cells by Zhang et
al. (80) (Supplemental Table S6). These observations fur-
ther suggest that certain circRNAs are broadly expressed in

a variety of human cells, also reflecting previous reports that
circRNAs are abundant in transcriptomes (25,26).

DISCUSSION

In this study, we developed a new pipeline, NCLscan, which
is rather advantageous in the identification of both in-
tragenic and intergenic NCL transcripts from paired-end
RNA-seq data. We showed that the accuracy performance
of NCLscan was superior over 18 currently available tools,
including 11 fusion-detecting tools, 3 circRNA-detecting
tools and 5 tools that are capable of detecting both intra-
genic and intergenic NCL transcripts, in terms of sensitiv-
ity and precision (Figures 3 and 4). Interestingly, by eval-
uating accuracy of these tools, we observed striking dif-
ferences in accuracy between different versions or param-
eter settings of the same tool. For example, for Dataset A,
TopHat-Fusion was advantageous in sensitivity (Sn = 0.92),
but exhibited poor precision (Sp = 0.2) as trade-off. In con-
trast, TopHat-Fusion-post, an updated version of TopHat-
Fusion for detecting intergenic NCL events, achieved ex-
cellent precision (Sp = 0.97), but it was worse in terms
of sensitivity (Sn = 0.68) (Figure 3A). Another example
is CIRCexplorer, which is a TopHat-Fusion-based tool for
detecting intragenic NCL events (80). Our results revealed
that CIRCexplorer was more precise but less sensitive than
TopHat-Fusion (Figure 4). A similar scenario was observed
for the updated version of segemehl (v. 0.2.0) and its pre-
vious release (v. 0.1.9) (Supplemental Table S9). In addi-
tion, many more false calls were reported in Dataset B
by FusionAnalyzer without filters than by the same tool
with filters (1869 versus 59); moreover, the use of its fil-
ters would even rule out all candidates in Dataset A (Sup-
plemental Table S9). These results suggested that certain
NCL RNA-identification strategies achieved better preci-
sion by sacrificing sensitivity, emphasizing the difficulty in
reaching a balance between sensitivity and precision. It was
noteworthy that although some tools, such as MapSplice2,
SOAPfuse, defuse, FusionAnalyser, CRAC, ChimeraScan
and BreakFusion, exhibited good precision (Sp > 0.9) on
a small dataset (e.g., Dataset A; Figure 3A), they reported
hundreds to thousands of false calls on a larger one (e.g.,
Dataset B; Figure 3B). This reveals that it is more challeng-
ing to remove false positives from a large dataset than from
a smaller one. It seems that the larger the dataset is, the more
ambiguous alignments there exist, resulting in a larger num-
ber of false calls. Here, we confirmed that NCLscan consis-
tently achieved both the highest Sp and F1 values on a va-
riety of simulated datasets, regardless of strategy choice for
generating simulated dataset (i.e., Datasets A and B and the
simulated datasets generated in this study), read depth, read
length, or NCL transcript expression level (Figures 3A, B
and 4). It is important to note that NCLscan achieved near
100% precision on all the simulated datasets examined (all
Sp > 0.98). We also applied NCLscan to two real RNA-
seq datasets (Supplemental Table S3), for which it demon-
strated a high level of sensitivity (Figure 3C and Supple-
mental Table S4). These results indicated that NCLscan can
effectively minimize false discovery rate, while maintain a
good balance between sensitivity and precision.
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Figure 6. Comparison of (A) cell-type specificity and (B) expression level of the four groups of NCL transcripts.

Of note, since several studies have suggested that in vitro
artifacts are the source of most detected sense-antisense fu-
sion candidates (22,77,85), the current version of NCLscan
does not consider this type of chimeric RNAs. However, a
few sense-antisense fusions have been confirmed to be as-
sociated with the response to chemotherapy in cancer pa-
tients (86,87). Some sense-antisense fusion candidates were
also provided in a prominent chimera database (i.e., Chi-
TARS (79)). It is worthwhile to add the capability of de-
tecting sense-antisense chimeras to NCLscan in the future.

We further analyzed poly(A)- and nonpoly(A)-selected
RNA-seq data from the ENCODE project to categorize the
NCL transcripts into four groups: intragenic and intergenic
events in poly(A)-selected samples, and intragenic and in-
tergenic events in nonpoly(A)-selected samples; which en-
ables us to distinguish between trans-splicing events, circR-
NAs and fusion transcripts. Our results revealed that the
number of circRNAs was >10× larger than the numbers
of other groups of NCL transcripts (Figure 5A). This trend
was generally observed in diverse cell types, suggesting that
circRNAs predominated in NCL RNAs. Recent studies

have demonstrated that exon circularization is closely asso-
ciated with Alu-based complementary sequences in flanking
introns (26,80). Thus, widespread Alu elements in human
introns may make a considerable contribution to the bio-
genesis of circRNAs (80), accounting for the wide expres-
sion of such RNAs in transcriptomes. In addition, we found
that a considerable proportion (22.2–55.8%) of intragenic
trans-splicing events were also observed in nonpoly(A)-
selected samples (Figure 5C). By performing RNase R
treatment and RT-PCR/qRT-PCR experiments in human
embryonic stem cells (ESCs, line H1), we showed that the
selected intragenic trans-splicing events were also resistant
to RNase R degradation (Supplemental Note). These re-
sults suggest that certain intragenic trans-spliced RNAs
may share the same NCL junction with circRNAs, although
we cannot completely eliminate the possibility that poly(A)-
selected RNA-seq data may still remain a few circRNA
products (25). The above result is consistent with our pre-
vious study that an observed PtNCL splicing junction may
result from trans-splicing RNA, circRNA or both (32).
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Moreover, comparison of these four groups of NCL tran-
scripts further revealed two interesting findings. First, intra-
genic events (Groups I and III) appeared to be less cell type-
specific and expressed at a higher level than intergenic ones
(Groups II and IV) (Figure 6A and B). Intragenic events
may be more abundant than intergenic ones because intra-
genic splicing within the same gene tends to cause a higher
local concentration of transcripts than intergenic splicing
between different genes. On the basis of comparison of dif-
ferent reverse transcription products (22,32,77,78) in hu-
man H1 ESCs, our experimental validations also exhibited
that the tested Groups I and III events had a higher propor-
tion of authentic NCL transcripts than the tested Groups II
and IV ones (Supplemental Note), in accord with the pre-
vious observations that intergenic events were less common
than intragenic ones (22,32,45). Second, circRNAs (Group
III) tended to be expressed more ubiquitously, less cell type-
specifically and more abundantly than other types of NCL
transcript (Figures 5A, 6A and B). This implies that circR-
NAs may play more diverse cellular roles than expected. For
example, some circRNAs have been demonstrated to act as
microRNA sponges or play a role in other non-catalytic cel-
lular functions (29,33,88), and as such, these circRNAs are
expressed at substantial levels within cells.

Interestingly, in addition to BCR-ABL1, a classic exam-
ple of gene fusion, we also detected a known fusion event
IMMP2L-DOCK4 in K562 cells (Supplemental Table S4).
These two intergenic events were detected in both poly(A)-
and nonpoly(A)-selected samples, supporting the hypoth-
esis that fusion transcripts can simultaneously contribute
to both Groups II and IV. The IMMP2L-DOCK4 fusion
event was previously shown to be associated with autism
and dyslexia (89,90), and might play an important role in
neurite differentiation (91). This is the first time to detect
the IMMP2L-DOCK4 fusion event in K562 cells, providing
a hint of future studies to investigate the role of this fusion
event in chronic myeloid leukemia.

In conclusion, we presented a high accurate method,
NCLscan, for detecting intragenic and intergenic NCL
transcripts. We showed that NCLscan achieved a better ac-
curacy in terms of sensitivity and precision than 18 other
tools, minimizing long and costly experimental validations.
Applying NCLscan to different types of RNA-seq data,
such as poly(A)- and nonpoly(A)-selected RNA-seq data,
was found to be a feasible way of distinguishing between
trans-splicing events, circRNAs and fusion transcripts. We
suggest that circRNAs exhibit a higher level of prevalence,
expression level and expression breadth than other types
of NCL transcripts. With different biological and mechan-
ical roles, NCL transcripts provide an alternative means of
increasing transcriptome complexity. Our study thus pro-
vides an efficient methodology for the design of future ex-
perimental studies to functionally probe different types of
NCL event in transcriptome. Accumulating evidence has in-
dicated the biological significance of NCL events (1,22,92–
99), and as such, these largely uncharted classes of tran-
scripts should not be overlooked in biomedical studies, es-
pecially in those seeking to develop therapeutics.
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