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ABSTRACT: Identifying the associations between long noncoding
RNAs (lncRNAs) and disease is critical for disease prevention,
diagnosis and treatment. However, conducting wet experiments to
discover these associations is time-consuming and costly. Therefore,
computational modeling for predicting lncRNA-disease associations
(LDAs) has become an important alternative. To enhance the
accuracy of LDAs prediction and alleviate the issue of node feature
oversmoothing when exploring the potential features of nodes using
graph neural networks, we introduce DPFELDA, a dual-path feature
extraction network that leverages the integration of information from
multiple sources to predict LDA. Initially, we establish a dual-view
structure of lncRNAs and disease and a heterogeneous network of
lncRNA-disease-microRNA (miRNA) interactions. Subsequently,
features are extracted using a dual-path feature extraction network. In particular, we employ a combination of a graph convolutional
network, a convolutional block attention module, and a node aggregation layer to perform multilayer topology feature extraction for
the dual-view structure of lncRNAs and diseases. Additionally, we utilize a Transformer model to construct the node topology
feature residual network for obtaining node-specific features in heterogeneous networks. Finally, XGBoost is employed for LDA
prediction. The experimental results demonstrate that DPFELDA outperforms the benchmark model on various benchmark data
sets. In the course of model exploration, it becomes evident that DPFELDA successfully alleviates the issue of node feature
oversmoothing induced by graph-based learning. Ablation experiments confirm the effectiveness of the innovative module, and a case
study substantiates the accuracy of DPFELDA model in predicting novel LDAs for characteristic diseases.

1. INTRODUCTION
Long noncoding RNAs (lncRNAs) are a class of RNAs that are
more than 200 nucleotides in length and that cannot encode
proteins.1 lncRNAs are usually expressed at lower levels than
microRNAs. However, they play very important roles in life-
regulating activities, including transcriptional regulation, trans-
lational regulation, RNA processing regulation and cell life
cycle regulation.2,3 Recently, it has been found that lncRNAs
are closely related to disease pathogenesis,4 so the detection of
more disease-associated lncRNAs may be a good way to
understand the occurrence, development, prevention, and
treatment of diseases at the molecular level.

In previous studies, researchers used living organisms to
validate disease associations with lncRNAs. This method is not
only time-consuming but also difficult to use for determining
the association pairs of lncRNAs with diseases. To increase the
validation accuracy in wet experiments and to reduce the cost
of conducting experiments, researchers have used the
experimental data summarized by previous researchers
combined with state-of-the-art computer models for the
preferential selection of disease−lncRNA association pairs.5−7

Previous studies have employed the LDA matrix along with
its computed similarity matrix to explore the features of
individual nodes. LRLSLDA8 used the lncRNA similarity
matrices as the input features of the nodes and reconstructs the
association matrices for prediction using the least-squares
method with Laplacian regularization. MFLDA9 explored the
matrix three-factor decomposition technique to derive the
disease, lncRNA and implicit feature matrices, and the
reconstructed predictive association matrix can be derived by
multiplying these matrices. SIMCLDA10 used principal
component analysis (PCA) to extract key features and a
neural-induced complementation matrix to explore potential
lncRNA−disease associations. Regarding IPCARF,11 associa-
tion prediction was performed with the Random Forest

Received: June 8, 2024
Revised: July 4, 2024
Accepted: July 22, 2024
Published: July 30, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

35100
https://doi.org/10.1021/acsomega.4c05365

ACS Omega 2024, 9, 35100−35112

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dengju+Yao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Binbin+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaojuan+Zhan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bo+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Kui+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c05365&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05365?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05365?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05365?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05365?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05365?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/32?ref=pdf
https://pubs.acs.org/toc/acsodf/9/32?ref=pdf
https://pubs.acs.org/toc/acsodf/9/32?ref=pdf
https://pubs.acs.org/toc/acsodf/9/32?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c05365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


technique after feature extraction via PCA. GCHIRFLDA12 is a
method for extracting potential features using an autoencoder
and combining it with a Random Forest classifier for
prediction. SCCPMD13 first performed similarity enhancement
using logistic functions and then performs prediction of
potential association pairs using the probabilistic matrix
decomposition method with corrected similarity constraints.
These traditional machine learning and matrix factorization
methods have achieved acceptable performance, but they
neglect the information regarding neighboring nodes that is
available in both the LDA association network and the
lncRNA−disease similarity network.

To fully leverage the information from neighboring nodes,
LDA-LNSUBRW14 used linear neighborhood similarity in the
lncRNA network and disease network for unbalanced
birandom walk and finally fused these components to produce
the final predicted LDA. LRWRHLDA,15 Laplace normal-
ization of similarities and interactions between diseases, genes
and noncoding RNAs, can be used to make a final prediction
after several rounds of iterative training, and a similar method
is MHRWR.16 Birandom walks are also available in MSF-
UBRW,17 where the interaction between lncRNAs and diseases
was reconstructed using WKNKN18 based on unbalanced
birandom walks and used as a transfer matrix for the respective
networks. Similar birandom walk methods are used in NCP-
BiRW19 and lung cancer prediction.20 Although existing
network propagation random walk algorithms can utilize the
neighbor information on nodes, the experimental process is
cumbersome, and the resulting association scores are relatively
low.

In recent years, deep learning models, due to their powerful
representation learning ability, have greatly promoted the
development of bioinformatics and are increasingly being used
in various bioinformatics analysis tasks. For example,
SpatialGlue21 applied graph learning and attention mechanisms
to the process of spatial transcriptomics data integration,
unleashing the full potential of multimodal data. DrlGCL22

used graph learning and contrastive learning methods to infer
potential associations between drugs and diseases, not only
improving the accuracy of association prediction, but also
saving time and costs. PractiCPP23 and IGT24 both utilized
Transformer technology to further understand drug delivery

systems, which is beneficial for enhancing drug efficacy. This
shows that the graph learning model and Transformer model
in deep learning have good feature capturing ability. Graph
convolutional neural networks (GCNs)25 in deep learning
excel at efficiently aggregating information from neighboring
nodes, enriching the features of each node and enhancing the
prediction accuracy of association pairs. MAGCNSE,26

MMGCN,27 and MAGCN28 used multiview graph convolu-
tional neural networks with feature-level attention mechanisms
for feature extraction and ensemble learning classifiers for node
classification. HGATLDA29 and MCHNLDA30 fully explored
the topological features in the lncRNA and disease similarity
network by using a graph attention network (GAT) and
enhanced the learning of topological features by using
techniques such as multihopping metapath information, a
neural-induced complementation matrix and contrast learning.
MGLDA,31 NCPred,32 and GTAN33 used metapaths, convolu-
tional neural networks and multiple attention mechanisms to
extract features from multimodal lncRNA, disease and miRNA
data and then classify the final association pairs using MLP
classifiers. While these models can efficiently extract neighbor
node features, GCN and GAT may suffer from a lack of node
specificity, leading to information loss and hindering the
accurate prediction of newly associated nodes.

In summary, first, we found that most of the current LDA
association prediction models are using graph learning to
explore the topological features of the nodes for diseases and
lncRNAs in homogeneous or heterogeneous networks, then
the obtained topological features of the disease and lncRNA
are processed using feature fusion techniques in deep learning.
However, they ignore the fact that a node’s associative
relationships with other types of nodes in a heterogeneous
network may contain information specific to the node itself
when constructing a topological network using interaction
relationships such as disease-LncRNA and so on. Adding node-
specific features on top of node topological features will
effectively alleviate the problem of vanishing node specificity
caused by graph learning. Therefore, we propose a new model
(DPFELDA) which combines a node topology feature
extraction network with a node topology feature residual
network. The key contributions of DPFELDA include the
following aspects:

Figure 1. Flowchart of DPFELDA.
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First, we construct a dual-path node feature extraction
network to extract the full node features of lncRNAs and
diseases, and this network comprises a node topology feature
extraction network and a node topology residual network. The
former extracts comprehensive information from neighboring
nodes with diverse topologies in the dual perspective of
lncRNA and disease, while the latter learns distinctive node
features from the overall information on lncRNA and disease.

Second, the node topology feature extraction network
leverages the two-view structure of diseases and lncRNAs as
input. It extracts neighborhood node information from
lncRNAs and diseases using GCNs on various network
structures. The enhancement and interaction of multilayered
node topological information are facilitated through channel
attention and spatial attention in the convolutional block
attention module (CBAM) framework. Subsequently, a node
aggregation layer (NAL) aggregates these topological features.

Finally, we design a node topology residual network within
the dual-path feature extraction network to address the issue of
vanishing node specificity. It employs the global attention
mechanism of the Transformer to extract specific features for
each node, facilitating enhanced information complementarity
for the node topology feature extraction network.

2. MATERIALS AND METHODS
As shown in Figure 1, we developed a novel disease−lncRNA
association prediction model, DPFELDA, comprising three
phases: data preprocessing, dual-path feature extraction, and a
prediction model. During the data preprocessing stage, the
similarity matrix between lncRNAs and diseases was calculated
based on the association matrix and the Disease-Ontology ID
(DOID),34 utilizing three association matrices [the LncRNA−
Disease Association Matrix (LDM), MiRNA−Disease Associ-
ation Matrix (MDM), and LncRNA−MiRNA Interaction
Matrix (LMM)] to construct the disease-lncRNA−miRNA
heterogeneous network. In the dual-path feature extraction
stage, the network is bifurcated into a node topological feature
extraction network and a node topological feature residual
extraction network. The former operates with a dual-view
structure employing lncRNA and disease similarity network as
input, utilizing techniques such as CBAM and NAL for
processing node topological features. Moreover, the node
topology feature residual extraction network takes the mutual
relationships in the lncRNA-disease-miRNA heterogeneous
network as input. It utilizes the Transformer to extract specific
features of nodes, which serve as compensatory features for the
nodes. In the prediction model, the features extracted from
both networks are combined and input into the final classifier
XGBoost for LDA prediction.
2.1. Data Sets. We utilized four data sets to assess the

model’s performance. First, Data set 1, from MFLDA,9

comprises 240 lncRNAs and 412 diseases involving 495
miRNAs. This data set encompasses 2697 lncRNA−disease
associations, 13,562 miRNA−disease associations, and 1002
miRNA−lncRNA interactions. Data set 1 was used to
investigate the feasibility and generalizability of the model.

Data set 2 from LDAformer.35 It incorporated experimen-
tally validated associations of lncRNAs with diseases sourced
from the Lnc2Cancer v3.036 and LncRNADisease v2.037

databases. Additionally, for a more comprehensive analysis of
the nodal features and specific features of lncRNAs and
diseases, they utilized HMDD v3.238 to incorporate 8540
association relationships between 316 diseases and 295

miRNAs, leading to the identification of 2108 lncRNA−
miRNA interactions from the starBase v2.039 database.
Subsequently, Data set 2 was optimized based on the model
parameters, and its performance was compared against that of
other baseline models. Furthermore, we conducted model
exploration using this data.

Data set 3 differs slightly from Data set 1. Several existing
prediction models for LDA utilize this data set3 as a
benchmark database. To reaffirm the superiority of DPFELDA,
we performed additional model comparisons using this data
set. Additional data set details are presented in Table 1.

Additionally, we constructed the data set4 by updating the
data sources from lncRNAdisease v2.0 to lncRNAdisease v3.0
and HMDD v3.2 to HMDD v4.0 based on the data set2. It is
mainly used for model robustness studies.

In Table 1, LDA represents the association between
lncRNAs and disease, MDA represents the relationship
between miRNAs and disease, and MLI represents the
interaction relationship between miRNAs and lncRNAs.
2.2. Methods. 2.2.1. Similarity Matrix Calculation.

2.2.1.1. Disease Semantic Similarity. Disease−lncRNA
association prediction is based on the hypothesis proposed
by Chen and Yan8 that similar diseases tend to be associated
with functionally similar lncRNAs. Therefore, we obtained
disease semantic information from Disease Ontology34 and
used the disease ontology to represent the parent−child
relationships between diseases in the data structure of the
directed acyclic graph. We calculated the semantic similarity
matrix of diseases according to Wang’s method40 and the
semantic contribution score of diseases to diseases according
to the directed acyclic graph. Assuming that D is the ancestor
node of the DAG and D′ is the child node of D, the semantic
contribution score SD1 of D1 node in the DAG is
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After the contribution scores is obtained, the semantic score
Sv1 is calculated for D1
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1
=
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T(D) represents the DAG topology of disease D1, where D
is a child node of D1.

Finally, the semantic similarity of the two diseases is
calculated with the following formula

d i d j
S t S t

S d i S d j
DSS( ( ), ( ))

( ( ) ( ))

( ( )) ( ( ))
t T d i T d j d i d j

v v

( ( )) ( ( ) ( ) ( )
=

+
+

(3)

Table 1. Information on the Dataset

lncRNA disease miRNA LDA MDA MLI

Data set1 240 412 495 2697 13 562 1002
Data set2 665 316 295 3833 8540 2108
Data set3 240 405 495 2687 13 359 1002
Data set4 636 204 262 4748 7696 2091
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where t represents the union of the two diseases in terms of
topological structure.
2.2.1.2. LncRNA Functional Similarity. We calculated the

functional similarity matrix of lncRNAs based on the known
LDA matrix and the computed semantic similarity matrix of
diseases by Wang’s method5 with the following formula

l l
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d d

d d

LFS( , )
1

max (DSS( , ))

max (DSS( , ))

i

n

j n i j

j

n

i n i j

1 2
1 2 1

1 1 2

1
1 1 2

1

2

2

1

=
+

[

+ ]

=

= (4)

For lncRNAs l1 and l2, if there are n1 diseases associated with
l1 and n2 diseases associated with l2, DSS denotes the semantic
similarity score between the two diseases, and d1i and so on
represent the disease types.
2.2.1.3. Gaussian Interaction Profile Kernel Similarity for

lncRNAs and Diseases. Due to the sparsity of the LFS and
DSS similarity matrices, it may be challenging to explore
potential internal associations fully through disease semantic
and lncRNA functional similarities. This inherent difficulty
could introduce bias into the prediction results. To counteract
this limitation, we incorporated the Gaussian interaction
profile kernel similarity.41 The formula is calculated as follows

r r b r rRGS( , ) exp( IP( ) IP( ) )i i j1 2
2= (5)
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m i
m
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where RGS stands for the Gaussian kernel similarity of disease
or lncRNA, r1 and r2 stand for the two lncRNAs or diseases,
IP(ri) is a binary vector representing the ith row in the LDA
matrix, and bi is a parameter in the Gaussian kernel
computation. After previous experimental investigations and
validations, we chose to set the parameter to 1. The definition
of notations is detailed in Table 8.
2.2.1.4. Disease and lncRNA Cosine Similarity. To enhance

the richness of node features, this study employs cosine
similarity based on Euclidean distance to augment the diversity
of bioinformatic networks. This approach is beneficial for the
feature extraction process using graph convolutional neural
networks, enabling the acquisition of more comprehensive

node topology information. The calculation formula is as
follows

i j
A i A j
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∥·∥represents the modulus length, Ald (i,:) represents the ith
column of the association matrix, and T represents the
transpose symbol.
2.2.2. Representation of Association Information be-

tween lncRNAs and Diseases in Heterogeneous Networks.
In this method, there are l lncRNAs, d diseases, and m
miRNAs, so the association matrix and interaction matrix can
be defined as
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The heterogeneous association information on lncRNAs
with diseases in heterogeneous networks can be expressed as
follows
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Table 2. Performance of the Compared Methods on dataset1 and dataset2 by 5cv2a

metric data set HOPEXGB SDLDA GAEMCLDA IPCARF LDAformer GCLMTP NAGTLDA DPFELDA

ACC data set1 0.8988 0.9870 0.4897 0.9824 0.8794 0.7510 0.9431 0.9956
data set2 0.8069 0.9852 0.4895 0.9857 0.9054 0.8403 0.9387 0.9943

precision data set1 0.9531 0.8594 0.0101 0.8579 0.0427 0.0169 0.7086 0.9796
data set2 0.8882 0.7970 0.0060 0.7825 0.0763 0.0197 0.6560 0.9427

recall data set1 0.7987 0.3772 0.9444 0.4263 0.8863 0.7498 0.6422 0.8565
data set2 0.6152 0.3776 0.8699 0.3210 0.7596 0.8618 0.6945 0.7349

MCC data set1 0.8693 0.7314 0.4831 0.5975 0.1774 0.0866 0.6432 0.9139
data set2 0.7354 0.5430 0.4931 0.4957 0.1516 0.1156 0.6289 0.8297

F1-score data set1 0.8691 0.5242 0.0201 0.5691 0.0811 0.0329 0.6727 0.9139
data set2 0.7269 0.5122 0.0118 0.4551 0.0661 0.0347 0.6738 0.8259

AUC data set1 0.8988 0.9812 0.9324 0.9261 0.9561 0.8231 0.9381 0.9967
data set2 0.8069 0.9560 0.8676 0.9132 0.9271 0.9175 0.9348 0.9888

AUPR data set1 0.7667 0.7990 0.0372 0.6836 0.3568 0.0658 0.7629 0.9671
data set2 0.5534 0.6040 0.0244 0.5762 0.2273 0.0996 0.7381 0.9222

aBolding indicates that the evaluation indicator has reached its optimal value under the baseline model.

Table 3. Further Comparisons on Dataset 3

method average AUC average AUPR

GTAN (2022) 0.983 0.454
NCPred (2023) 0.984 0.640
MGLDA (2023) 0.987 0.512
GAIRD (2023) 0.988 0.649
AGLDA (2024) 0.988 0.684
DPFELDA 0.997 0.968
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Ald represents the LDM, Amd represents the MDM, Ilm is the
LMM, lr represents the multivariate data feature of lncRNAs, dr
represents the disease multivariate data feature, and R
represents real numbers.
2.2.3. Dual-path Feature Extraction. Based on the

association information between lncRNAs and diseases in the
dual-view structure and the lncRNA-disease-miRNA heteroge-
neous network, we propose a dual-path feature extraction
model which combines the node topology feature extraction
network with the node topology feature residual network, as
shown in Figure 2.
2.2.3.1. Node Topology Feature Extraction Network.

Graph Convolutional Neural Network: We utilized the
GCN25 as a theoretical motivation for extracting the
topological features of lncRNAs associated with diseases, so
we considered using a multilayer GCN with hierarchical

propagation rules to explore the topological features of the
network of diseases associated with lncRNAs, and the formula
for the GCN is shown below

f H A D A D H W( , ) ( )l l l( ) 1/2 1/2 ( ) ( )= (12)

A A I= + (13)

where A is the similarity matrix, and the sizes of the similarity
matrices for lncRNAs and diseases are l × l and d × d,
respectively. Â is the self-connection of A, D̂ is the degree
matrix of Â, H(l) is the node feature, W(l) is the linear
transformation matrix and σ is the ReLU activation function.
In this method, a three-layer GCN is chosen to explore the
topological features present in the lncRNA−disease similarity
network, where the input and output features of each node are
128-dimensional.
CBAM: Taking as input the intermediate features, Hl, Hd ∈

RC×H×F, of each similar network in which the GCN has
explored the given 1ncRNA and disease, CBAM42 sequentially
infers a 1D channel attention matrix, MC ∈ RC×1×1, and a 2D
spatial attention matrix, MS ∈ R1×H×W.

The following formula is used for the channel attention
module

Table 4. Performance of DPFELDA and Its Variants of 5cv1 in Dataset 2

single-path network AUC (%) AUPR (%) dual-path network AUC (%) AUPR (%)

GCN 96.91 79.65 GCN + Transformer 97.36 84.09
GCN + CBAM 98.07 81.16 GCN + CBAM + Transformer 98.29 86.47
GCN + NAL 97.66 85.00 GCN + NAL + Transformer 97.85 86.85
GCN + CBAM + NAL 98.63 91.25 GCN + CBAM + NAL + Transformer 98.96 92.43

Table 5. Performance of DPFELDA with Different Views of
5cv1 in Dataset 2

metric AUC (%) AUPR (%)

DCS + LCS 97.77 84.70
DSS + LFS 96.78 81.53
DGS + LGS 97.19 84.27
(DSS + LFS) & (DGS + LGS) 97.48 85.08
(DSS + LFS) & (DCS + LCS) 97.64 84.65
(DGS + LGS) & (DCS + LCS) 98.63 91.43
(DGS + LGS) & (DCS + LCS) & (DSS + LFS) 98.96 92.43

Table 6. Hyperparameter Settings for DPFELDA

hyperparameter setting

transformer self-attention heads (2, 4, 6, 8)
transformer encoder layers (1, 2, 3, 4)
GCN layers (1, 2, 3, 4, 5)
node feature output dimensions (32, 64, 128, 256)

Table 7. Top 30 Predicted lncRNAs Associated with Hepatocellular Cancer in dataset1

rank lncRNA evidence PMID rank lncRNA evidence PMID

1 MEG3 LncRNADisease 21625215 16 MIR194-2HG LncRNADisease 33116574
2 H19 LncRNADisease 21489289 17 HNF1A-AS1 LncRNADisease 27084450
3 GAS5 LncRNADisease 26163879 18 ZEB1-AS1 LncRNADisease 25025236
4 MALAT1 LncRNADisease 26614531 19 PVT1 LncRNADisease 27495068
5 CDKN2B-AS1 LncRNADisease 25966845 20 SNHG1 LncRNADisease 27133041
6 TUG1 LncRNADisease 27339553 21 AFAP1-AS1 lnc2Cancer 26803513
7 UCA1 LncRNADisease 26551349 22 DANCR LncRNADisease 27919960
8 LINC00687 UNKNOWN 23 HOTTIP LncRNADisease 24114970
9 PANDAR lnc2Cancer 26054684 24 HULC LncRNADisease 27285757
10 DBH-AS1 LncRNADisease 26393879 25 CCAT2 LncRNADisease 28280353
11 LINC00602 UNKNOWN 26 NEAT1 LncRNADisease 28526689
12 LINC00974 lnc2Cancer 25476897 27 MIR7−3HG LncRNADisease 24296588
13 HCCAT5 Literature 23314567 28 XIST LncRNADisease 27776968
14 CYTOR LncRNADisease 26356260 29 SPRY4-IT1 LncRNADisease 27899259
15 HOTAIR lnc2Cancer 32062551 30 TRERNA1 lnc2Cancer 31012192

Table 8. Table of Abbreviations and Symbols

lncRNA long noncoding RNA

GCN graph convolutional network
CBAM convolutional block attention module
NAL node aggregation layer
l LncRNA number
d disease number
m MiRNA number
∥·∥ Modulo operation
∥ concatenate
⊗ dot product
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M H H

H

( ) (MLP( (AvgPool( ))

MLP( (maxPool( )))))
C 1 2

2

=

+ (14)

where H is the feature matrix of multiple channels, σ1 is the
ReLU activation function, σ2 is the sigmoid activation function
for the purpose of exploring more potential nonlinear features,
MLP is the multilayer perceptron for extracting linear features
between channels, AvgPool is the average pooling layer for
obtaining the information on the global perceptron field of the
channels, and MaxPool is used to extract the key features
between channels. H is the intermediate features that have
GCN explored and spliced together, F is the node feature
dimension, Hl and Hd are the input features of lncRNA or
disease for CBAM, the input feature of disease is 1 × 9 × d ×
128, the output is 1 × 9 × 1 × 1, the input feature of lncRNA is
1 × 9 × l × 128, and the output is 1 × 9 × 1 × 1.

For the spatial attention module, the formula is shown below

M H f H H( ) ( AvgPool( ), maxPool( ) )s 1
7 7

1 1= [ ]× (15)

where f 7×7 represents the convolution kernel of size 7 × 7,
which is derived from the experimental validation of the
model,42 where H1 is the input feature of the lncRNA or
disease for CBAM, the input feature of the disease is 1 × 9 × d
× 128, the output is 1 × 1 × d × 128, the input feature of the
lncRNA is 1 × 9 × l × 128, and the output is 1 × 1 × l × 128.

Finally, we can obtain the feature matrix enhanced by
CBAM features with the following formula

H M H H( )1 c= (16)

H M H H( )2 s 1 1= (17)

where ⊗ represents the element-by-element multiplication,
during which the attention values are broadcasted accordingly,
and the channel attention is broadcasted along the channel
dimension; otherwise, H2 is the final feature-enhanced feature.

In addition, CBAM attention can be adaptively adjusted
according to the characteristics of different views, thus
improving the generalizability and adaptability of the model.
NAL: After the graph convolutional layer and convolutional

attention, we obtain the feature matrix with node neighbor-
hood topology information and interchannel interactions,
which tend to introduce noise due to the high dimensionality
of the obtained features. Therefore, in this method, a
rectangular convolution kernel is chosen to aggregate only
the individual node features, thus reducing the dimensionality
of the data and maintaining the integrity and interpretability of
the data to be explored. The formula is as follows

H g H h h h(conv, ) conv( , , . . . , )l
l l l l
2 2

1
2

2
2

9= = (18)

H g H h h h(conv, ) conv( , , . . . , )d
d d d d
2 2

1
2

2
2

9= = (19)

Figure 2. Presents the framework of the model, which consists of two parts. The first part is the node topology feature extraction network, which is
responsible for extracting the node topology features. The node features from various convolutional layers of the GCN are enhanced using CBAM
for channelwise and spatialwise feature enhancement. Then, the aggregated features are passed through the NAL for multichannel convolutional
dimension reduction. The second part is the node topology feature residual network, which utilizes the heterogeneous association information
between lncRNAs and diseases, along with the Transformer, to extract node-specific features. This network focuses on capturing the specific
features of the nodes related to lncRNAs and diseases.
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where Hl and Hd are the topological features of lncRNAs and
diseases derived from the final training, the convolution kernel
is 128 × 1 with a step size of 1, the number of input channels is
9, and the number of output channels is 128. h2

l1 represents the
node features explored by different GCN layers and enhanced
by CBAM for different lncRNA views.
2.2.3.2. Node Topology Feature Residual Network. In

neighborhood feature aggregation, the effectiveness of the
GCN network heavily relies on the degrees of both the central
node and its neighboring nodes. Following the graph
convolution formula 12, if nodes A and B are connected and
the degree of node B is lower than that of node A, the features
of node A’s aggregation can be diluted by those of node B.
Consequently, node A may lose its unique characteristics,
potentially leading to oversmoothing of node features. To
address this issue, we employ the Transformer architecture,
which utilizes the self-attention mechanism to learn global
features while preserving the specificity of the node features.

In this method, we construct a node topology feature
residual extraction network using the encoder layer of the
Transformer43 model. The encoder layer of the Transformer
model comprises N identical stacked layers, with each layer
consisting of two sublayers. The first sublayer employs a
multihead self-attention mechanism, while the second sublayer
is a feedforward neural network based on a fully connected
layer. To harness the advantages of residual neural networks,
we incorporate residual connections in each sublayer. Addi-
tionally, a layer of normalization is introduced. To ensure
consistency in the residual connections, all sublayers in the
model, including their embeddings, yield 128-dimensional
outputs.

Regarding the Multi-Head Attention layer, in this method,
the resulting compensated feature matrix is coded for
dimensionality reduction using fully connected layers to
explore potential linear features. The formula is as follows

b l W W R,l r c c
N N

ln ln
l f= × (20)

b d W W R,d r
N N

dis dis
d f= × (21)

where b̂l and b̂d are linear transformations of lr and dr. lr and dr
are multivariate data features of lncRNA and disease,

respectively. Matrices such as W are linearly transformed
with respect to the features.

As the methodology for investigating compensatory features
of lncRNAs and diseases remains consistent, the subsequent
section will delineate the approach to exploring the node-
specific attributes of an lncRNA node.

After obtaining the features after the completion of the
transformation, the similarity between the nodes is determined,
and the similarity is used to calculate the weight parameters of
each feature with the following formula

s
b b

d
i n

k
in =

(22)

where ⊗ represents the function matmul in Python. b̂i, b̂n
represent the node features of the ith and nth lncRNAs, and dk
is the scale factor, which is 128.

After determining the similarity between each node and each
node, using the softmax function, the feature weights α are
derived with the following formula

s

s

exp( )

exp( )m
lin

in

1 im

=
= (23)

After calculating the weights, i.e., it is possible to obtain the
node features containing new and richer information after the
attention mechanism. The formula is as follows

b b bl
n

l

n i
1

in= +
= (24)

here, bi represents the node feature of the ith lncRNA derived
through exploration, encompassing its unique node-specific
details and integrating information from other nodes within
the lncRNA perspective.

The idea of multihead attention is the same as the idea of
self-attention; only the feature matrix is segmented. First, the
self-attention mechanism is performed on each part of the
segmentation, and then splicing is performed after the process
of the attention mechanism. The feature splicing of lncRNAs is
taken as an example, and the splicing formula is as follows

Figure 3. Feature splicing, node matching and final classification, where lncRNA T and disease T represent topology node features explored by the
node topology feature extraction network, and lncRNA S and disease S represent node-specific features explored by the node topology feature
residual network.
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B bi

h

h

1
H

=

=

(25)

|| denotes splicing. Bi represents the features trained in the
initial sublayer of the Transformer architecture, where H is
designated as the eight-headed attention mechanism in this
study.

In addition to the attention sublayer, each layer of the
coding layer contains a fully connected feed-forward neural
network that consists of two linear transformations with an
activation function, as shown in the following equation

B B W b W bFFN( ) ReLU( )lnc lnc 1 1 2 2= + + (26)

where W1 and W2 are the weight matrices of the fully
connected layer and b1 and b2 are the biases.
2.2.3.3. Loss Function. To mitigate the reliance on known

association nodes in the dual-path feature extraction network,
we optimize the loss function by employing matrix multi-
plication. This approach reduces the two sets of lncRNAs
acquired with the updated disease features into an association
matrix. By utilizing the association matrix, we aim to obtain
more precise potential features. The optimized formula for the
loss function is presented below

F FLD l d
T= × (27)

loss LD LD F
2= (28)

2.2.4. Prediction Model. As shown in Figure 3, the
prediction of lncRNA−disease association classification is
accomplished based on the node features of lncRNAs and
diseases obtained from the dual-path feature extraction
network. These features are paired through association and
labeled. We conducted comparisons with various classifiers,
including the Naiv̈e Bayes classifier,44 logistic regression,45

XGBoost,46 support vector machine,47 and random forest
classifiers.48 We ultimately selected the XGBoost classifier to
carry out the classification task.
2.2.5. Experimental Environment. Our method was

implemented using the torch_geometric package based on
the PyTorch framework. The experiments were conducted on
a Windows 10 operating system with an Intel(R) Core(TM)
i7−8550U processor and 16 GB of RAM. The maximum
number of epochs in our model was set to 500, and all the
trainable parameters were optimized using the Adam optimizer
with a learning rate of 0.001 and a weight decay rate of 0.05.

Since the data set is imbalanced, with a much larger number
of negative samples than positive samples, it is crucial to
evaluate the model’s ability to retrieve true positive samples
from the predicted positive samples. Here, positive samples are
node pairs where 1 is located in the LDM, and negative
samples are node pairs where 0 is located in the LDM. In our
experiments, we evaluated the model using the following two
approaches:

5-fold cross-validation (CV1): The positive and negative
samples are divided into five equal parts, with one part
randomly selected as the test set and the remaining four parts
used as the training set. This evaluation method is mainly
employed on Data set 2 in ablation experiments, parametric
analysis, and other model building experiments.

5-fold cross-validation (CV2): Repeatedly perform 5-fold
cross-validation experiments and select the group of exper-
imental results with the smallest variance as the final result.

This evaluation method is utilized for comparisons with
baseline models, and model exploration in comparison with the
substitution of the dual-path feature extraction network.
2.2.6. Evaluation Metrics. To better evaluate the model

performance, based on the evaluation methods of existing
studies,35 we used the area under the receiver operating
characteristic curve (AUC) and the area under the precision−
recall curve (AUPR) as the comprehensive performance
evaluation metrics of DPFELDA. Additionally, we used six
other evaluation metrics, including accuracy, sensitivity,
specificity, precision, F1-score, and Matthews correlation
coefficient (MCC). These indicators were calculated as follows

accuracy
TN TP

TN TP FN FP
= +

+ + + (29)

recall
TP

TP FN
=

+ (30)

precision
TP

TP FP
=

+ (31)

F1 score
2 precision recall

precision recall
= × ×

+ (32)

MCC
TP TN FP FN

(TP FN) (TP FP) (TN FN) (TN FP)

=
× ×

+ × + × + × +
(33)

3. RESULTS
3.1. Performance Comparisons. To verify the validity of

the model, we choose the state-of-the-art model in the
literature that can work properly through debugging as the
baseline model, and to ensure fairness, the model comparison
experiments use the same data set with the same experimental
environment. The baseline models include LDAformer,35

which mainly utilizes multihop metapaths as original features
and uses a Transformer for feature extraction. GAEMCLDA49

uses matrix factorization and a graph autoencoder for
association prediction of LDA. SDLDA,50 exploring lncRNA-
disease associations using matrix decomposition with fully
connected layers. IPCARF11 is an association prediction
method based on a machine learning prediction of association
methods using PCA and random forest for prediction.
HOPEXGB,51 exploring heterogeneous graphs using high-
order proximity preserved embedding and using XGB to
predict the association of lncRNAs with disease. GCLMTP52

explores lncRNA and disease node features using graph
Contrastive Learning and uses machine learning classifiers
for association classification. NAGTLDA53 utilized GCN to
explore potential global and local features, and utilized
Transformer’s attention mechanism for feature fusion.

The baseline models in this study were constructed using
traditional machine learning algorithms and deep learning
algorithms. The parameters suggested in the literature were
used to run each of these methods. Specifically, GAEMCLDA,
LDAformer, NAGTLDA and GCLMTP incorporate the
concept of learning graph structures. The evaluation metrics
based on 5-CV2 averaging are shown Table 2. To establish the
statistical distinction in the predictive performance of
DPFELDA relative to the compared methods, we performed
Wilcoxon test analyses on the AUC and AUPR evaluation
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criteria of the baseline methods, as detailed in Supporting
Information Table S4. The results revealed that all p-values
were below 0.05, signifying a significant superiority of
DPFELDA’s performance over the other methods.

For two different data sets, Data set1 and Data set2, the
same method shows certain differences between the databases.
Considering that this may be due to the different ratio of
positive to negative samples in the two data sets, with data set1
having a ratio of (1:37) and data set2 having a ratio of (1:54),
it can be inferred that a sparse network structure is not
conducive to association prediction by LDA. In the
comparison of both data sets, DPFELDA demonstrated a
significant superiority over the baseline model in both
evaluations. In data set 1, DPFELDA outperforms the
second-ranked SDLDA by 1.55% in AUC and 16.81% in
AUPR. Regarding the evaluation metrics MCC and F1-score
for the unbalanced data set, DPFELDA surpasses the second-
ranked HOPEXGB by 4.46 and 4.48%, respectively. In data set
2, DPFELDA surpasses the second-ranked SDLDA by 3.28%
in AUC and 31.82% in AUPR. Similarly, concerning the
evaluation metrics MCC and F-score for the unbalanced data
set, DPFELDA exceeds the second-ranked HOPEXGB by 9.43
and 9.9% respectively. The comparison of the baseline models
demonstrates the superior performance of DPFELDA. In
addition, the comparison with the dual data set in the baseline
model highlights the improved suitability of DPFELDA for
predicting correlations in unbalanced data sets compared to
other LDA prediction models.

Data set 3 serves as a widely adopted benchmark data set,
enabling the comparison of DPFELDA with a broader range of
graph-structured learning LDA association prediction models.
We also explore advanced methods, specifically GTAN,33

NCPred,32 MGLDA,31 GAIRD,54 and AGLDA,55 which
integrate additional deep learning techniques like graph
learning and dual paths, showcasing strong performance. In
Table 3, DPFELDA achieves the highest AUC, surpassing the
second-best AGLDA by 0.8%. Additionally, DPFELDA
demonstrates strong performance in AUPR, with most other
prediction models having AUPR values between 0.4 and 0.6,
while DPFELDA achieves a better 0.967, a notable 28.3%
higher than the second-best AGLDA. These results highlight
the superior predictive capabilities of DPFELDA.
3.2. Ablation Experiment. 3.2.1. Feature Extraction

Network. To validate the effectiveness of our innovative
components, including the dual-path feature extraction net-
work, CBAM, and NAL, we conducted ablation experiments in
data set2. As shown in Table 4, the DPFELDA model, which
combines the dual-path feature extraction network, CBAM,
and NAL, achieved the best performance. Compared to the
single-path feature extraction network, the dual-path network
with residual connections for node topology features
demonstrated an average improvement of 0.3725% in AUC
and 3.195% in AUPR. Within the dual-path feature extraction
network, removing the CBAM layer resulted in decreases of
1.11% in the AUC and 5.58% in the AUPR, while removing
the NAL layer led to reductions of 0.67% in the AUC and
5.96% in the AUPR. Moreover, similar trends were observed in
the single-path feature extraction network (after removing
CBAM, the AUC and AUPR decreased by 1.03 and 6.25%,
respectively; after removing NAL, the AUC and AUPR
decreased by 0.56 and 10.97%, respectively).
3.2.2. Multiview Fusion. We explored the impact of

similarity networks and their combinations on disease-lncRNA

prediction in data set2 via a dual-pathway feature extraction
network and the XGBoost classifier. As shown in Table 5, the
effects of different similarity networks and their combinations
on LDA prediction are not simply linear relationships.
Compared with the DSS + LFS combination, the DCS +
LCS combination achieved a greater AUC and AUPR (0.13
and 0.05%, respectively). Among the two-view combinations,
DCS + LCS outperformed DSS + LFS, with higher AUC and
AUPR values (0.99 and 3.17%, respectively), and DCS + LCS
also outperformed DGS + LGS, with higher AUC and AUPR
values (0.58 and 0.43%, respectively). Among the combina-
tions of the two similarity networks, DGS + LGS and DCS +
LCS achieved greater AUC and AUPR values than did DSS +
LFS and DGS + LGS (1.15 and 6.35% and 0.99 and 6.78%,
respectively). The combination of DGS + LGS, DCS + LCS
and DSS + LFS yielded the best prediction performance.
3.3. Parameter Analysis. In this study, all the hyper-

parameters used in DPFELDA are referenced in the Materials
and Methods Section. As shown in Table 6, we adjusted the
important hyperparameters: the number of heads of the
multihead attention and encoder layers in the Transformer and
the number of graph convolution layers. In Supporting
Information Figure S2, we chose 8 heads among (2, 4, 6, 8)
for attention and 1 layer among (1, 2, 3, 4) for the encoder
under the path of node topological features to extract the
residual network. As shown in Supporting Information Figure
S1, we selected 3 layers for graph convolution among (1, 2, 3,
4, 5) under the path of the node topological feature extraction
network. In Supporting Information Figure S3, we selected two
output dimensions for the topology extraction networks among
(32, 64, 128, 256), and the final feature output dimensions for
both networks were set to 128 under the dual-path feature
extraction network.
3.4. Model Exploration. In addition, to validate the role of

the dual path extraction network in DPFELDA, we explore the
option of replacing the DPFELDA dual path feature extraction
network with the graph attention (GAT) topological feature
extraction network in data set2. The model details are shown
in the Supporting Information Figure S5. Also, in order to
validate the role of the topological feature residual network, we
considered the option of using the GAT topological feature
extraction network to replace the topological feature extraction
network in the DPFELDA scheme. The model details are
shown in the Supporting Information (Figure S6).

To validate whether the DPFELDA dual-path feature
extraction network alleviates the issue of node-specific
disappearance, we considered replacing the dual-path feature
extraction network with the GAT topology feature extraction
network, as shown in Supporting Information Table S3. The
dual-path feature extraction network outperformed GAT with
a 5.69% higher AUC and a 42.71% higher AUPR, and
DPFELDA demonstrated better performance than GAT in
other evaluation metrics. To verify the effectiveness of the
topology residual network, we replaced DPFELDA topology
feature extraction network with the GAT topology feature
extraction network. The addition of the topology residual
network on top of the GAT topology feature network resulted
in a 3.21% increase in the AUC and a 29.51% increase in the
AUPR. Other evaluation metrics also showed varying degrees
of improvement, indicating the effectiveness of the topology
residual feature extraction network. Inspired by the IPCRF
model,11 we considered four different dimensionality reduction
techniques, as shown in Supporting Information Table S2:
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PCA56 for principal component analysis, ICA57 for independ-
ent component analysis, RP58 for random projection, and NAL
as a dimensionality reduction technique based on CNNs and
fully connected layers. The results indicated that NAL was
more helpful for node classification tasks.
3.5. Case Study. To investigate the model’s feasibility, this

paper conducts case study experiment. The experiment
involves removing the feature columns related to a specific
disease and excluding the disease from participating in the
training of the classifier model during the training phase.
Finally, the particular disease is used to make predictions with
lncRNA associations to validate the accuracy of the association
prediction results. Hepatocellular carcinoma, breast cancer,
gastric cancer, and colorectal cancer were chosen for analysis
and prediction in data set 1 and data set 2, respectively. For
each disease within different data sets, the top 30 candidate
lncRNAs were selected based on their prediction scores. To
further validate the predictive ability of DPFELDA, we selected
LncRNADisease 3.0,59 lnc2Cancer v3.0, EVlncRNA s3,60 and
literature-based candidate association pairs for validation.
Table 7 displays the candidate lncRNAs identified for
hepatocellular carcinoma in data set 1, where 28 lncRNAs
are associated with hepatocellular carcinoma. After validation,
26 candidate lncRNAs were confirmed to be associated with
breast cancer (see Supporting Information Table S5), 28 with
gastric cancer (see Supporting Information Table S6) and 28
with colorectal cancer (see Supporting Information Table S7).
In the case study of data set2 with (Supporting Information
Tables S8−S11), 30 candidate lncRNAs for breast, gastric, and
hepatocellular carcinomas were experimentally validated, while
28 candidate lncRNAs for colorectal cancer were validated.

In data set1, in order to verify the accuracy of the
experiment, we made use of TCGA data to do survival
analysis of hepatocellular carcinoma with CDKN2B-AS1,
ZEB1-AS1. As shown in Figure 4, the lower the expression
of LncRNAs leading to hepatocellular carcinoma over time, the
higher the survival probability of the patients. This also
indicates that our prediction has a positive prognostic effect on
the disease. In addition, as shown in Supporting Information
Figure S9, we also did a survival analysis of breast cancer with
STXBP5-AS1 in data set2. It was found that the lower the
expression of LncRNAs leading to breast cancer over time, the
higher the probability of patient survival.

4. DISCUSSION
To alleviate the issues of node specificity loss in lncRNA
disease association prediction, this study proposes an
innovative DPFELDA prediction model. The model utilizes a
dual-pathway model feature extraction network to enhance the
representation of node features and combines it with an
XGBoost classifier for disease association prediction. Through
5-fold cross-validation, the performance of the model was
found to be superior to that of other existing LDA prediction
models.

Several researchers have adopted the dual-pathway approach
(MGLDA,31 NCPred,32 and GTAN33) for LDA prediction
models. Similarly, our DPFELDA model also adopts the dual-
pathway feature extraction approach. However, our model uses
heterogeneous networks as input and enhances feature
acquisition through a similar residual connection, improving
the model’s predictive performance.

To construct an accurate LDA prediction model, as shown
in Supporting Information Table S1 and Figure S4, we
compared several classifiers, including naive Bayes, random
forest, support vector machines, logistic regression, and
XGBoost. Among these classifiers, XGBoost exhibited the
best performance, so we chose XGBoost as the classifier for our
model.

The LDAformer model utilizes a heterogeneous graph of a
similarity network and an association matrix to extract
multihop metapath information for nodes via matrix multi-
plication. As shown in Table 2. The AUC of LDAformer in
data set2 reaches 0.9271, but due to the influence of sample
imbalance, the AUPR is only 0.2273. In DPFELDA, the node
topology feature residual pathway also uses the association
information on the heterogeneous graph as input. Under
sample imbalance, the AUC and AUPR of the DPFELDA
model constructed using the dual-pathway feature extraction
approach are 0.0617 and 0.6949 greater than those of the
LDAformer, respectively. This indicates that DPFELDA not
only improves the predictive performance of LDA but also
alleviates the low AUPR caused by sample imbalance.

GAEMCLDA is an LDA prediction model based on graph
autoencoders (in data set2 AUC: 0.8676, AUPR: 0.0244).
Consistent with the node topology feature extraction network
of DPFELDA, both models use graph structure learning
methods. As shown in Table 4, under the single pathway of the

Figure 4. Survival analysis of hepatocellular cancer cells.
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node topology feature extraction network, utilizing a GCN
model combined with various similarity networks to extract
node topology features (in data set2 AUC: 96.91, AUPR:
79.65) performed better than the GAEMCLDA model. After
adding the CBAM model, its performance improved. However,
in the process of graph structure learning, the average feature
smoothing of nodes may lead to a decrease in the model’s
predictive performance. As shown in Table 4, adding the node
topology residual network in the dual-pathway network
improves the performance of the model, indicating that the
DPFELDA node topology residual network alleviates this
problem to a certain extent and provides a new way to address
the feature smoothing problem. It should be noted that
GAEMCLDA compresses the disease feature matrix and the
lncRNA feature matrix into a new LDA correlation matrix. It
then evaluates the model using this new LDA matrix in
comparison with the original LDA matrix. This behavior results
in GAEMCLDA classifying a significant number of unknown
samples as positive, consequently contributing to its high
Recall value.

IPCARF utilizes the PCA technique for dimensionality
reduction, which enhances the overall performance of the
model. Inspired by the existing research on IPCARF, we NAL
to the node topology feature extraction network. However, due
to the limitations of the PCA technique, it cannot fully explore
and aggregate the extracted node features. Therefore, we
innovatively combined the CNN and fully connected layers for
feature aggregation, as shown in Table 4 and Figure 2. Under
the single-pathway network, the combination of GCN and
NAL achieved an AUC and AUPR that were 7.32 and 33.63%
greater than those of IPCARF (91.32 and 57.62%,
respectively) in data set2. Furthermore, as shown in Table 4,
under the dual-pathway network structure, the use of NAL or
CBAM as innovative elements does not overshadow their role
in improving model performance despite the increase in model
complexity.

In order to verify the robustness of the model, we evaluated
the generalization of the model using data set1, data set2, data
set3, data set4, the results show that the model has a low
dependency on the data and achieves a good performance on
the four different data sets. See (Supporting Information Table
S12).

However, the DPFELDA model still has some limitations.
(1) To enhance the complexity of lncRNA-disease topology in
constructing the lncRNA-disease view, we computed the
similarity matrix between lncRNA and disease based on the
existing association matrix. However, this approach results in
the training features being reliant on the association matrix,
potentially hindering the accurate prediction of new associa-
tion pairs. (2) As the DPFELDA model is founded on a deep
learning model, its learning process requires manual adjust-
ments by individuals, and the hyperparameters within the
model structure must also be fine-tuned for varying data
volumes and features, thereby intensifying the training
workload. In the future, we will continue to explore deep
learning models suitable for generalization of lncRNA-disease
association prediction and improve the adaptability of the
models themselves to data input. Additionally, as bioinfor-
matics progresses, we aim to incorporate multimodal biological
data on disease and lncRNA as primary feature inputs,
reducing reliance on association matrices. This approach will
facilitate the exploration of novel lncRNA-disease associations

and potentially aid wet experiments, further enhancing our
understanding of the role of lncRNA in disease pathogenesis.

5. CONCLUSION
This paper presents a dual-pathway-based prediction model for
lncRNA−disease associations, and through comparative experi-
ments, it demonstrates the superiority of DPFELDA. We also
conducted case studies and performed survival analysis
experiments on the associations between lncRNAs and
diseases, validating the accuracy of lncRNA−disease associa-
tion prediction. These findings will facilitate the selection of
diseases and lncRNAs for use in biological experiments.
Further exploration of the role of lncRNAs in disease
development will contribute to a better understanding of
disease pathogenesis and provide improved treatment
strategies.
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