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ABSTRACT Various toxic compounds disrupt bacterial physiology. While bacteria
harbor defense mechanisms to mitigate the toxicity, these mechanisms are often
coupled to the physiological state of the cells and become ineffective when the
physiology is severely disrupted. Here, we characterized such feedback by exposing
Escherichia coli to protonophores. Protonophores dissipate the proton motive force
(PMF), a fundamental force that drives physiological functions. We found that E. coli
cells responded to protonophores heterogeneously, resulting in bimodal distribu-
tions of cell growth, substrate transport, and motility. Furthermore, we showed that
this heterogeneous response required active efflux systems. The analysis of underly-
ing interactions indicated the heterogeneous response results from efflux-mediated
positive feedback between PMF and protonophores’ action. Our studies have broad
implications for bacterial adaptation to stress, including antibiotics.

IMPORTANCE An electrochemical proton gradient across the cytoplasmic membrane,
alternatively known as proton motive force, energizes vital cellular processes in bac-
teria, including ATP synthesis, nutrient uptake, and cell division. Therefore, a wide
range of organisms produce the agents that collapse the proton motive force, proto-
nophores, to gain a competitive advantage. Studies have shown that protonophores
have significant effects on microbial competition, host-pathogen interaction, and an-
tibiotic action and resistance. Furthermore, protonophores are extensively used in
various laboratory studies to perturb bacterial physiology. Here, we have character-
ized cell growth, substrate transport, and motility of Escherichia coli cells exposed to
protonophores. Our findings demonstrate heterogeneous effects of protonophores
on cell physiology and the underlying mechanism.

KEYWORDS bacterial physiology, single-cell microscopy, cell-to-cell heterogeneity,
efflux pumps, proton motive force, protonophore

An electrochemical proton gradient across the cytoplasmic membrane, alternatively
known as proton motive force (PMF), drives vital processes in cells. For example,

PMF powers ATP synthesis (1, 2), transport of a wide range of substrates, including
essential ions and metabolites (3–6), and motility (7–9). Furthermore, PMF plays an im-
portant role in cell division (10) and cell-to-cell signaling (11, 12). Due to its importance,
PMF is a key target for chemical warfare between living organisms. For example, bacte-
ria dissipate PMF of other species to increase their colonization (13–18). A host dissi-
pates PMF of pathogens to slow or prevent their invasion (19, 20).

One common way to dissipate PMF is via protonophores. They are a class of iono-
phores that collapse the proton gradient across the cell membrane by shuffling pro-
tons (21–23). Protonophores have been extensively used in various research fields to
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perturb a wide range of cellular processes, particularly in the antibiotic research field,
due to the critical role of PMF in antibiotic influx, efflux, and mechanism of action. For
example, aminoglycoside influx is PMF driven (24), and the PMF dissipation by proto-
nophores turns aminoglycoside from bactericidal to bacteriostatic (25) or generates an-
tibiotic-tolerant persisters (26). Furthermore, efflux pumps, a main culprit for multidrug
resistance, require PMF to pump antibiotic molecules out of cells (27). Because PMF
dissipation has detrimental effects on cells, protonophores themselves work as antibi-
otic agents (17, 18, 28–33). Perhaps unsurprisingly, protonophores naturally produced
by bacteria or hosts alter antibiotic efficacy (20, 34, 35).

The detailed action of protonophores has been extensively studied in vitro using reconsti-
tuted lipid-bilayer systems (for example, see references 36 and 37). However, in vivo effects
of protonophores are less well understood, despite the fact that they are critical to bacterial
physiology, microbial competition, host-pathogen interaction, and antibiotic action and re-
sistance. In this study, we characterized the cellular response to protonophores.

RESULTS
Heterogeneous responses of bacteria to protonophores. We measured the

growth of E. coli treated with a common protonophore, carbonyl cyanide m-chloro-
phenyl hydrazine (CCCP). At increasing CCCP concentrations, the rate of population
growth decreased gradually (see Fig. S1A in the supplemental material). We then moni-
tored the growth of individual cells at 50mM CCCP, an intermediate concentration at
which a population exhibits a moderate growth reduction (Fig. S1A). We found an all-
or-none effect of CCCP at the single-cell level (Fig. 1A); some cells did not grow,
whereas other cells continued to grow at the same rate as untreated cells.

We then examined how CCCP affects substrate transport by using a fluorescent
dye, Hoechst 33342 (HCT) (38). Intracellular HCT intensity was uniformly low in the ab-
sence of CCCP. At an intermediate CCCP concentration (50mM), we observed coexis-
tence of cells exhibiting two distinct HCT intensities (Fig. 1B). Importantly, HCT inten-
sity was correlated with cell growth; cells with low intensity (HCT-dim) grew
unperturbed, while those with high intensity (HCT-bright) exhibited no growth
(Fig. 1B). Some cells transitioned from HCT-dim to HCT-bright during the experiment.
After the transition, HCT-bright cells ceased to grow.

We then examined the mechanism for the coexistence of cells with the distinct cell
growth and substrate transport states. Given that CCCP disrupts PMF (22), we hypothe-
sized that the effect of CCCP on PMF is heterogeneous, i.e., it disrupts PMF severely in
some cells but not in others. To examine this hypothesis, we evaluated PMF using two
different approaches. First, we used a dye sensitive to membrane potential, DiSC3(5).
When extracellular pH is comparable to that of intracellular pH (as is the case for our
growth medium), membrane potential is primarily determined by PMF. DiSC3(5) accumu-
lates in cells with strong PMF and self-quenches, resulting in low fluorescence (39, 40).
We first confirmed that our working DiSC3(5) concentration (nanomolars) did not affect
cell growth (Fig. S1C). We then exposed cells to 50mM CCCP and found they exhibited
two distinct DiSC3(5) intensities (Fig. 1C). Because DiSC3(5) and HCT fluorescence emis-
sion spectra are well separated, they can be used simultaneously. We found that
DiSC3(5)-bright cells were also HCT-bright and did not grow (upper right group in
Fig. 1D), whereas DiSC3(5)-dim cells were HCT-dim and grew (lower left group in Fig. 1D).
This observation suggests that the coexistence of cells with two distinct HCT intensities
and cell growth states is caused by the heterogeneous effect of CCCP on PMF.

To further test our hypothesis, we next measured the bacterial flagellar motor
speed. Flagellar motor is powered by, and its speed is proportional to, PMF (7, 9). By
measuring the motor rotation speed, we previously determined a relative change in
PMF (41, 42). In the absence of CCCP, the motor speed remained high and constant
(Fig. 1E). Treatment with 50mM CCCP resulted in two subpopulations, one with slightly
reduced rotation (high PMF) and the other with no rotation (zero PMF) (Fig. 1F). The
time point at which each cell lost PMF varied, agreeing with our observation that cell
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growth stopped at various times during CCCP treatment (Fig. 1B). Our observation of
two distinct motor speeds and DiSC3(5) intensities in a population supports our hy-
pothesis that CCCP disrupts the PMF of cells heterogeneously.

We then quantified the degree of heterogeneity by characterizing HCT fluorescence
intensity and motor speeds over a wide range of CCCP concentrations. At low CCCP
concentrations (#25mM), HCT intensity in a population was low (HCT-dim) and its dis-
tribution was unimodal (Fig. 2A and B). The motor speed was barely affected (Fig. 3A).
An increase in the CCCP concentration to 50mM did not shift the center of the original
peak in the HCT intensity distribution but led to the appearance of another peak on
the right (HCT-bright cells), showing a bimodal distribution (Fig. 2C). This agrees with
the motor speed data, which showed two distinct motor speeds at this concentration
(Fig. 3B). At higher CCCP concentrations ($70mM), the original peak on the left in the
HCT intensity distribution disappeared, indicating the enrichment of HCT-bright cells
(Fig. 2D to E). This enrichment is accompanied by the complete collapse of PMFs, as
indicated by motor speeds of zero in all cells (Fig. 3C to D).

FIG 1 Heterogeneous responses of E. coli to 50mM CCCP. (A) Some cells grew normally (growth rate
of 0.87 6 0.07/h, which is comparable to 0.83 6 0.09/h for untreated cells). However, growth was
completely inhibited in other cells. (B) Cells exhibited two distinct HCT levels, and HCT-bright cells
did not grow. Out of 297 cells, 74 cells were HCT-bright and nongrowing. Cells transitioned from
HCT-dim to HCT-bright during the experiment, as indicated by HCT-bright cells in the growing
microcolony on the right. (C and D) Cells exhibited two distinct intracellular DiSC3(5) intensities,
which are correlated with HCT intensities. The scale bar represents 5mm. Note that HCT intensities
are quantified in Fig. 2 and show the HCT intensity distribution differs between the DtolC and WT
strains. Thus, we compared the DiSC3(5) intensity in the DtolC and WT strains. We found that DiSC3(5)
intensity in the DtolC strain was moderately higher (;50%). While this finding agrees with the
previous finding that DiSC3(5) is a substrate of the efflux pumps (80), the efflux activity is only
moderate and cannot explain the 10-fold difference in DiSC3(5) intensity between DiSC3(5)-bright and
DiSC3(5)-weak cells in panel D. (E) In the absence of CCCP, the motor speeds were uniform across a
population. (F) When exposed to CCCP, cells exhibited two distinct motor speeds.

Heterogeneous Effects of Protonophores on Physiology ®

July/August 2021 Volume 12 Issue 4 e00676-21 mbio.asm.org 3

https://mbio.asm.org


The heterogeneous effect of a protonophore is mediated by the efflux pumps.
Our observations described above confirm that cells exposed to CCCP exhibit distinct
PMF levels. In bacteria, positive feedback is required to stabilize distinct phenotypic
states (43). Here, we investigated a feedback mechanism that stabilizes two distinct PMF
levels in a CCCP-exposed population. Bacteria can mitigate harmful effects of protono-
phores and other toxic compounds by extruding them with efflux pumps (44–46) (green
arm in Fig. 4). However, these pumps are powered by PMF (27) (blue arm in Fig. 4) and,
thus, are subject to disruption by protonophores (red arm in Fig. 4), suggesting an
efflux-mediated positive feedback between protonophores and PMF (Fig. 4).

We experimentally tested this potential role of efflux activity by repeating our
measurements using the DtolC strain. In many bacterial species, including E. coli, TolC
is a major component of efflux pumps (47), and these pumps can be inactivated by the
tolC knockout. We first confirmed that the tolC knockout itself had little effect on
the PMF level in the absence of CCCP (Fig. S2). Our HCT measurements showed that
the HCT intensity was uniform across a DtolC population, and the analysis showed the
absence of a left, low-intensity peak, which results in a narrow unimodal distribution
(Fig. 2F). Increasing CCCP concentrations moderately shifted the peak center, but the
distribution remained unimodal (Fig. 2F to J), which is in contrast to a bimodal distribu-
tion in the wild-type (WT) strain (Fig. 2A to E). This observation with the DtolC strain is
consistent with motor speed measurements, which showed that DtolC cells exhibited a
uniform and gradual reduction in the motor speed at increasing CCCP concentrations
(Fig. 3E to H). These data indicate that the efflux pumps indeed play a critical role in
the heterogeneous effect of a protonophore.

We next examined the HCT intensity distribution in cells treated with other com-
mon protonophores, 3,39,49,5-tetrachlorosalicylanilide (TCS) (48, 49) and indole (37, 41).
Similar to CCCP, the WT cells exhibited two distinct HCT intensities in intermediate
concentrations of these protonophores, and the analysis confirmed a bimodal

FIG 2 HCT fluorescence intensity distribution in cells treated with various CCCP concentrations. (A
and B) At low CCCP concentrations (#25mM), HCT intensity was low across a population (HCT-dim),
resulting in a unimodal distribution with the peak center near ;10 AU. (C) Increasing the CCCP
concentration to 50mM did not shift the peak center but led to the appearance of another peak on
the right (.100 AU), showing a bimodal distribution. At higher ($75mM) CCCP concentrations, the
left low-intensity peak disappeared, showing the enrichment of HCT-bright cells. (F to J) The DtolC
strain lacks a peak on the left, exhibiting a unimodal distribution. More than 200 cells were analyzed
for each condition. We made a similar observation for two other protonophores, TCS and indole
(Fig. S3 and S4).
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distribution (Fig. S3 and S4, left). The centers of the two peaks were comparable to
those observed in a CCCP-treated population, the left peak at ;10 arbitrary units (AU)
and the right peak at .100 AU. In a DtolC population, however, the HCT intensity was
uniform, and the analysis showed the absence of a left, low-intensity peak (Fig. S3 and
S4, right), which is consistent with our finding from the experiment with CCCP.

DISCUSSION

PMF is at the basis of vital physiological functions in cells (1–11). Protonophores are
synthesized for a research purpose or produced naturally by living organisms (13–20).
For example, indole (a protonophore [37, 41] tested in the present study) is one of the
most abundant compounds in a dense bacterial culture and present in high concentra-
tions in gut microbiome (12, 50). Protonophores collapse the total PMF that acts on
protons by allowing them to equilibrate (22, 37, 51). Our additional analysis of the
functional dependence of the motor speed on the CCCP concentration (see Fig. S5 in
the supplemental material) is consistent with this known mechanism of action.

Efflux pumps transport protonophores out of cells, protecting them from protono-
phores’ harmful effects (44, 45). The present study demonstrates that this protection is

FIG 3 Flagellar motor speeds of cells treated with various CCCP concentrations. (A) At low CCCP
concentrations, the motor speeds of WT cells were barely affected. (B) Cells exhibited two distinct
motor speeds at 50mM CCCP, one with a slightly reduced rotation (high PMF) and the other with no
rotation (zero PMF). (C and D) At higher CCCP concentrations ($70mM), the motor speeds were zero
in all cells. (E to H) The DtolC strain exhibited a uniform and gradual reduction in the motor speed at
increasing CCCP concentrations. Note that, at very low PMF values where the bacterial flagellar motor
operates with one stator unit, the motor can transiently stop in a step-like manner (81, 82), which
can explain the purple trajectory in panel F. Motor speed measurements are laborious and time-
consuming. The motor speeds of 10 to 15 cells were analyzed for each condition except for the
experiment with the WT strain exposed to 100mM CCCP (where 4 cells were analyzed).

FIG 4 Model of efflux-mediated positive feedback. Efflux pumps transport protonophores out of cells
(44, 45) (green arm). The pump is powered by PMF (27) (blue arm) and, thus, is subject to disruption
by protonophores (red arm).
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heterogeneous, protecting some cells but not all. Our findings indicate that this heter-
ogeneity emerges because protonophores affect their own efflux transport. For exam-
ple, if cells initially have a strong efflux activity, upon the exposure to protonophores,
they extrude protonophores better and maintain their PMF, thereby continuing to sup-
port the strong efflux activity (opposite for cells with weak efflux activity).

PMF has important roles in antibiotic influx, efflux, and mechanism of action. As such,
protonophores were extensively used in antibiotic research. Interestingly, heterogeneous
responses were observed in these studies. For example, a subpopulation of cells can tol-
erate antibiotics by not growing: bacterial persisters (52, 53). The postantibiotic effect,
continued growth suppression after antibiotic withdrawal, is strongly skewed by a small
subpopulation that resumes growth earlier than others (54). Protonophores have strong
effects on the emergence of a persister subpopulation (26, 55) and an early-grower sub-
population (56). Importantly, these heterogeneous effects of protonophores involve
efflux pumps (26, 55–57). This is consistent with our observation of heterogeneous
growth phenotypes (i.e., the coexistence of nongrowing and growing subpopulations),
which is mediated by the feedback among protonophores, PMF, and efflux pumps. Our
additional motor-speed data indicate that, upon protonophore washout, cells in the
nongrowing subpopulation recover their PMFs heterogeneously (Fig. S6). We believe
that our findings are useful for antibiotic research, given the important role of PMF and
efflux pumps to antibiotic action and widespread use of protonophores in the field.
Furthermore, some protonophores are used as antibiotic agents (17, 18, 28–33), for
which our findings can be directly applicable.

Our results have broad implications for bacterial adaptation to stress. In natural envi-
ronments, various toxic compounds negatively affect bacterial physiology. While bacteria
harbor defense mechanisms to mitigate the toxicity, these mechanisms are often
coupled to the physiological state of the cells and become ineffective when the physiol-
ogy is severely disturbed. In our studies, this coupling is manifested as the feedback
between protonophores and efflux pumps. Similar coupling could be realized through
other mechanisms. For example, efflux pumps extrude biocides or other plant-derived
disinfectants, but their expression is altered by these compounds, thereby forming feed-
back (58, 59). Cytoplasmic pH is an important determinant for antibiotic efflux, as it con-
tributes to PMF and can affect the expression of some efflux systems (60, 61). However,
pH can be altered by antibiotics (51, 62) (e.g., nigericin specifically targets the cytoplas-
mic pH), suggesting an additional feedback mediated by pH. Our studies provide insight
into how such coupling could affect bacterial adaptation to these toxic compounds.

Lastly, protonophores have been extensively utilized as a powerful tool to perturb
various physiological processes in cells, including cell division, motility, and antibiotic
transport. It was commonly assumed that increasing protonophore concentrations
lead to gradual disruption of these processes. However, our studies confirm that the
disruption is heterogeneous at the single-cell level. Our data from the experiment with
the DtolC strain show that gradual disruption can be achieved but requires the inacti-
vation of efflux activities. Additionally, we provide a functional dependency of the PMF
loss on a CCCP concentration (Fig. S5), which can facilitate the use of CCCP to perturb
PMF in a quantitative manner. These results should be useful for experimental designs
and data interpretation in future studies.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. E. coli K-12 NCM3722 (63–65) and Neidhart’s morpholine

propanesulfonic acid (MOPS) minimal medium (66) with glucose and ammonium as the carbon and
nitrogen sources were used, except for the motor speed measurement (see below). See Table S1 in the
supplemental material for all the ingredients and their concentrations used in the media. The medium
pH is 7.0, which allowed E. coli to keep neutral cytoplasmic pH (67–69) and ensured HCT fluorescence
does not incur any pH-related intensity changes (70). To make the DtolC strain (NMK320), the tolC gene
deletion allele from the Keio deletion collection (71, 72) was transferred to the NCM3722 strain using P1
transduction (73). The Kmr gene was flipped out as previously described (71, 72).

Cells were cultured at 37°C with constant agitation at 250 rpm in a water bath (New Brunswick
Scientific). To monitor their growth, the optical density at 600 nm (OD600) of the culture was measured
using a Genesys20 spectrophotometer (Thermo-Fisher) with a standard cuvette (16.100-Q-10/Z8.5;
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Starna Cells Inc.). To prepare experimental cultures, cells were taken from 280°C stocks and first grown
in 5ml LB medium at an OD600 of ;0.001 (seed culture). At an OD600 of ;0.5 (before cells entered sta-
tionary phase), we resuspended cells in 5ml minimal growth medium at very low densities (typically
lower than an OD600 of ;0.0001) and cultured them overnight (preculture). The next morning, the pre-
culture was diluted in prewarmed, 5ml minimal growth medium (experimental culture) to an OD600 of
;0.01 (20 to 50 times dilution) and allowed to grow exponentially to an OD600 of ;0.1, at which meas-
urements were performed.

Fluorescence microscopy. To make fluorescence measurements, cells were treated with protono-
phores at an OD600 of 0.1 for 10min and then with HCT and/or DiSC3(5) for 60min at 378C in constant
agitation in the dark; 0.1mM HCT and 0.1 nM DiSC3(5) were sufficient to produce discernible intracellular
fluorescence signals while not affecting cell growth (Fig. S1). The cells then were loaded onto no. 1.5
cover glasses; 1-mm-thick 1.5% agarose pads, made with the same MOPS growth medium [containing
the same concentrations of HCT, DiSC3(5) and/or protonophores], were used to cover the cells.

Cells were imaged with a prewarmed (at 37°C) inverted microscope (Olympus IX83 P2Z) with a Neo
5.5 sCMOS camera (Andor Neo). Intracellular HCT and DiSC3(5) were imaged using 49,6-diamidino-2-phe-
nylindole (DAPI) and Cy5 fluorescence filter sets. Images were acquired with MetaMorph Microscopy
Automation and Image Analysis Software and analyzed with the MicrobeJ 5.13m4 plug-in in ImageJ (74).
MicrobeJ can automatically segment cell boundaries from phase-contrast microscope images and apply
the binary masks from the segmentation to measure fluorescence intensities inside and outside the cells.
The latter (background) is subtracted from the former to determine intracellular fluorescence signals.

Motor speed measurement. E. coli K-12 MG1655 with genetically modified flagellar filaments (EK07
[41]) was used. It was cultured in lysogeny broth (LB) (10 g tryptone, 5 g yeast extract, 10 g NaCl per 1 li-
ter) to an OD600 of ;2. Cells were sheared to truncate flagellar filaments, washed from LB to modified
minimal medium (MM9; 50mM Na2HPO4, 25mM NaH2PO4, 8.5mM NaCl, 18.7mM NH4Cl, 0.1mM CaCl2,
1mM KCl, 2mM MgSO4, pH 7.5) supplemented with 0.3% D-glucose and attached to the cover glass sur-
face of a tunnel slide via poly-L-lysine (41, 75, 76). We have shown that the cytoplasmic pH of the cells in
this medium is ;7.8 (41). Based on these values (medium pH 7.5 and cytoplasmic pH 7.8), we estimate
that the maximum contribution of DpH to the PMF under our condition is,30mV (41). Polystyrene
beads (0.5mm) were attached to truncated flagellar filaments and placed into the focus of a heavily atte-
nuated optical trap (855-nm laser) to detect the motor rotation (41). Time course of the bead rotation
was recorded with the position-sensitive detector (model 2931; New Focus, Irvine, CA) at 10 kHz, and a
2.5-kHz cutoff antialiasing filter was applied before processing the signal. Next, a flat-top window dis-
crete Fourier transform (window size, 16,384 data points with a step dt of 0.01 s) was applied to the
acquired x and y coordinates of a bead position to obtain a time series motor speed recording. The
speed traces were then median filtered with a 401-point moving window after manual removal of spuri-
ous zeroes caused by flowing CCCP/medium into the slide. The filtered speed trace was then resampled
to 10 samples/min for plotting. Measurements were made with a microscope equipped with back focal
plane interferometry capability (77, 78), as described previously (77–79).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.1 MB.
FIG S2, TIF file, 0.1 MB.
FIG S3, TIF file, 0.2 MB.
FIG S4, TIF file, 0.2 MB.
FIG S5, TIF file, 0.4 MB.
FIG S6, TIF file, 0.1 MB.
TABLE S1, DOCX file, 0.02 MB.
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