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To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it
is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a
stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration
of stimulus sequence.This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability
of resultingAEPs. In this paper, we explicate the use of continuous-time stimulus sequence forHSR paradigm,which is independent
of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the
continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time
design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve
the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling
frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes
to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences forHSR paradigm and by
revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time
stimulus sequences are used in traditional manner for the HSR paradigm.

1. Introduction

In studying the auditory evoked potentials (AEPs), high
stimulus-rate (HSR) paradigm featuring shorter and irregular
interstimulus intervals (ISIs) has been proposed by Delgado
and Özdamar [1] and applied to various investigations [2–4].
The specific technique proposed in [1] is generally named as
continuous loop average deconvolution (CLAD). For CLAD,
the presence of stimulus and silence is, respectively, repre-
sented by “1” and “0.” As such a stimulus sweep containing
multiple stimulus events is described by a binary sequence. A
typical sweep contains a number of “1s” and a large number
“0s.” Due to the fact that the ISIs have to be so short for
the HSR paradigm that the brain responses to consecutive
stimulus events overlap, this binary sequence that constitutes
a sweep of stimulus and the sweep response that contains a
number of overlapped transient-responses are transformed
into the frequency domain to solve the overlapping problem
in order to recover the transient responses (see Section 2.1 for

more details). This process is usually termed as deconvolu-
tion.

As shown by Jewett et al. [5], any chosen stimulus sweep
needs to satisfy the noise attenuation property to avoid
distorting transient responses in the deconvolution process.
As far as this peroperty is concerned, the ISIs must be
irregularly distributed in a sweep rather than a fixed ISI
as in the conventional recording paradigm. On the other
hand, most practical applications require that such ISI-jitters
should be as small as possible so that the linear convolution
model is valid [5, 6]. The noise attenuation property, which
is a major criterion for judging its appropriateness, can
be straightforwardly understood in Fourier domain (for
details, please see (1d) and (5) below). The generation of
stimulus sequences with the desired property is in essence
an optimization problem, which is important and dependent
on various factors in practice. Typically, a minimal temporal
resolution (i.e., the analogy-to-digital (AD) conversion rate
for EEG recording) and the number of stimulus events are
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first chosen for the stimulus sweep for a given experiment.
Since the stimulus sequence is optimized at given temporal
resolution, we term it as discrete-time sequence. The tem-
poral resolution is crucial for finding a good discrete-time
stimulus sequence in that the AD rate is supposed to be
as high as possible in order to increase the searching space
for a sequence optimization method. However, the use of
high temporal resolution imposes challenges for the search
of optimal sequence. It either makes the optimization prone
to local minima issue or increases computational expense
when exhaustive searching strategy is used. Another issue
is that when it is chosen, the optimal stimulus sequence
should be used at the specific AD rate according to the chosen
temporal resolution at which the optimal stimulus sequence
is established.

In reality, different recording systems may not always be
operated at the frequency exactly identical to that chosen for
stimulus sweep design. When a recording system works at
a different frequency, the timing of the onsets of stimulus
events in the discrete-time stimulus sweep is to be resam-
pled. It is unclear about the impacts of the resampling and
actual AD rate on the deconvolution performance.Moreover,
many optimization methods can only deal with continuous
variables for the convenience of being exposed to certain
mathematic operations [7, 8]. In this case, the optimal
timing of stimulus events is a continuous variable, and we
term the stimulus sweep as the continuous-time stimulus
sequence, which need to be discretized in time domain to
be used in actual experiments. The temporal resolution of
the discretization is also determined by the AD rate for the
actual application. As such, it is important to understand how
the AD rate influences the performance of HSR paradigm
no matter a resampling or discretization of optimal stimulus
sequence is necessary.

To address these critical questions, in this paper, we
derived the frequency representation of a continuous-time
impulse sequence to solve the deconvolution problem for the
HSR paradigm. Using simulated EEGs (based on real AEP
data and simulated noises) and four optimized continuous-
time stimulus sequences, we demonstrate the applicability
and the advantages of continuous-time stimulus sequences
forHSRparadigm.We also illustrate the relationship between
the AD rate for discretizing a continuous-time sequence and
the errors in terms of temporal locations of stimulus impulse,
frequency properties of discretized stimulus sequence, and
the deconvolved AEP as compared to the ground truth AEP.

2. The Convolution Model for HSR Paradigm

2.1. Discrete-Time Convolution. Under discrete HSR condi-
tion, the observed sweep-response 𝑦[𝑛Δ

𝑡
] can be modeled as

a circulant discrete convolution between the binary stimulus
sequence 𝑠[𝑛Δ

𝑡
] and a transient response 𝑥[𝑛Δ

𝑡
], that is,

𝑦 [𝑛Δ
𝑡
] = 𝑠 [𝑛Δ

𝑡
] ⊗ 𝑥 [𝑛Δ

𝑡
] + 𝑒 [𝑛Δ

𝑡
]

=

𝑁

∑

𝑖=1

(𝑠 [𝑛Δ
𝑡
− 𝑖] mod 𝑁)𝑥 [𝑛Δ

𝑡
] + 𝑒 [𝑛Δ

𝑡
] ,

(1a)

where ⊗ denotes circulant convolution; 𝑒[𝑛Δ
𝑡
] represents an

additive noise term for any undesired contribution to 𝑦[𝑛Δ
𝑡
];

Δ
𝑡
is the interval between two discrete samples, or in other

word, the reciprocal of the analogue-to-digital (AD) rate 𝑓
𝑠

(i.e., Δ
𝑡
= 1/𝑓

𝑠
);𝑁 is the number of discrete samples for the

duration of a stimulus sweep.
Note that the circulant convolution is adopted in (1a).

This is because the stimulus sequence 𝑠[𝑛Δ
𝑡
] is delivered

to the subject repetitively in the HSR paradigm. As such,
𝑦[𝑛Δ
𝑡
], 𝑥[𝑛Δ

𝑡
], and 𝑒[𝑛Δ

𝑡
] are of the same length 𝑁, or the

same time duration 𝑇 = 𝑁/𝑓
𝑠
. In practice, the recorded

raw electroencephalograms (EEGs) are epoched according
to the stimulus sweep rather than to individual stimulus
impulse (each stimulus sweep contains a number of stimulus
impulses depending on the particular experiment design),
and averaged over a number of sweeps to attenuate the
noise level. Equation (1a) is usually referred to the case after
averaging.

Equation (1a) can be represented in Fourier domain as

𝑌 [𝑗𝑚𝑓
0
] = 𝑆 [𝑗𝑚𝑓

0
]𝑋 [𝑗𝑚𝑓

0
] + 𝐸 [𝑗𝑚𝑓

0
] , (1b)

where 𝑓
0

= 1/𝑇 and the capital letters correspond to
the discrete Fourier transforms of their counterparts (e.g.,
𝑋[𝑗𝑚𝑓

0
] denotes the discrete Fourier transform of 𝑥[𝑛Δ

𝑡
]),

𝑋[𝑗𝑚𝑓
0
] =

𝑁

∑

𝑖=1

𝑥 [𝑛Δ
𝑡
] + 𝑒
−𝑗(2𝜋/𝑁)𝑚𝑛

,

𝑚 = 1, 2, . . . , 𝑁.

(1c)

From (1b) one can solve the transient response 𝑥[𝑛Δ
𝑡
]

in the frequency domain (i.e., 𝑋[𝑗𝑚𝑓
0
]) in a straightforward

way using an inverse filter as done by the CLAD [1]. Consider

�̂� [𝑗𝑚𝑓
0
] =

𝑌 [𝑗𝑚𝑓
0
]

𝑆 [𝑗𝑚𝑓
0
]
+
𝐸 [𝑗𝑚𝑓

0
]

𝑆 [𝑗𝑚𝑓
0
]

= 𝑋 [𝑗𝑚𝑓
0
] +

𝐸 [𝑗𝑚𝑓
0
] 𝑆
∗
[𝑗𝑚𝑓
0
]

𝑆 [𝑗𝑚𝑓0]


.

(1d)

Based on (1d), it is obvious that distortion of the solution
𝑋[𝑗𝑚𝑓

0
] can happen at some frequency bins where |𝑆[𝑗𝑚𝑓

0
]|

approaches to zeros, since small |𝑆[𝑗𝑚𝑓
0
]| can amplify the

noise components 𝐸[𝑗𝑚𝑓
0
].

To address this issue, Jewett et al. [5] propose a scheme
to examine the values of |𝑆[𝑗𝑚𝑓

0
]|within the frequency band

of interest and make sure that these values are larger than a
preset threshold. In a following study, Jewett et al. [7] offered
a number of binary stimulus sequences according to this
criterion.

2.2. Continuous-Time Convolution. Knowing the frequency
property of a stimulus sequence can assist the assessment of
the noise attenuation performance of the inverse filter for
the deconvolution problem [8]. Early studies such as those
by Jewett et al. [5, 7] guiding the selection of appropriate
stimulus sequences have made the HSR scheme practical
for actual applications and thus significantly contributed to
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the development of HSR paradigms. However, the optimal
stimulus sequences used in the literature [7] so far are AD
rate dependent and thus not generalizable due to the need of
resampling when the actual AD rate differs from that used for
stimulus sequence optimization. As such, there are twomajor
drawbacks in optimizing the stimulus sequences in discrete
form. First, the optimized sequence may not be optimal if the
sequence is resampled with a different rate.This means that it
is impossible to generate a sequence for general use; instead,
optimization algorithm is to be employed to generate a good
sequence according to the AD rate for each given experiment.
Second, optimization in discrete form makes it hard to know
how the AD rates influence the performance of an optimized
sequence.

In this section, we derive the continuous-time con-
volution relationship between the stimulus sequence and
transient response, and the estimation of transient response
in a general form.

Similar to the 𝑦[𝑛Δ
𝑡
] in (1a), the observable EEG sweep

𝑦(𝑡) can be represented as the circulant convolution between
transient response𝑥(𝑡) and stimulus 𝑠(𝑡), with error term 𝑒(𝑡):

𝑦 (𝑡) = 𝑠 (𝑡) ⊗ 𝑥 (𝑡) + 𝑒 (𝑡)

= ∫

𝑇

0

𝑠 (𝜏) 𝑥 (𝑡 − 𝜏) mod 𝑇𝑑𝜏 + 𝑒 (𝑡) , 𝑡 ∈ [0, 𝑇] .

(2)

Since all the variables (except the error term 𝑒(𝑡)) in (2)
can be considered as periodical functions (with a period of𝑇)
due to the repetitive stimulation manner, the key difference
here from (1a) is that the stimulus events in 𝑠(𝑡) can happen
at any time point 𝑡 within the period 𝑇, rather than the
discrete time points determined by the AD rate. The Fourier
transform of such signals as 𝑥(𝑡) is in discrete form:

𝐹 [𝑥 (𝑡)] = 𝑋 (𝑗𝑘𝑓
0
) = ∫

𝑇

0

𝑥 (𝑡) 𝑒
−𝑗2𝜋𝑘𝑓0𝑑𝑡, (3)

where 𝐹[⋅] denotes Fourier transform operator, and 𝑓
0
= 1/𝑇

represents the repetition rate of the stimulus sweep and thus
the discrete frequency resolution for signals (e.g.,𝑋 in (3)) to
be presented in Fourier domain.We can rewrite (2) in Fourier
domain:

𝑌 (𝑗𝑘𝑓
0
) = 𝑆 (𝑗𝑘𝑓

0
)𝑋 (𝑗𝑘𝑓

0
) + 𝐸 (𝑗𝑘𝑓

0
) . (4)

The transient response 𝑥(𝑡) can be estimated in Fourier
domain as

�̂� (𝑗𝑘𝑓
0
) =

𝑌 (𝑗𝑘𝑓
0
)

𝑆 (𝑗𝑘𝑓
0
)
+
𝐸 (𝑗𝑘𝑓

0
)

𝑆 (𝑗𝑘𝑓
0
)

= 𝑋 (𝑗𝑘𝑓
0
) +

𝐸 (𝑗𝑘𝑓
0
) 𝑆
∗
(𝑗𝑘𝑓
0
)

𝑆 (𝑗𝑘𝑓0)


.

(5)

Distortion of the estimated transient response is intro-
duced in the second term of the right hand side of (5). The
noise term 𝐸(𝑗𝑘𝑓

0
) is to be amplified by the inverse filter

𝑆(𝑗𝑘𝑓
0
)
−1 at some frequency bins where |𝑆(𝑗𝑘𝑓

0
)
−1
| is small.

As such, it is critical to study in detail the properties of the
inverse filter 𝑆(𝑗𝑘𝑓

0
)
−1 and we will do so in Section 2.3.

Equation (5) shows that as far as these continuous peri-
odical signals are concerned, the error term’s contribution
to the estimation of 𝑥(𝑡) depends only on 𝑓

0
but not the

AD rate 𝑓
𝑠
as in (1d). Note that the frequency range of

the solution can be infinite in theory, but in practice, the
energy of transient signal 𝑥(𝑡) is bounded within a relatively
narrow frequency band of interest and only the continuous-
time stimulus sequences can be of unlimited frequency range,
which is to be detailed below.

2.3. The Properties of Continuous-Time Stimulus Sequence.
A stimulus sequence 𝑠(𝑡) for one experiment sweep can be
described as a 𝑃 impulses train. We use delta functions
of delay 𝑡

𝑝
(𝑝 = 1, 2, . . . , 𝑃) to represent the occurrence

of stimulus impulses and their summation to represent the
stimulus sweep:

𝑠 (𝑡) =

𝑃

∑

𝑝=1

𝛿 (𝑡 − 𝑡
𝑝
) . (6)

In this continuous-time form of stimulus sequence, the 𝑡
𝑝

is a continuous variable, that is, 𝑡
𝑝
∈ [0, 𝑇]. Figure 1(a) shows

an example sweepwith stimulus impulses occurring at 17 time
points. The Fourier transform of (6) is

𝐹 [𝑠 (𝑡)] = 𝑆 (𝑗𝑓) =

𝑃

∑

𝑝=1

𝑒
−𝑗2𝜋𝑓𝑡

𝑝 . (7)

This is a continuous function in the frequency domain
[9]. In a given experiment, the stimulus sweep (Figure 1(a))
is repetitively delivered to the subject to stimulate the brain
responses for EEG recording. As such, the whole stimulus
sequence (Figure 1(b)) is modeled as a convolution between
the impulses train 𝑠(𝑡) and a summation of delta functions
𝛿
𝑇
(𝑡):

𝑠
𝑇
(𝑡) = 𝑠 (𝑡) ∗ 𝛿

𝑇
(𝑡) , (8)

where 𝛿
𝑇
(𝑡) is a periodic function with period 𝑇 defined as

𝛿
𝑇
(𝑡) =

+∞

∑

𝑞=−∞

𝛿 (𝑡 − 𝑞𝑇) . (9)

The Fourier transform of (9) is

𝐹 [𝛿
𝑇
(𝑡)] = 2𝜋𝑓

0

∞

∑

𝑘=−∞

𝛿 (𝑓 − 𝑘𝑓
0
) . (10)

Equation (10) shows that the Fourier transform of a
periodical delta sequence is also a delta train with the interval
of 𝑓
0
.
Based on (8) and (10), the Fourier transform of the

periodical stimulus 𝑠
𝑇
(𝑡) is

𝑆
𝑇
(𝑗𝑓) = 2𝜋𝑓

0
𝑆 (𝑗𝑓)

+∞

∑

𝑘=−∞

𝛿 (𝑓 − 𝑘𝑓
0
) . (11)

Equation (11) indicates that the spectrum 𝑆
𝑇
(𝑗𝑓) is a

discrete sampling of the continuous function 𝑆(𝑗𝑓) in (7) by
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the delta function train at the interval of 𝑓
0
. Plugging 𝑆(𝑗𝑓)

in (7) into (11), we get

𝑆
𝑇
(𝑗𝑓) = 2𝜋𝑓

0

𝑃

∑

𝑝=1

+∞

∑

𝑘=−∞

𝑒
−𝑗2𝜋𝑓𝑡

𝑝𝛿 (𝑓 − 𝑘𝑓
0
) , (12)

which can be rewritten as follow given the sampling property
of the delta function 𝛿(𝑓 − 𝑘𝑓

0
):

𝑆
𝑇
(𝑗𝑘𝑓
0
) = 2𝜋𝑓

0

𝑃

∑

𝑝=1

𝑒
−𝑗2𝜋𝑓0𝑡𝑝 . (13)

Equation (13) is the Fourier spectrum of the stimulus
impulse-sequence, which includes infinite number of fre-
quencies defined by 𝑘𝑓

0
since 𝑘 can be any integer. In real

experiment, however, signals and noises are limited within
a frequency band, say [𝑓

𝐿
, 𝑓
𝐻
]. While 𝑓

𝐿
and 𝑓

𝐻
can be of

arbitrary real values in theory, we should round off them to
the multiples of 𝑓

0
in practice, say [𝑓



𝐿
, 𝑓


𝐻
], in the discrete

frequency domain:

[𝑓


𝐿
, 𝑓


𝐻
] = [𝑘

𝐿
𝑓
0
, 𝑘
𝐻
𝑓
0
] , (14)

where 𝑘
𝐿
= ⌈𝑓
𝐿
/𝑓
0
⌉ and 𝑘

𝐻
= ⌊𝑓
𝐻
/𝑓
0
⌋ are the frequency

domain indexes for the frequency band of interest.
As shown in (5), the inverse filter 𝑆(𝑗𝑘𝑓

0
)
−1 critically

determines the error term’s contribution to the distortion of
deconvolved transient response 𝑥(𝑡). To limit the distortion,
it is necessary to constrain the Fourier energy distribution
of the stimulus sequence as follows so that the noise term
𝐸(𝑗𝑘𝑓

0
) in (5) is at least not amplified. Assume

𝑆𝑇 (𝑗𝑘𝑓0)

−1

≤ 𝜃, 𝑘 = 𝑘
𝐿
, . . . , 𝑘

𝐻
, (15)

where 𝜃 is a threshold usually set at 1 to make sure that
the noise term within the frequency bins of interest is at
most maintaining its original energy if not attenuated by the
inverse filter.

Figure 1(c) illustrates that the example stimulus loop
in Figure 1(a) meets this criterion in that the inverse filter
satisfies |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

< 1 in the chosen frequency band
[𝑓


𝐿
, 𝑓


𝐻
].

To further evaluate the overall quality of the stimulus
sequence in (6), a measure called noise gain factor (NGF) can
be defined accordingly [10] as

NGF =
1

𝑓
𝐻
− 𝑓
𝐿

𝑘𝐻

∑

𝑘=𝑘𝐿

𝑆𝑇 (𝑗𝑘𝑓0)

−1

, (16)

which represents the average of noise gain factor at each
frequency 𝑘𝑓

0
.

3. Experiments and Results

3.1. Stimulus Impulse Sequences. In this section, we gen-
erate continuous-time stimulus sequences to be used for
examining the impact of AD rates on the performance of
inverse filtering in solving the transient AEPs. Using various

optimization methods [11], these stimulus sequences can be
found to satisfy the constraint in (15). Here we employed a
modified optimization method called differential evolution
algorithm [12] to obtain the optimal continuous-time stim-
ulus sequences. The value of threshold 𝜃 in (15) was set to
1. Since the details of the optimization are beyond the scope
of this paper, we directly provide the four impulse sequences
(Table 1) generated for our study.

These four sequences are given in the form of ISI-series
which can be expressed as Δ𝑡

𝑝
= 𝑡
𝑝+1

− 𝑡
𝑝
, where 𝑡

𝑝
= 𝑇

if 𝑝 = 𝑃. Note that the temporal resolution of the stimulus
events in the sequence is infinity in theory. In Table 1, we
show Δ𝑡

𝑝
in the second decimal place only. These sequences

are used to study the characteristics of 40Hz steady-state
responses which is a main application of HSR paradigms
[2, 4]. Here, the jitter ratio (JR) in Table 1 is defined as JR =

[max{Δ𝑡
𝑝
} −min{Δ𝑡

𝑝
}]/max{Δ𝑡

𝑝
} in percentage to measure

the inhomogeneity of the stimulus interval. The applications
of HSR paradigms usually requires a low jitter (small JR)
stimulation to approach the case of steady state recordings
while satisfying the constraint of (15) within the frequency
band of interest (8–122Hz, see Figures 4 and 5) in which the
majority of energy of the simulated EEG signal falls.

3.2. EEG Data Simulation. In actual experiments, the
recorded EEGs (including transient AEPs and noises) are
band-limited signals. They are digitized in time and ampli-
tude according to Nyquist-Shannon sampling theorem. In
this study, we use a real AEP signal previouslymeasured using
CLAD method [8] as the AEP component (𝑥(𝑡)) and the
additive noise (i.e., 𝑒(𝑡)) generated from a 1/𝑓 process [13] to
simulate background EEGsmixed with inherent artifacts and
noise. In our practice, the 𝑒(𝑡) is filtered by a band-pass filter
to eliminate frequency outside [8, 500]Hz as a recording sys-
tem usually does in experiments for the recording of middle
latency response and 40Hz steady state response. Note that
𝑥(𝑡) and 𝑒(𝑡) are both band-limited signals which in this case
fall in frequency range [8, 500]Hz. In theory, there is no error
when resampling them at a different AD rate as long as the
sampling theorem is satisfied. In this study the original signals
𝑥(𝑡) and 𝑒(𝑡) were obtained at AD rate of 20 kHz and then
resampled into other rates as needed. We chose a frequency
band [8, 500]Hz for the simulated EEG signal to emulate
the actual signal from recorded EEGs, which usually have
a cut off frequency at 500Hz in real experiment. However,
this frequency band is broader than that ([8, 122]Hz) we
used in optimizing our stimulus sequence in Section 3.1.
Theoretically, we should avoid this inconsistency by either
generating stimulus sequence satisfactory within [8, 500]Hz
or filtering the EEG signal to [8, 122]Hz. In practice, we found
it was much more difficult, if not impossible, to optimize
the stimulus sequence for broad frequency range. Although
the stimulus sequences in this paper are optimized for a
frequency band narrower than that for the EEG signal, there
was no data point of |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 measure within the range

of [0, 500]Hz to be extremely large. Moreover, the energy of
EEG signals beyond range [8, 122]Hz is very low since the
AEP is a very narrow band signal and the noise is simulated
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Figure 1: (a) A schematic diagram of a stimulus loop that contains 17 individual stimulus impulses to indicate the repetitive presentations in
an experiment. (b) A sweep of stimulus sequence with impulses occurring at 𝑡

𝑝
(𝑝 = 1, 2, 3, . . . , 17) to represent a period of stimulus loop in

time domain (𝑇 = 1545.5ms; 𝑓
0
= 0.647Hz). (c) A portion of the Fourier spectrum of the inverse filter |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1. Note that within the

frequency band of interest ([𝑓
𝐿
, 𝑓


𝐻
] = [5, 120]Hz), |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 is all below the threshold (𝜃 = 1).

Table 1: Four optimized stimulus impulse sequences obtained using differential evolution algorithm.

Sequence
(ID, JR, NGF) Stimulus interval (Δ𝑡

𝑝
in ms, rounded to the second decimal place for this table only)

Seq 1
11.95%,
0.43

27.21, 22.34, 27.16, 21.40, 21.43, 23.26, 27.18, 24.38, 26.19, 21.48, 27.16, 24.32, 27.05, 23.57, 24.02, 26.30, 27.04, 21.40, 23.41,
27.21, 22.16, 24.62, 21.47, 22.37, 22.54, 27.19, 27.21, 21.40, 21.40, 21.49, 27.21, 22.57, 25.52, 25.15, 27.21, 21.40, 21.40, 27.21,
24.92, 21.40, 25.93, 27.21, 27.21, 21.43, 21.74, 22.23, 27.20, 26.74, 27.21, 21.40, 24.39, 21.49, 24.38, 27.21, 22.54, 27.20, 21.40,
21.86, 27.21, 21.97, 22.59, 25.09, 27.15, 21.48, 26.27

Seq 2
12.40%
0.50

23.49, 21.91, 27.96, 27.96, 21.79, 21.79, 24.88, 27.96, 24.36, 21.79, 26.27, 23.13, 26.82, 27.96, 21.79, 27.96, 23.67, 22.83, 27.96,
21.79, 22.40, 27.96, 27.96, 21.91, 21.79, 27.96, 23.33, 27.96, 21.79, 27.96, 21.91, 27.94, 26.77, 21.79, 24.64, 27.25, 21.79, 24.89,
27.96, 25.00

Seq 3
12.88%
0.49

28.38, 21.90, 28.38, 23.20, 21.90, 28.38, 28.24, 21.90, 25.00, 28.38, 21.90, 28.38, 28.38, 22.24, 25.10, 28.38, 28.38, 24.72,
21.90, 28.37, 25.12, 27.13, 23.68, 21.90, 21.90, 28.38, 21.90, 24.35, 22.14, 28.24, 28.38, 23.78, 22.29, 28.38, 22.07, 25.35,
21.90, 28.38, 25.00, 21.90

Seq 4
12.60%
0.49

26.40, 27.75, 21.66, 27.90, 21.94, 27.91, 21.66, 22.67, 23.90, 27.64, 27.91, 21.88, 21.66, 21.66, 27.91, 27.91, 21.66, 27.03, 27.42,
26.29, 21.66, 25.65, 27.90, 21.66, 27.89, 25.77, 21.66, 21.66, 26.10, 27.91, 21.66, 24.73, 27.91, 21.66, 27.90, 24.01, 21.66, 27.90,
21.66, 23.63

using a 1/𝑓 process. As such, noise will not be over amplified
by the inverse filtering in this study and their contribution to
the distortion of deconvolved AEP is limited.

3.3. Errors Introduced by the Temporal Discretization. The
interstimulus interval of continuous-time stimulus sequence
can be discretized at required temporal resolution. The
discretization will introduce round off errors no matter how
high is sampling frequency𝑓

𝑠
. Accordingly, the Fourier of the

discretized counterpart will differ from that of the original
continuous-time stimulus sequence.

Thediscretized temporal location 𝑡
𝑝
of a stimulus impulse

at 𝑡
𝑝
(𝑝 = 1, 2, . . . , 𝑃) with respect to the onset of a stimulus-

sweep is

𝑡


𝑝
= round

(𝑡
𝑝
𝑓
𝑠
)

𝑓
𝑠

. (17)
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Table 2: The errors between estimated and true solution at various AD rates for four sequences.

Seq. ID SNR (dB) AD rate (kHz)
Inf 1 2 3 4 5 7 9 11 15 20 25

Seq 1
9.5 2.02 20.53 12.65 10.31 8.85 7.87 6.67 5.94 5.29 4.58 3.96 3.54
0 8.24 68.01 43.29 35.02 29.79 26.66 22.55 20.02 17.89 15.50 13.41 12.00

−6.0 18.51 141.81 91.21 73.72 62.67 56.15 47.48 42.10 37.68 32.63 28.22 25.27

Seq 2
9.5 4.19 31.52 21.39 17.91 15.40 14.05 11.72 10.26 9.40 8.02 6.98 6.43
0 9.52 78.32 52.98 44.67 38.33 35.15 29.23 25.55 23.44 19.99 17.44 6.23

−6.0 18.14 149.64 101.20 85.47 73.32 67.31 55.94 48.87 44.83 38.25 33.39 31.15

Seq 3
9.5 5.02 27.32 18.70 15.48 13.67 11.78 10.07 8.83 8.00 6.85 5.96 5.32
0 10.60 63.02 42.47 35.49 31.81 26.83 23.06 20.21 18.27 15.66 13.63 12.17

−6.0 19.13 117.29 78.61 65.94 59.41 49.73 42.81 37.53 33.89 29.07 25.29 22.57

Seq 4
9.5 3.48 21.60 15.11 12.64 10.88 9.63 8.31 7.35 6.52 5.63 4.85 4.37
0 10.79 67.96 47.93 39.82 34.17 30.32 26.14 23.13 20.61 17.75 15.30 13.76

−6.0 22.53 139.85 98.80 81.91 70.28 62.39 53.76 47.56 42.44 36.51 31.48 28.31
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Figure 2: The graphic representation of the relationship between 𝛾
𝑡

and 𝑓
𝑠
. The data points for four datasets are fit using a reciprocal

function: 𝛾
𝑡
= 11.78/𝑓

𝑠
− 0.01363, (𝑅2 = 0.9982). The location of

maximal curvature is at 𝑓
𝑠
= 3.43 kHz.

The normalized root-mean-square error is defined as
an overall measure of the errors caused by the tempo-
ral discretization of the continuous-time stimulus impulse
sequence

𝛾
𝑡
=
𝑃

𝑇
√

1

𝑃

𝑃

∑

𝑝=1

(𝑡
𝑝
− 𝑡
𝑝
)
2

. (18)

To examine the error introduced by the temporal dis-
cretization of four stimulus sequences in Table 1, we calcu-
lated 𝛾

𝑡
at different temporal resolutions determined by the

AD rates (from 1 kHz to 25 kHz). The results are presented in
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Figure 3:The graphic representation of the relationship between 𝛾
𝑓

and 𝑓
𝑠
. The data points for four datasets are fit using a reciprocal

function: 𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574, (𝑅2 = 0.9983). The location of

maximal curvature is at 𝑓
𝑠
= 3.77 kHz.

Figure 2. Consistent with results for the four sets of stimulus
sequences, the 𝛾

𝑡
decreases as sampling frequency increases.

The results can be fit by a reciprocal function: 𝛾
𝑡
= 11.78/𝑓

𝑠
−

0.01363, (𝑅2 = 0.9982) and the location ofmaximal curvature
𝑓
𝑠
= 3.43 kHz.
As seen above, the temporal discretization introduces

errors of the temporal location of the stimulus impulses,
causing the difference between 𝑆

𝑇
(𝑗𝑘𝑓
0
) and 𝑆[𝑗𝑘𝑓

0
]. We

need to examine whether an optimized continuous-time
stimulus sequence 𝑠(𝑡) still satisfies the constraint in (15) after
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Figure 4: Comparison with respect to the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure

between the continuous-time stimulus sequence and its discrete-
time counterpart at discretization frequency of 𝑓

𝑠
= 1 kHz. (a) The

plot of the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure for the continuous-time stimulus

sequence (data points in “𝑥”) and that for the corresponding
discrete-time stimulus sequence (data points in “𝑜,” discretization
frequency 𝑓

𝑠
= 1 kHz). (b) The difference between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measures, respectively, for continuous-time and discrete-time stim-
ulus sequences.

discretization. We define relative root-mean-square error in
frequency domain as

𝛾
𝑓
=

√∑
𝑘𝐻

𝑘=𝑘𝐿
(
𝑆𝑇 (𝑗𝑘𝑓0)

 −
𝑆[𝑗𝑘𝑓0]

)
2

√∑
𝑘𝐻

𝑘=𝑘𝐿

𝑆 (𝑗𝑘𝑓0)

2

× 100%. (19)

Using the same four dataset in Table 1, we calculate 𝛾
𝑓

with respect to each AD rate from 1 kHz to 25 kHz. The
resulting 𝛾

𝑓
is shown inFigure 3.Again, the data points can be

well-fit with a reciprocal function: 𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574,

(𝑅2 = 0.9983), and the location of its maximal curvature is at
𝑓
𝑠
= 3.77 kHz.
Figure 3 shows that the error of stimulus sequence

in Fourier domain caused by the temporal discretization
decreases with the increase of sampling rate. But the error
will not completely disappear. Based on the fit function
𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574, the maximal curvature occurs at

𝑓
𝑠𝑐

= 3.77 kHz, indicating that, in the range [0, 3.77] kHz,
𝛾
𝑓
decreases rapidly with the increase of 𝑓

𝑠
. However, 𝛾

𝑓

decreases at amuch low rate when𝑓
𝑠
is greater than 3.77 kHz.

These results suggest that the 𝛾
𝑓
is very sensitive to low
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Figure 5: Comparison with respect to the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure

between the continuous-time stimulus sequence and its discrete-
time counterpart at discretization frequency of 𝑓

𝑠
= 20 kHz. (a)The

plot of the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure for the continuous-time stimulus

sequence (data points in “𝑥”) and that for the corresponding
discrete-time stimulus sequence (data points in “𝑜”, discretization
frequency 𝑓

𝑠
= 20 kHz). (b)The difference between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measures, respectively, for continuous-time and discrete-time stim-
ulus sequences.

AD rate, and that it is critical to increase the AD rate to a
frequency higher than 3.77 kHz.

Here we use one stimulus sequence to exemplify the
differences caused by discretization at two different AD
rates: 𝑓

𝑠1
= 1 kHz, which is below the critical 𝑓

𝑠𝑐

(3.77 kHz) and 𝑓
𝑠2

= 20 kHz, which is above the critical 𝑓
𝑠𝑐

(3.77 kHz). Figure 4(a) illustrates the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure of

the continuous-time stimulus sequence (data points labeled
with cross “𝑥”) and that of the corresponding discrete-time
stimulus sequence (data points labeled with open circle “𝑜”)
at an AD rate of 𝑓

𝑠
= 1 kHz. Within the frequency range

of interest [𝑓
𝐿

= 8Hz, 𝑓
𝐻

= 122Hz], the inverse filter
based on the discretized stimulus sequence satisfies (15) at
most frequency bins. However, at some frequency bins, its
|𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1measure is greater than 1.The difference between

the continuous-time and discrete-time stimulus sequence
at each frequency bin is plotted in Figure 4(b). Clearly,
the discretization causes errors at most frequency bins at
amplitudes within the range from −0.25 to 0.25.

Figure 5 shows the similar contents as Figure 4, except
that the continuous-time stimulus sequence is discretized
at a higher AD rate of 𝑓

𝑠
= 20 kHz. Figure 5(a) depicts

the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measures for continuous-time (data points
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labeled with “𝑥”) and discrete-time (data points in open
circles “𝑜”) stimulus sequences. Again, the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measure within most frequency bins for the discrete-time
stimulus sequence satisfies (15). However, we can also see
some data points stick out of the threshold of 1. The differ-
ence between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 measures for the continuous-

time and discrete-time stimulus sequences is shown in
Figure 5(b). We can see that at 𝑓

𝑠
= 20 kHz, the difference

at most frequency bins is close to zero. When compared
to Figure 4(b), Figure 5(b) clearly show that 𝑓

𝑠
= 20 kHz

has substantial advantage over 𝑓
𝑠
= 1 kHz in maintaining

the discrete stimulus sequence satisfactory to the condition
described in (15). Importantly, if the AD rate is low, the
discrete stimulus sequence may violate the condition and
cause overamplification of noise components in the recorded
EEG and distort the deconvolved transient AEPs. The results
also suggest that using AD ratemuch higher than the Nyquist
sampling rate is necessary to minimize the error introduced
from temporal discretization.

3.4. Noise Attenuation Effects of Discretization Frequency.
Although the continuous-time stimulus sequence 𝑠(𝑡) is
frequency unlimited (𝑆(𝑗𝑘𝑓

0
) in Fourier domain, where 𝑘 can

be any integer), the frequency range of interest is determined
by the nonzero values of the product of 𝑆(𝑗𝑘𝑓

0
)and 𝑋(𝑗𝑘𝑓

0
)

as indicated in (4). In this study, the recorded EEG is band-
pass filtered within [8–500]Hz.The transient response 𝑥(𝑡) is
obtained by applying inverse Fourier transformon �̂�(𝑗𝑘𝑓

0
) in

(5):

�̂�
𝑐
(𝑛Δ
𝑡
) = 𝐹
−1
{�̂� (𝑗𝑘𝑓

0
)} , 𝑛 = 1, 2, . . . , 𝑁;

8Hz ≤ 𝑘𝑓
0
≤ 500Hz.

(20)

Likewise, the inverse Fourier transform of �̂�[𝑗𝑚𝑓
0
] in

(1d) will give the time domain signal for the discrete binary
sequence:

�̂�
𝑑
[𝑛Δ
𝑡
] = 𝐹
−1
{�̂� [𝑗𝑚𝑓

0
]} , 𝑛 = 1, 2, . . . , 𝑁;

8Hz ≤ 𝑚𝑓
0
≤ 500Hz.

(21)

To quantify the difference between the estimated and
the true solutions for both continuous and discrete stimulus
sequence, we can define root mean square error for �̂�

𝑐
(𝑛Δ
𝑡
)

𝛾
𝑥𝑐
=

√∑
𝑁

𝑛=1
(�̂�
𝑐
[𝑛] − 𝑥 (𝑛Δ

𝑡
))
2

√∑
𝑁

𝑛=1
𝑥 (𝑛Δ

𝑡
)
2

× 100%. (22)

By replacing �̂�
𝑐
(𝑛Δ
𝑡
) with �̂�

𝑑
[𝑛Δ
𝑡
] in (22), we can define

the root mean square error 𝛾
𝑥𝑑

for �̂�
𝑑
(𝑛Δ
𝑡
). As stated

previously, an original copy of additive 1/𝑓random noise is
then rescaled and/or resampled to accommodate conditions
with different AD rates and signal-to-noise ratios (SNRs),
where the latter is defined as

SNR = 20 log
√∑
𝑁

𝑛=1
𝑥 (𝑛Δ

𝑡
)
2

√∑
𝑁

𝑛=1
𝑒 (𝑛Δ
𝑡
)
2

. (23)
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Figure 6:The errors between estimated and true solution at various
AD rates (1–25 kHz) as well as the case of continuous-time sequence
(tick “c” in the horizontal coordinate). Four sequences are examined
under three SNR conditions (see the legend). 𝛾

𝑥
in the vertical

coordinate implies both errors of 𝛾
𝑥𝑐
and 𝛾

𝑥𝑑
.

To examine the relationship between AD rate and 𝛾
𝑥𝑐
,

we simulated the discretization at 𝑓
𝑠
= 1–25 kHz and three

SNR conditions (9.5 dB, 0 dB, and −6.0 dB). The resulting
𝛾
𝑥𝑐

is shown in Table 2, where in the first column (AD rate
= Inf) means the errors for the continuous-time stimulus
sequence condition and 𝛾

𝑥𝑐
results for this condition serve

the references for all other AD rates. From Table 2, we can
see that the errors for high SNR EEGs are much smaller
than those for low SNR EEGs, and the errors decrease as AD
rate increases. These phenomena are consistent across four
stimulus sequences. Figure 6 is a graphic representation of the
results. It shows that low SNR EEGs are more vulnerable to
low AD rates, and the increase AD rate is more beneficial for
low SNR signal on the other hand.

To gain more straightforward understanding of above
results, we choose to present the resulting AEPs from dif-
ferent SNR conditions and at two representative AD rates.
Figure 7(a) shows the results at AD rate of 1 kHz. It is
clear that the AEPs recovered from high SNR EEGs (the
top panel) using continuous-time and discrete-time stimulus
sequence are both very close to the original AEP used for
the simulation study. However, the difference between the
recoveredAEPs becomes significantwhen the SNR is low (the
third panel in Figure 7(a)). At same time, we can see that the
AEPs recovered using continuous-time stimulus sequence are
closer than the ones from discrete-time stimulus sequence
to the original AEP. Figure 7(b) shows the results at AD
rate of 20 kHz. Similar to the phenomena in Figure 7(a), the
AEPs (the top panel in Figure 7(b)) recovered from high
SNR EEGs are very close to the original AEP used in this
study. When the SNR is getting worse, for example −6 dB as
in the third panel in Figure 7(b), the recovered AEP is less
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Figure 7: Comparison of transient AEPs solved by CLAD method at different SNR conditions and at two representative discretization
frequencies. (a) AEPs (the original in dashed blue, the one recovered based on continuous-time stimulus sequence in thin red, and the
one recovered based on discrete-time stimulus sequence in black).The discretization frequency (AD rate) 𝑓

𝑠
= 1 kHz; and the SNRs for three

panels from top to bottom are, respectively, 9.5, 0 and −6.0 dB. (b) Same as (a) except the discretization frequency 𝑓
𝑠
= 20 kHz.

close to the original AEP. Consistent to that exemplified in
Figure 7(a), the AEPs recovered based on continuous-time
stimulus sequence better resemble the original AEP than
those based on discrete-time stimulus sequence. Moreover,
the AEPs from high AD rate (𝑓

𝑠
= 20 kHz) of discretization

resemble more closely to the original AEP than those from
low AD rate of discretization. As such, it becomes obvious
that increasing AD rate will reduce the distortions in the
recovered transient AEP. More importantly, this positive
impact of high AD rate is more significant for low SNR
recordings.

4. Discussion and Conclusion

Solving the transient AEPs in frequency domain under HSR
paradigm has been investigated and implemented recently
using discrete-time stimulus sequences (e.g., in [1–5, 7, 8, 10]).
Since the frequency characteristics of a stimulus sequence

critically influence the performance of deconvolution algo-
rithms in the presence of noises in EEG recordings, one needs
to select or generate appropriate sequences to satisfy certain
criteria (e.g., (15)). However, it is challenging to generate an
optimal discrete-time stimulus sequence when the occurring
time points of stimulus impulses are subject to the constraint
of the AD rate of the experiment systems.This is because the-
oretically it only has a limited number of possible solutions.
Although continuous sequences generated by an optimum
methodmight be ready for use, one needs to answer twomore
questions: (1) how to present such sequences into the practical
recordings in digital form; (2) how to quantify the errors
and impacts due to the discretization of the continuous-time
stimulus sequences.

This paper answers the first question by explicating
the frequency presentation of continuous-time stimulus
sequences and its use in solving the transient AEP using
deconvolution algorithm. As detailed before, the repetitive
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continuous-time stimulus sequences have discrete frequen-
cies in the Fourier domain and as such the convolutionmodel
and deconvolution algorithm can be similarly presented as
for the discrete-time time system. In practice, the continuous-
time stimulus sequences can be approximated using very high
temporal resolution discrete-time stimulus sequences. For
example, the temporal resolution for the stimulus sequences
in Table 1 can be rounded to the 4th decimal place, equivalent
to a sampling frequency at MHz level, which is well above
the characteristic frequency (∼4 kHz) in Figures 2 and 3 and
makes the discretization errors negligible in applications.
Furthermore, simulation studies are used to examine the
applicability of the theory and quantify the errors and impacts
when a continuous-time stimulus sequence is temporally
discretized. The results show that using continuous-time
stimulus sequences in the HSR paradigm has significant
advantages over using discrete-time stimulus sequences in
recovering the transient AEPs. This study also reveals a
reciprocal relationship between errors introduced by the
discretization of continuous-time stimulus sequence into
discrete-time counterpart and the discretization frequencies.
Note that we here used the absolute errors to quantify the
impact of sampling rate of discrete-time stimulus sequences.
But absolute errors should not be considered the only choice.
In fact, other metrics such as correlation coefficient can
be a good measure when the shape of waveform is of the
researchers’ only concern. In typical AEP studies, researchers
are usually interested in both the shape and amplitude of the
signals. In any case, the results in this paper suggest that when
discrete-time stimulus sequence is used, a high frequency
system is more likely to offer reliable recovered AEPs under
HSR paradigm.

To conclude, this study demonstrates the applicability
and advantages of continuous-time stimulus sequences for
AEP studies using HSR paradigm and reveals the reciprocal
relationship between the errors in recovered AEPs and the
sampling frequencies of the experimental systems when
discrete-time stimulus sequences are used in traditional
manner for the HSR paradigm.
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