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Abstract

During the past ten years, dynamic functional connectivity (FC) has been extensively studied using 

the sliding-window method. A fixed window-size is usually selected heuristically, since no 

consensus exists yet on choice of the optimal window-size. Furthermore, without a known ground-

truth, the validity of the computed dynamic FC remains unclear and questionable. In this study, we 

computed single-scale time-dependent (SSTD) window-sizes for the sliding-window method. 

SSTD window-sizes were based on the frequency content at every time point of a time series and 

were computed without any prior information. Therefore, they were time-dependent and data-

driven. Using simulated sinusoidal time series with frequency shifts, we demonstrated that SSTD 

window-sizes captured the time-dependent period (inverse of frequency) information at every time 

point. We further validated the dynamic FC values computed with SSTD window-sizes with both a 

classification analysis using fMRI data with a low sampling rate and a regression analysis using 

fMRI data with a high sampling rate. Specifically, we achieved both a higher classification 

accuracy in predicting cognitive impairment status in fighters and a larger explained behavioral 

variance in healthy young adults when using dynamic FC matrices computed with SSTD window-

sizes as features, as compared to using dynamic FC matrices computed with the conventional fixed 

window-sizes. Overall, our study computed and validated SSTD window-sizes in the sliding-

window method for dynamic FC analysis. Our results demonstrate that dynamic FC matrices 

computed with SSTD window-sizes can capture more temporal dynamic information related to 

behavior and cognitive function.
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1. Introduction

Brain functional connectivity (FC) has been widely studied using resting-state functional 

magnetic resonance imaging (fMRI), and is most commonly assessed using Pearson’s 

correlation coefficient among distributed brain regions (Biswal et al., 1995). Many studies 

have identified a set of statistically interdependent regions where the blood-oxygenated-

level-dependent (BOLD) signals are temporally correlated in the absence of an explicit task 

(Biswal et al., 2010; De Luca et al., 2005; Greicius, 2008; Greicius et al., 2003). 

Investigating resting-state FC has provided fundamental insight into basic neural function 

and disease conditions (Bai et al., 2009; Damoiseaux et al., 2006; Fox et al., 2005; Greicius 

et al., 2004; Smith et al., 2009).

More recently, studies have demonstrated that instead of being temporally static, FC can 

change periodically over time during an fMRI scan (Allen et al., 2014; Chang and Glover, 

2010; Jones et al., 2012; Liu and Duyn, 2013; Majeed et al., 2011; Sakoğlu et al., 2010; 

Smith et al., 2012). Dynamic FC analysis has been proposed to investigate and understand 

these periodic temporal changes (see Calhoun et al., 2014; Hutchison et al., 2013; Preti et 

al., 2017 for reviews). Altered dynamic FC have been reported in various neurological 

disorders such as schizophrenia (Damaraju et al., 2014), Alzheimer’s disease (Jones et al., 

2012), Parkinson’s disease (Cordes et al., 2018), major depression disorders (Holtzheimer 

and Mayberg, 2011), and autism (Price et al., 2014). All of these findings demonstrate the 

pathophysiologic relevance of dynamic FC across multiple diseased populations, and thus 

investigating dynamic FC will lead to better understanding of these conditions.

Many methods have been proposed for dynamic FC analysis, such as the sliding-window 

method (Allen et al., 2014; Chang and Glover, 2010), multivariate volatility models 

(Lindquist et al., 2014), temporal independent component analysis (ICA) (Calhoun et al., 

2001; Smith et al., 2012), the quasi-periodic pattern method (Majeed et al., 2011; Thompson 

et al., 2014), the hidden Markov model (Eavani et al., 2013), and co-activation pattern 

(CAP) analysis (Liu and Duyn, 2013). The sliding-window method captures the FC in a 

certain time window by calculating pairwise correlation or covariance, then shifts to the next 

time window and repeats the same procedure until the last fMRI volume. Dynamic FC is 

then characterized by the windowed covariance or correlation matrices. Multivariate 

volatility models, such as exponentially weighted moving average and dynamic conditional 

correlation methods, are parametric models of the conditional correlation between time 

courses which refine the concept of sliding-window. Temporal ICA decomposes each 

subject’s fMRI time series into temporally independent components, defined as distinct 

functional modes. The quasi-periodic pattern method evaluates the spatiotemporal dynamics 

of the BOLD signals to identify a common whole-brain pattern that occurs periodically 

during an fMRI scan. The Hidden Markov model decodes connectivity dynamics into a 
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temporal sequence of hidden network “states” for each subject. The CAP analysis examines 

the dynamics of a specific resting-state network and tracks the variations of FC within each 

individual time frame.

Among all these methods, the sliding-window method is one of the most widely applied 

techniques in dynamic FC analysis due to its relative simplicity, and it has been successfully 

applied to reveal macro-scale spatiotemporal fluctuation of the brain in multiple diseased 

populations (Damaraju et al., 2014; Gonzalez-Castillo et al., 2015; Kiviniemi et al., 2011; 

Leonardi and Van De Ville, 2015; Yaesoubi et al., 2017; Yu et al., 2015). However, a few 

concerns remain unaddressed.

The first concern is the choice of window-size. Currently, there is no consensus on the 

optimum length of the window used in this method. Ideally, the window-size should be both 

small enough to capture temporal transients and large enough to produce stable and 

statistically powerful results (Hutchison et al., 2013). Leonardi and Van De Ville (2015) 

recommend choosing a window-size that exceeds the longest wavelength in the BOLD 

signal to avoid spurious connectivity fluctuations (~100s), which is termed the rule-of-thumb 

in window-size selection. Zalesky and Breakspear (2015) later validate this rule-of-thumb 

choice but also demonstrate that, theoretically, the dynamic FC can be stably detected with a 

much shorter window (~40s). The fundamental nature of choices for these fixed window 

lengths limits the dynamic FC analysis to the fluctuations in the frequency range below the 

window period, irrespective of the true frequency content of the data (Preti et al., 2017). In 

this case, a time-dependent window-size, based on the true frequency content of the fMRI 

time series, could more accurately capture the time-varying FC changes in the data and is 

necessary to the sliding-window method. Furthermore, adaptive window-sizes have already 

been successfully applied in other fields, including frequent item sets mining in data stream 

(Deypir et al., 2012; Li and Wang, 2017) and estimation of data center source utilization 

(Baig et al., 2020).

Another concern is how to validate the observed dynamic FC as true temporal variations 

instead of confounding noises. Multiple null models have been proposed to test the statistical 

significance of the dynamic FC variations (Hindriks et al., 2016; Zalesky et al., 2014). 

However, heterogeneous test results could be obtained from choosing different methods to 

produce surrogates and applying different test-statistics (Zalesky and Breakspear, 2015). 

Without a known ground truth, this procedure is data dependent and time-consuming. In this 

case, indirect validation from investigating the useful information carried by dynamic FC 

could be more appropriate to determine the significance of dynamic FC analysis. Previous 

studies have utilized dynamic FC information as features in classifying normal subjects from 

diseased populations (Rashid et al., 2016; Shen et al., 2010) and predict cognitive function at 

the individual level (Liégeois et al., 2019; Liu et al., 2018). Therefore, a reliable 

classification result with dynamic FC matrices as features suggests dynamic FC matrices 

capture true temporal variations that carry disease-relevant information. Furthermore, 

multiple studies have revealed associations between static FC matrices and behavioral 

assessments such as age (Allen et al., 2011), gender (Zhang et al., 2018), intelligence (Song 

et al., 2008), cognition and emotions (Greicius et al., 2003), which demonstrate the 

behavioral and clinical relevance of static FC matrices. However, the associations between 
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dynamic FC matrices computed from the sliding-window method and behavioral 

assessments have not been investigated yet and remain a potential tool for validating the 

observed dynamic FC as a true temporal variation that carries behavioral-relevant 

information.

Taken together, in this study, we first computed single-scale time-dependent (SSTD) 

window-sizes at every time point in the sliding-window approach using empirical mode 

decomposition (EMD). With SSTD window-sizes we refer to exactly one window-size per 

time point instead of multiple window-sizes per time point (as in multi-scale window-sizes). 

EMD is a data-adaptive analysis method for studying the naturally occurring frequency 

bands in time series, which can be used for non-stationary signals and allows the 

decomposition of time series into nearly orthogonal modes spanning narrow frequency 

bands (Huang, 2005). Decomposed signals from EMD track local periodic changes of non-

stationary time series and time-dependent window-sizes can be determined at each time 

point. Multi-scale time-dependent window-sizes based on EMD were first proposed in Chen 

et al. (2010), where multiple window-sizes were computed for a single time point. Multi-

scale time--dependent window-sizes have been successfully applied in dynamic analysis of 

temperature changes and dissolved oxygen time series (Huang and Schmitt, 2014). However, 

correlation values computed from multiple window-sizes at a single time point between two 

time series are difficult to interpret in terms of dynamic FC. In this case, our group first used 

a weighted average to combine these multi-scale window-sizes in Cordes et al. (2018). In 

this study, we further improved this method to produce more stable results and termed it 

SSTD window-sizes. We also demonstrated the reliability of SSTD window-sizes in 

capturing frequency information at every time-point using simulated time series.

We next computed the standard deviation matrices over all slided windows with SSTD 

window-sizes to quantify the dynamic FC. We validated dynamic FC matrices computed 

from SSTD window-sizes with both a regression analysis using Human Connectome Project 
(HCP) (Van Essen et al., 2013) data with a high sampling rate and a classification framework 

using Professional Fighters Brain Health Study (PFBHS) (Bernick et al., 2013) data with a 

conventional sampling rate. Dynamic FC matrices computed with SSTD window-sizes were 

compared with those computed with conventional fixed window-sizes in both analyses.

2. Methods

2.1. Computation of SSTD window-sizes

2.1.1. EMD decomposition—EMD uses a sifting algorithm to decompose the original 

multicomponent time series into nearly orthogonal modes spanning narrow frequency bands 

(Patrick and Goncalves, 2004), which are named intrinsic mode functions (IMFs). Let 

y(t) ∈ ℝN × 1 denote the resting-state time series from a single voxel and N is the total 

number of time points. To avoid unstable EMD decomposition results at the starting and 

ending point of y(t), a new time series y(t) is first created by:

y(t) = [flip(y(t)), y(t), flip(y(t))], (1)
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where flip(y(t)) reverses the order of the time points in y(t). y(t) is then intensity normalized 

and decomposed into K IMFs using the sifting algorithm (Patrick and Goncalves, 2004):

y(t) = ∑
i = 1

K
ci(t) + rK(t), (2)

where ci(t) is the ith IMF and rK(t) is the residual function. The number of IMFs (K) here is 

determined from the data itself during the sifting algorithm. IMFs obtained from EMD are 

naturally oscillating functions and with frequency contents in a descending order, i.e. c1(t) 
contains the highest frequency component and cK(t) contains the lowest. The residual rK(t) 
contains only the trend-level frequency component.

2.1.2. Instantaneous period and average energy—The instantaneous period is 

computed only for the center part of each IMF ci(t), which corresponds to the time points in 

the original signal. For each IMF, the instantaneous frequency fi(t) is first computed using 

the Hilbert Transform by extending ci(t) into the complex domain (Huang, 2005; Huang and 

Shen, 2014; Huang and Wu, 2008). The instantaneous period pi(t) is then defined as 1
fi(t)

. 

Furthermore, since y(t) has been intensity normalized, the energy of each IMF is defined as 

Ei = 1
T ∑t = 1

T ci(t)2. In this case, the instantaneous periods pi(t) capture the local non-

stationarity of the original signal, and the average energy densities Ei summarize the energy 

contributions of each IMF to the original signal.

2.1.3. SSTD window-sizes of two fMRI time series y(1) (t) and y(2)(t)—Following 

the above steps, we have computed pi
(1)(t) and pi

(2)(t) to denote the instantaneous period at 

time t for IMFs ci
(1)(t) corresponding to y(1) (t) and ci

(2)(t) corresponding to y(2) (t), 

respectively. We also have computed Ei
(1) and Ei

(2) for the average energy corresponding to 

each ci
(1)(t) and ci

(2)(t). We then define a weighted instantaneous period for each y(m) (t), (m = 

1, 2) as

Py(m)(t) = 1
∑i = 1

K Ei
(m) ∑

i = 1

K
pi

(m)(t) × Ei
(m), m = 1, 2. (3)

SSTD window-size of y(1)(t) and y(2)(t) is finally defined as:

Pf t; y(1), y(2) = max Py(1)(t), Py(2)(t) . (4)

Furthermore, for noisy time series with limited durations, IMFs with low frequencies may 

not be sufficiently covered by the length of time series, and EMD may lead to non-

orthogonal components at very low frequencies. These IMFs usually contain longer 

instantaneous period but lower energy. Therefore, in computing the weighted instantaneous 
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period for each y(m)(t), (m = 1, 2) using Eq. (3), IMFs with energy less than of the total 

energy have been excluded.

2.2. Validation with simulation

We demonstrate through simulation that SSTD window-sizes can represent the true period 

(frequency) information at every time point. To this end, we considered two pure sinusoidal 

signals. The first signal was a cosine wave with frequency f1 suddenly switching to f2 at a 

certain time point:

y(1) =
cos 2πf1t , t = 1: 2N

3 × TR

cos 2πf2t , t = 2N
3 + 1:N × TR

,

where TR was the repetition time (inverse of the sampling rate) and N was the total number 

of time points. The other signal was a simple cosine wave with a fixed frequency f3:

y(2) = cos 2πf3t , t = (1:N) × TR .

In our simulation, we chose f1 = 0.02 Hz, f2 = 0.05 Hz and f3 = 0.04 Hz, respectively. The 

total duration of time series was set to 300s (5mins), and the frequency shift of y(1) 

happened at t = 200s. We chose the TR to be 0.72s and 2.8s, respectively, to mimic the two 

real fMRI data used in this study (described in more details in section 2.3 and 2.4). N was 

set to be 300s
TR  in each case. SSTD window-sizes were determined as described in section 2.1. 

Dynamic FC values between y(1) and y(2) were computed using the sliding-window 

approach with SSTD window-sizes and fixed window-sizes of 30s, 60s and 100s.

2.3. Validation with classification analysis using fMRI data with low sampling rate

2.3.1. Subjects—65 cognitively non-impaired fighters and 68 cognitively impaired 

fighters from the PFBHS (Bernick et al., 2013) were included in our study. Their cognitive 

impairment status was predefined based on fighters’ performance of the Finger Tapping test 

and Symbol Digit Coding test from the CNS Vital Signs tests (Gualtieri and Johnson, 2006). 

Cognitively non-impaired and impaired fighters were matched for age, gender, years of 

education, and fighting exposures (number of fights, years of fighting and knock-out 

counts). Detailed demographics are listed in Table 1(A).

MRI data were collected for all subjects on a 3T Siemens Verio scanner with a 32-channel 

head coil. Resting-state fMRI data were collected with following parameters: TR = 2.8s, TE 

= 28 ms, in-plane resolution 2mm × 2mm, slice thickness 4 mm, 30 axial slices and 137 time 

frames (6mins and 24s). In addition, a high resolution T1-weighted structural image was 

acquired using a standard 3D MPRAGE sequence.

2.3.2. Preprocessing—Each T1-weighted image was input into the FreeSurfer 6.0 

processing pipeline (Fischl, 2012) to generate a subject-specific cortical and subcortical 

parcellation. 66 cortical labels from Desikan-Killiany atlas (Desikan et al., 2006), and 12 
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sub-cortical labels were defined as regions of interest (ROIs). This anatomical labeling was 

wrapped to each subject’s fMRI space using a 12-parameters affine transform in Advanced 

Normalization Tools (ANTs) software (http://stnava.github.io/ANTs/).

The first 4 time frames (~12s) of fMRI data were removed to allow the MR signal to achieve 

T1 equilibrium. Remaining time frames were slice-timing corrected and realigned to the 

mean echo-planar image in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). FMRI data were 

further spatially smoothed using a 6 mm 3D-Gaussian filter in the subject fMRI space and 

high-pass filtered with a cosine filter with a cut-off frequency of 0.008 Hz. Nuisance 

regression was performed to further denoise the fMRI data, using six head motion 

parameters and CompCor generated white-matter (WM) and cerebrospinal fluid (CSF) 

signals (Behzadi et al., 2007). Finally, all voxel time courses were variance normalized.

2.3.3. Dynamic FC estimation—Average time series of each ROI were obtained in the 

subject’s fMRI space. Static FC were estimated by computing the Pearson’s correlation 

coefficient between time series from each ROI pair. Dynamic FC were estimated using the 

sliding-window method with both SSTD window-sizes and multiple conventional fixed 

window-sizes. Pearson’s correlation between time series from all ROI pairs were computed 

within the defined window and the window was slided over 1 TR (2.8s). The standard 

deviation of Pearson’s correlations over all windows were defined as the dynamic FC values 

for all pairs of ROIs and formed the dynamic FC matrices. This dynamic FC matrices then 

were used to represent whole-brain temporal dynamics.

2.3.4. Classification framework—Both static and dynamic FC were used as features 

to classify cognitive impairment status of fighters. Classification framework included an 

automated feature selection step and a radial basis functional classifier step (see Mishra et 

al., 2017, for details). A ten-fold cross-validation was used to determine the classification 

accuracy. The classification process was repeated 100 times to rule out the potential division 

bias in the ten-fold division. Classification accuracy, sensitivity (correctly classified 

impaired fighters), specificity (correctly classified nonimpaired fighters), and the area under 

the receiver operating characteristic curve (ROC) for all 100 iterations were used to evaluate 

the classifier performance.

2.4. Validation with regression analysis using fMRI data with a high sampling rate

2.4.1. Subjects—The same subjects used in our previous study (Yang et al., 2019) were 

used in this study. Briefly, 88 male subjects from HCP 1200 Subject Release (Van Essen et 

al., 2013; WU - Minn Consortium Human Connectome Project, 2017), who were 26 to 30 

years old and completed both resting-state fMRI and T1-weighted structural scans, were 

included. Detailed demographic information is listed in Table 1 (B).

Resting-state fMRI data were acquired on 3T Siemens scanners using a Gradient-echo EPI 

sequence with the following parameters: multiband factor = 8, TR = 0.72s, TE = 33.1 ms, 

2.0 mm isotropic voxels, 72 axial slices and 1200 time points (14mins and 24s). A high 

resolution T1-weighted structural image was acquired using a 3D MPRAGE sequence.
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2.4.2. Behavioral measurements—56 behavioral measurements were used to evaluate 

if the dynamic FC matrices computed with the proposed optimum window-size can better 

explain the behavioral variance than the dynamic FC matrices estimated with conventional 

fixed window-sizes. Initially, 64 behavioral measurements covering cognitive, social, 

emotion, personality traits, tobacco consumption, drug consumption, rule breaking, 

antisocial behavior, pain intensity, and externalization were included. Out of these 64 

behavioral measurements, 8 were excluded from our analysis based on the following two 

criteria: 1) more than 5% of subjects did not have valid measurements; 2) the maximal value 

was more than 100 times the mean value, which suggested extreme outliers. Details of these 

56 behavioral variables are listed in Supplementary Table S1.

2.4.3. Preprocessing—The minimally preprocessed resting-state fMRI data (in the 

standard MNI space) were downloaded from the HCP website (https://

www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release) 

and were treated as the raw fMRI data in our analysis. A more detailed description of HCP 

minimal preprocessing steps can be found in Glasser et al. (2013). Additionally, the first 15 

vol (~11s) of fMRI data were discarded to avoid data with an unsaturated T1 signal, and the 

same nuisance regressors as used for the PFBHS data were used to further denoise the HCP 
data.

2.4.4. Dynamic FC estimation—Average time series from 112 regions of the 

automated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002) were obtained. Static 

and dynamic FC matrices were estimated the same way as for the PFBHS data. Specifically, 

both SSTD window-sizes and multiple conventional fixed windows were used in the sliding-

window approach. The window was slided over 4 time points (2.88s) due to the fast 

sampling rate.

2.4.5. Regression analysis—Static and dynamic FC matrices were rearranged as a 

single vector for each subject, and these vectors for all subjects were arranged in a matrix. 

Principal component analysis (PCA) was applied on the matrix to reduce data dimension and 

only those components that explain more than 1% of the variance were retained. Linear 

regression was applied for each behavioral measurement separately with PCA components 

as independent variables and the behavioral measure as the dependent variable. The 

coefficient of determination, namely R-squared, was used to measure the proportion of 

behavioral variance explained by the FC matrix (Draper and Smith, 1998). Subjects’ age and 

handedness were used as covariates and regressed out from behavioral measurements prior 

to PCA.

3. Results

3.1. Validation with simulation

Simulated signals with TR = 0.72s and 2.8s give similar results, and therefore we include 

simulation results with TR = 0.72s here in Fig. 1. The simulation results with TR = 2.8s is 

included in supplementary Fig. S1. Simulated signals y(1) and y(2) are plotted in Fig. 1 (A). 

Corresponding frequency spectrums are shown in Fig. 1 (B). For time points before t = 200s, 
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y(1) is dominated by frequency f1 = 0.02 Hz and y(2) is dominated by frequency f3 = 0.04 

Hz, and therefore the corresponding periods of y(1) is 50s (~70 TR) and of y(2) is 25s (~35 

TR) in this time segment. For time points after t = 200s, y(1) is dominated by frequency f2 = 

0.05 Hz and y(2) is dominated by frequency f3 = 0.04 Hz, and therefore the corresponding 

periods of y(1) is 20s (~28 TR) and of y(2) is 25s (~35 TR) in this time segment. As shown 

by the solid blue (y(1)) and red lines (y(2)) in Fig. 1 (D), the instantaneous periods computed 

from our method capture exactly these periods at almost all time points for both signals. The 

SSTD window-sizes are then set to be the larger period of the two signals, as shown by the 

dashed green lines in Fig. 1 (D). Multiple fixed window-sizes are also shown as dashed 

yellow, purple and light blue lines in Fig. 1 (D) for references. Fig. 1 (C) plots dynamic FC 

values computed from the sliding-window approach with SSTD window-sizes (solid green 

line) and multiple fixed window-sizes (dashed yellow, purple and light blue lines). As shown 

by the solid green line, using SSTD window-sizes in the sliding-window approach captures 

both the stable and small correlation between two signals at time points before t = 200s, and 

large variations of correlations between two signals at time points after t = 200s.

3.2. Validation with classification analysis

3.2.1. Average SSTD window-sizes—Average SSTD window-sizes computed from 

our method are 34.66s±2.29s for cognitively nonimpaired fighters and 34.20s± 2.29s for 

cognitively impaired fighters (Table 2). Histograms of average SSTD window-sizes for each 

subject are also shown in Fig. S2 (B). Thus, the main fixed window-size for comparison is 

chosen to be 35s (~12 TR). We further compute the dynamic FC matrices with fixed 

window-sizes of 60s (~21 TR) and 90s (~32 TR) as suggested in Hutchison et al. (2013) for 

comprehensive comparisons.

3.2.2. Classification results—Fig. 2 shows the classifier performance of the PFBHS 
data, with static FC (sFC, red), static and dynamic FC with fixed window-size of 35s 

(sFC&dFC-35s, green), and static and dynamic FC with SSTD window-sized (sFC&dFC-

SSTD, purple) as features, respectively. Boxplots of the area under the ROC curve (A), 

accuracy (B), sensitivity (C), and specificity (D) are shown for 100 iterations. As shown in 

Fig. 2, adding temporal dynamics information significantly improves the classifier 

performance, as compared to using static FC information alone (green and purple boxes vs. 

red box). Using dynamic FC matrices computed with SSTD window-sizes further 

significantly improves the classifier performance, as compared to using dynamic FC 

matrices computed from the comparable fixed window-size (p = 1.52 × 10−10, purple box vs. 

green box).

Fig. 3 further plots areas under the ROC curves for classifications using static FC and 

dynamic FC with 35s (sFC&dFC-35s), 60s (sFC&dFC-60s), 90s (sFC&dFC-90s), and 

SSTD windows (sFC&dFC-SSTD) as features separately. Table 3 lists p-values of statistical 

comparisons (two-sample t-test) between classification results using different features. As 

shown in Fig. 3 and Table 3, using sFC&dFC-SSTD as features significantly outperforms 

sFC&dFC-35s (p = 1.52 × 10−10), sFC&dFC-60s (p = 1.33 × 10−11), and sFC&dFC-90s (p = 

3.04 × 10−12) in classifying cognitive impairment status in fighters.
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3.3. Validation with regression analysis

As listed in Table 2, the average SSTD window-sizes computed from the proposed method 

for HCP data is 32.73 ± 3.52s. Histograms of average SSTD window-sizes for each subject 

are also shown in Fig. S2 (A). In this case, the main fixed window-size for comparison is 

chosen to be 32.4s (~45 TR). Furthermore, since HCP data are acquired with a fast sampling 

rate, we can use a smaller window-size but still keep enough time points to compute the 

windowed FC matrix. Therefore, the dynamic FC matrices computed using the sliding-

window approach with fixed window-sizes of 21s (~30 TR) and 65s (~90 TR) are further 

used for comprehensive comparisons.

Fig. 4 (A) plots the explained behavioral variance of HCP data using sFC, sFC&dFC-32s, 

and sFC&dFC-SSTD as features. As shown in Fig. 4 (A), significant larger variance is 

explained by both static and dynamic FC matrices than by static FC matrices alone (green 

and purple boxes vs. red box). Using dynamic FC matrices computed with SSTD window-

sizes further increases the explained behavioral variance by 19.7% (purple box vs. green 

box) on average. Fig. 4 (B) further compares the performance of SSTD window-sizes with 

multiple fixed window-sizes in the regression analysis. As shown by the purple box, larger 

behavioral variances can be explained more by the dynamic FC matrices computed with 

SSTD window-sizes than by multiple fixed window-sizes (green boxes). Statistical 

significance levels (two-sample t-test) are listed in Table 4.

4. Discussion

In this study, we computed SSTD window-sizes in the sliding-window method for dynamic 

FC analysis. SSTD window-sizes of two time series were based on their frequency contents 

and were computed from the instantaneous period and average energy of each IMF obtained 

from the EMD method. Using simulated time series, we first demonstrated that SSTD 

window-sizes can capture the time-dependent frequency information in the time series. The 

optimum performances of dynamic FC matrices computed with SSTD window-sizes were 

further validated through both a classification analysis using the PFBHS data with a low 

sampling rate and a regression analysis using the HCP data with a high sampling rate. 

Specifically, both a higher classification accuracy in predicting cognitive impairment status 

in fighters and a larger explained behavioral variance in healthy young adults were achieved 

using dynamic FC matrices computed with SSTD window-sizes as features, as compared to 

using dynamic FC matrices computed with several conventional fixed window-sizes.

4.1. SSTD window-sizes are data-driven, time-dependent, and can capture the frequency 
content in simulated time series

SSTD window-sizes are based on the frequency content of the time series itself, and thus are 

purely data-driven. The frequency content of the time series is represented by the 

instantaneous period at every time point and therefore SSTD window-sizes are time-

dependent. Simulated time series with known frequency contents are used to demonstrate 

that time-dependent and data-driven window-sizes can accurately capture the frequency 

information of the time series.
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The simulated time-series are basic oscillatory and stationary functions with local means 

equal to zero, therefore the Hilbert Transform is well defined and produces meaningful non-

negative instantaneous frequencies for these two time series (Huang and Shen, 2014). As 

shown in Fig. 1 (A), in our simulation, a sudden frequency switch from f1 = 0.02 Hz to f2 = 

0.05 Hz happens at t = 200s for signal y(1) (Fig. 1 (A)), and the frequency for signal y(2) 

stays at f3 = 0.025 Hz for the entire time series. The lowest frequency contained in simulated 

signals is therefore 0.02 Hz. According to the rule-of-thumb criteria (Leonardi and Van De 

Ville, 2015), the window-size used in the sliding-window approach should be larger than 
1

0.02 = 50 s. However, dynamic FC values computed with choices following this rule miss the 

large periodic temporal variations after t = 200s and lead to a larger transition period (dashed 

light blue and purple lines in Fig. 1 (C)). Furthermore, dynamic FC values computed with a 

relatively small window are able to capture the large temporal variations after t = 200s, but 

create unstable and unreal large temporal variations before t = 200s (dashed yellow line in 

Fig. 1(C)). In some cases, dynamic FC values computed with a small window-size may even 

pass the statistical significance test, but the strong variability is still not real and is mainly 

the reason for the lack of degree of freedom in the calculation (Chen et al., 2010).

SSTD window-sizes, however, automatically capture the frequency switch in our simulation 

by outputting a window-size of 50s before t = 200s and another window-size of 25s after t = 

200s (dashed green line in Fig. 1 (D)). This result demonstrates that SSTD window-sizes are 

time-dependent and capture the exact frequency information of the time-series. Furthermore, 

no prior information is required to calculate SSTD window-sizes and thus the procedure is 

purely data-driven. Dynamic FC values computed from SSTD window-sizes also give 

optimum performance, as they not only capture both large temporal variations in functional 

correlation between y(1) and y(2) after t = 200s but also correctly identify small correlation 

between y(1) and y(2) before t = 200s (solid green line in Fig. 1 (C)).

The simulation with TR = 2.8s (Fig. S1) gives similar results as the simulation with TR = 

0.72s (Fig. 1), but the less time points of TR = 2.8s results in less smoothed curves in Fig. 

S1. Overall, as shown in Fig. 1 and Fig. S1, our simulation results demonstrate that SSTD 

window-sizes can capture frequency changes in time series.

4.2. SSTD window-sizes capture more meaningful temporal dynamics information of fMRI 
time series

Functional MRI time series are usually non-stationary. Therefore, in our method, we first 

decompose the original time series into multiple IMFs, which represent different scales of 

the original time series and form the adaptive and oscillating basis of the data (Chen et al., 

2010; Huang, 2005; Huang et al., 1998). An IMF is defined as a basic oscillatory function 

with an extreme value followed by a zero-crossing (Patrick and Goncalves, 2004). Thus, the 

Hilbert Transform is well defined for an IMF (Huang and Shen, 2014). Furthermore, since 

the fMRI time series is first intensity normalized in our study and EMD is essentially a 

sifting algorithm that estimates an IMF and subtracts it successively (Eq. (2)), the average 

energy of each IMF represents weight and contribution of each IMF to the original signal in 

terms of intensity. Therefore, at each time point, we then use the average of instantaneous 

periods of all IMFs weighted by the corresponding energy (Eq. (3)) to represent the period 

Zhuang et al. Page 11

Neuroimage. Author manuscript; available in PMC 2020 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information of the original fMRI time series. We further demonstrate that the dynamic FC 

matrices computed using this energy-weighted period measurement can capture more 

cognitively and behaviorally meaningful information.

4.2.1. Both static and dynamic FC matrices contain disease and cognitive 
relevant information—Previous studies have demonstrated that FC matrices, both static 

and dynamic, can be used as feature sets to classify normal subjects from subjects with a 

cognitive disorder or disease. For example, using static FC matrices alone, Shen et al. (2010) 

achieved an accuracy of 92.3% in classifying schizophrenia patients from normal subjects. 

However, the small sample size (~50 in total) in Shen et al. (2010) limited its generalization. 

Rashid et al. (2016) used a much larger sample size (273) and demonstrated that using both 

static and dynamic FC as features, an accuracy level of 89% was achieved in classifying 

schizophrenia patients, bipolar patients, and normal subjects, which was significantly higher 

than using static FC matrices as features alone (59%). These studies have demonstrated that 

both static and dynamic FC contain disorder-related information. Furthermore, using static 

FC derived measurements, multiple studies have shown that high accuracy can be achieved 

in classifying normal subjects, subjects with mild cognitive impairment (MCI), and subjects 

with Alzheimer’s disease (Challis et al., 2015; Chen et al., 2016; Khazaee et al., 2017; Wang 

et al., 2018). These studies further suggest that FC matrices contain cognitively meaningful 

information, as MCI and AD patients usually show significant loss in cognition (see Jack et 

al., 2013, for a review).

4.2.2. Both static and dynamic FC matrices contain behavioral meaningful 
information—Disease is not the only factor driving the structure involved in strength and 

flexibility of brain FC. Multiple studies have demonstrated that a battery of personal 

behaviors are encoded in functional brain connections as well, including intelligence (Liu et 

al., 2018; Song et al., 2008), personality, socialization, cognition and emotions (Finn et al., 

2015; Greicius et al., 2003; Liégeois et al., 2019). Furthermore, Liu et al. (2018) have shown 

that fluid intelligence is significantly correlated with the predicted score based on the 

strength of dynamic FC matrices, and the observed cognitive flexibility and executive 

inhibition are significantly correlated with the predicted scores based on the variability of 

dynamic FC matrices. Therefore, all of these studies suggest that FC matrices contain 

behaviorally meaningful information.

4.2.3. Dynamic FC matrices computed with SSTD window-sizes capture 
cognitively and behaviorally meaningful information—As shown by Figs. 2–4 and 

Tables 3 and 4, better classification performances and higher explained behavioral variances 

are achieved when using dynamic FC matrices computed with SSTD window-sizes as 

features in the classification and regression analysis separately, as compared to using 

dynamic FC matrices computed with conventional fixed window-sizes. The frequency 

information of a non-stationary fMRI signal remains unstable and, therefore, a fixed 

window-size that is optimal for one time segment may not be suitable for other time 

segments. SSTD window-sizes, in contrast, are data-driven and time-dependent, allowing 

these subtle variations of the temporal dynamics to be captured.
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4.3. Technical perspectives

4.3.1. Improvements over previous methods—As we introduced above, SSTD 

window-sizes are based on the multi-scale time-dependent intrinsic correlation method that 

was first proposed by Chen et al. (2010), where multiple window-sizes were computed for a 

single time point. Specifically, at a single time point, one window-size was determined for 

each IMF and a 2D heat plot was generated to represent the multi-scale intrinsic correlations 

between two time series (Chen et al., 2010). This method captures the time-dependent 

frequency information in the original time series but is difficult to interpret for BOLD 

signals in terms of FCs.

In Cordes et al. (2018), our group proposed a weighted average to combine these multiple 

window-sizes at each time point in the sliding-window dynamic FC analysis. It has been 

observed that the Hilbert Transform produces unstable results at cutting time points, and 

therefore extreme and oscillated window-sizes were obtained for the starting and ending 

time points in Cordes et al. (2018), leading to an average window-sizes of 97.75s ± 41.36s 

(Cordes et al., 2018). In the current study, we first improved the method to compute SSTD 

window-sizes by creating longer time series to ensure the continuity of the starting and 

ending time points and to avoid unstable and extreme results. In addition, from the method 

perspective, the number of IMFs in Cordes et al. (2018) was a fixed and predefined 

parameter. In the current method, the number of IMFs is determined from the data itself, and 

therefore the entire process in computing SSTD window-sizes is data-driven without any 

predefined parameters. As a result, average SSTD window-sizes computed for both data in 

the current study is around 34s, which is closer to values reported in Zalesky and Breakspear 

(2015). Furthermore, from a validation perspective, the combined window-size in Cordes et 

al. (2018) was only validated for BOLD signals with a TR of 2.4s using the dynamic states 

routine following Allen et al. (2014), where the number of dynamic states was another 

tuning parameter which may affect the results (discussed in more detail in the next section). 

In the current study, we validate SSTD window-sizes using fMRI data with TR = 2.8 and 

0.72s respectively, which demonstrates the optimum performance of SSTD window-sizes 

over fixed window-sizes in the sliding-window analysis for BOLD signals with both low and 

high sampling rates. Finally, the current study quantifies dynamic FC matrices using the 

standard deviation of each FC over all slided windows, which is computed without any 

tuning parameters and is a more direct measure to compare performances between different 

window-sizes, as compared to the dynamic states routine.

4.3.2. Methods to estimate instantaneous frequency—In computing SSTD 

window-sizes, we used EMD combined with the Hilbert transform to estimate the 

instantaneous frequency of BOLD signals, which is the Hilbert Huang Transform (Huang 

and Shen, 2014). Analytically, the instantaneous frequency of a time signal is defined as the 

derivative of the phase (Cohen, 1989). For a real signal, the most common method to 

compute its phase is to build a complex signal with the original signal as the real part and the 

Hilbert Transform of the original signal as the imaginary part (Zhao et al., 2004). However, 

this method works only for the signal with a narrow frequency range, which is not the case 

for multicomponent BOLD signals. The Hilbert Huang transform works for the BOLD 

signals by applying EMD to decompose the original signal into IMFs, where each IMF 
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represents a simple oscillatory mode within a limited frequency band that meets the pre-

request of the analytical method. Instead of EMD, narrow-band pass filters could also be 

applied to decompose the original BOLD signals into multiple time-series with limited 

frequency bands that are suitable for the Hilbert transform.

4.3.3. Other signal decomposition methods—As we stated above, EMD 

decomposes original BOLD signals into multiple IMFs with different frequency 

components. Other methods also can be applied to represent BOLD signals in terms of 

multiple frequency components, such as the Fourier transform and the Wavelet transform 

(Chang and Glover, 2010). Both Fourier and Wavelet transforms require a predefined fixed 

basis function and give a bounded time-frequency relationship, which work well for time 

series with known underlying physical processes. However, underlying process of BOLD 

signals are usually difficult to define. On the other hand, EMD requires no a priori defined 

basis functions and uses data itself to determine the underlying frequency information. 

Therefore, in our study, we used EMD, instead of Fourier or wavelet transform, to 

decompose BOLD signals.

4.3.4. Using standard deviation to quantify temporal dynamics over all slided 
windows—Following computing windowed FC matrices, most studies perform a clustering 

analysis to identify different brain-states based on spatial similarities among all windowed 

FC matrices, and used the clustered brain-states to quantify temporal dynamics (Allen et al., 

2014; Damaraju et al., 2014; Sakoğlu et al., 2010). We do not use the classified brain states, 

mainly because, in this method, the number of brain-states is another parameter to be pre-

determined. Functional connections within each brain-state, time points spent in each brain-

state and frequency of brain-state transitions significantly depend on this predefined number. 

Furthermore, in a classification framework with dynamic FC as input features similar to the 

framework used in our study, the number of features increases linearly with the pre-defined 

number of brain-states, which could easily exceed the number of subjects and thus make it 

difficult for classification framework to produce meaningful results. In addition, Choe et al. 

(2017) have demonstrated that the fluctuation of dynamic FC (i.e. its variance) has a strong 

potential to provide individual-specific differences. Finally, Liu et al. (2018) compute 

dynamic FC strength, stability, and variability to characterize temporal dynamics over all 

slided windows and show that these measurements could successfully identify individuals 

with high accuracy and reliably predict higher individual cognitive performance. In our 

study, similar ideas are applied, and the temporal dynamics of FC between an ROI pair is 

quantified by the standard deviation of this connection over all slided windows.

4.3.5. Using both static FC and dynamic FC matrices as dynamic FC features 
in classification and regression analysis—In our study, we always kept both static 

and dynamic FC matrices as dynamic features in both classification and regression analysis. 

Liu et al. (2018) defined the average of FC matrices over all slided windows as dynamic FC 

mean strength and considered it as one of the dynamic characteristic measurements. The 

same measurement was computed in our study for both PFBHS data and HCP data. High 

spatial similarities between the static FC matrix and dynamic FC mean strength matrix were 

observed for both data (Supplementary Fig. S3). Therefore, in our study, a static FC matrix 
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was used to represent the dynamic FC mean strength, and was used together with the 

standard deviation matrix as features for both classification and regression analysis.

4.3.6. Using two datasets to validate SSTD window-sizes—We used two fMRI 

data to validate SSTD window-sizes in this study, one with a conventional sampling rate (TR 

= 2.8s, PFBHS data) and a total duration of 6mins and 20s; and the other one with a faster 

sampling rate (TR = 0.72s, HCP data) and a total duration of 14mins and 20s. For fMRI data 

with a low sampling rate, temporal changes may be missed due to under-sampling of the 

fMRI signal, whereas for fMRI data with a high sampling rate, the captured temporal 

changes may be sensitive to spurious noises. Therefore, we have validated SSTD window-

sizes in both cases in the current study. The larger explained behavioral variance and higher 

classification accuracy when using SSTD window-sizes suggest that SSTD window-sizes 

were able to capture temporal dynamics in fMRI data with both low and high sampling rates.

4.4. Limitations and future directions

One limitation of the SSTD window-sizes method is that the performance may deteriorate as 

the noise level in BOLD signals increases. The first step of the SSTD window-sizes method 

is to decompose BOLD signals into IMFs using the EMD method. Despite the capability of 

dealing with nonlinear and non-stationary data, EMD still cannot resolve the signal from the 

noise in complicated cases, especially when the noise has the same time scale as the signal 

(Wu and Huang, 2004). Future performance comparisons of the SSTD window-sizes method 

on BOLD signals with different de-noising strategies are needed to test and clarify the noise 

effects of the SSTD window-sizes method.

Furthermore, EMD is currently run on the entire concatenated time series; therefore, the 

number of IMFs is the same for all time points and remains static. For longer fMRI time 

series, the number of IMFs may also vary at different time points. One way to achieve a 

dynamic number of IMFs is to run EMD separately on each time series segment, which will 

increase the computational cost and is also less stable with shorter segments. After the EMD 

step, instantaneous period at every time point and average energy across all time points are 

used to compute the SSTD window-sizes in the current method. In this case, while the 

period is dynamically calculated at every time point, the energy is still assumed to be static 

across all time points. Static assumptions on both the energy and the number of IMFs may 

not be the most appropriate for a dynamic analysis. Future efforts towards computing an 

accurate time-dependent energy measure and determining dynamic number of IMFs at each 

time point, if possible, may further improve the performance of SSTD window-sizes. 

However, whether these extra dynamics reflect the intrinsic temporal variations of human 

brain function or just random noises also require further evaluations.

Another limitation of the current study is our use of simple sinusoidal signals with frequency 

shifts in our simulation to demonstrate that SSTD window-sizes capture the exact period 

(frequency) information at every time point (sections 2.2 and 3.1). Real fMRI signals are 

much more complicated than sinusoidal signals due to mixed frequency contents, 

physiological and electronic noise sources. We refrained from using more elaborate 

simulations with mixed frequency content because the ground-truth of the signal becomes 
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difficult, if not impossible, to define. Nevertheless, future efforts toward generating 

simulated signals that both have known frequency contents and represent signal distributions 

mimicking more real fMRI data may provide alternatives to validate SSTD window-sizes. In 

addition, previous studies have suggested that the variance of dynamic FC values derived 

from sliding-window approach with fixed window-sizes are less reliable than the dynamic 

conditional correlation derived measures (Choe et al., 2017). Future efforts towards the 

reproducibility analysis of sliding-window approach with SSTD window-sizes and the 

comparisons with other dynamic FC analysis methods are required to further validate our 

method.

5. Conclusion

Single-scale time-dependent window-sizes (SSTD) have been computed in the sliding-

window method for dynamic FC analysis. SSTD window-sizes are based on the frequency 

contents of the time series and computed with EMD and a spectral analysis using the Hilbert 

Huang Transform. Simulation has demonstrated that SSTD window-sizes are data-driven, 

time-dependent and capture the exact frequency content in the time series. Using dynamic 

FC matrices computed with SSTD window-sizes as features, both a higher classification 

accuracy between cognitively impaired and nonimpaired fighters and a larger explained 

behavioral variance in normal healthy adults are achieved, as compared to using dynamic FC 

computed with multiple conventional fixed window-sizes as features. Both classification and 

regression results have demonstrated that SSTD window-sizes are able to capture cognitive-

function-related and behaviorally meaningful temporal dynamics information in resting-state 

fMRI data. MATLAB codes used to compute SSTD window-sizes and generate the 

simulation in this manuscript are available on GitHub (https://github.com/EEHULULU/

dynamicFC_optimum_windowsize.git).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simulation results of TR = 0.72s. (A). Simulated time series y(1) (blue) and y(2) (red). (B). 

Corresponding frequency spectrums. (C). Static FC values between two time series (dashed 

pink line). Dynamic FC values computed using the sliding-window method with SSTD 

window-sizes (solid green line) and multiple fixed window-sizes (dashed yellow, purple and 

light blue lines). (D). Instantaneous periods of y(1) (solid blue line) and y(2) (solid red line), 

SSTD window-sizes (dashed green line), and multiple fixed window-sizes (dashed yellow, 

purple and light blue lines).
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Fig. 2. 
Classification results of the PFBHS data. Area under the ROC curve (A), accuracy (B), 

sensitivity (C) and specificity (D) of classification between cognitively nonimpaired and 

impaired fighters, when using static FC alone as features (red), using both static FC and 

dynamic FC computed with fixed window-size (35s) as features (green), and using both 

static FC and dynamic FC computed from SSTD window-sizes as features (purple). 

Boxplots show measurements of 100 iterations. Abbreviations: sFC: static functional 

connectivity; dFC-fixed-35s: dynamic functional connectivity matrix computed with the 35s 

window-size; dFC-SSTD: dynamic functional connectivity matrix computed with single-

scale time-dependent window-sizes.
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Fig. 3. 
Classification results of the PFBHS data. Areas under the ROC curves of classification 

between cognitively nonimpaired and impaired fighters, when using both static FC and 

dynamic FC computed with SSTD window-sizes as features (purple box) and using both 

static FC and dynamic FC computed with multiple fixed window-sizes (green boxes). 

Boxplots show measurements of 100 iterations. * indicates statistically significant 

differences. Abbreviations: sFC: static functional connectivity matrices; dFC-

fixed-35/60/90s: dynamic functional connectivity matrix computed with the 35/60/90s 

window-size (~12/21/32 TR); dFC-SSTD: dynamic functional connectivity matrix computed 

with single-scale time-dependent window-sizes.
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Fig. 4. 
Regression analysis results of the HCP data. Boxplots of explained behavioral variance, 

when using static FC matrices as features alone (red box in A), both static and dynamic FC 

matrices computed with SSTD window-sizes as features (purple boxes in A and B), and both 

static and dynamic FC computed with multiple fixed window-sizes as features (green boxes 

in A and B). Abbreviations: sFC: static functional connectivity matrices; dFC-

fixed-21/32/60s: dynamic functional connectivity matrix computed with the 21/32/60s 

window-size (~30/45/90 TR); dFC-SSTD: dynamic functional connectivity matrix computed 

with single-scale time-dependent window-sizes.

Zhuang et al. Page 25

Neuroimage. Author manuscript; available in PMC 2020 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 26

Table 1 (A)

Demographics of PFBHS subjects.

Nonimpaired fighters Impaired fighters Group difference (p-value)

No. of Subjects 65 68 NA

Gender 58 Men 65 Men 0.16

7 Women 3 Women

Age at Imaging (years) 28.78 ± 5.27 29.78 ± 6.20 0.32

Years of Education (years) 13.28 ± 1.63 13.03 ± 2.12 0.45

Processing Speed score 58.28 ± 7.30 40.85 ± 8.34 <0.001

Psychomotor Speed score 183.12 ± 15.95 153.16 ± 16.11 <0.001

Number of Fights 14.45 ± 12.97 14.47 ± 12.68 0.99

Years of Fighting 6.03 ± 4.02 6.85 ± 4.45 0.27

Knock-outs 0.78 ± 1.14 1.07 ± 1.83 0.27

fMRI motion (mm) 0.23 ± 0.09 0.25 ± 0.11 0.30
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Table 1 (B)

Demographics of HCP subjects.

Normal Subject

No. of Subjects 88

Gender 88 Men

Age at Imaging (years) 27.71 ± 1.28

Years of Education (years) 15.03 ± 1.65

fMRI motion Passed HCP quality control
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Table 2

Repetition time (TR) and average SSTD window-sizes computed for both HCP data and PFBHS data.

HCP data PFBHS data

Nonimpaired fighters Impaired fighters

TR (s) 0.72 2.8

Duration 14mins and 24s 6mins and 24s

Average SSTD window- sizes (s) 32.73 ± 3.52 34.66 ± 2.29 34.20 ± 2.29
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Table 3

Classification results of the PFBHS data: statistical significances (p-values) of different dynamic FC matrices 

as features in the classification analysis. Abbreviations: sFC: static functional connectivity matrices; dFC-

fixed-35/60/90s: dynamic functional connectivity matrix computed with the 35/60/90s window-size 

(~12/21/32 TR); dFC-SSTD: dynamic functional connectivity matrix computed with single-scale time-

dependent window-sizes.

sFC&dFC-35s sFC&dFC-60s sFC&dFC-90s sFC&dFC-SSTD

sFC&dFC-35s NA 0.55 0.43 1.52E-10

sFC&dFC-60s 0.55 NA 0.86 1.33E-11

sFC&dFC-90s 0.43 0.86 NA 3.04E-12

sFC&dFC-SSTD 1.52E-10 1.33E-11 3.04E-12 NA
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Table 4

Regression results of the HCP data: statistical significances (p-values) of explained behavioral variances when 

using different dynamic FC matrices as features. Abbreviations: sFC: static functional connectivity matrices; 

dFC-fixed-21/32/60s: dynamic functional connectivity matrix computed with the 21/32/60s window-size 

(~30/45/90 TR); dFC-SSTD: dynamic functional connectivity matrix computed with single-scale time-

dependent window-sizes.

sFC&dFC-21s sFC&dFC-32s sFC&dFC-60s sFC&dFC-SSTD

sFC&dFC-21s NA 0.39 0.01 1.18E-08

sFC&dFC-32s 0.39 NA 0.10 4.93E-07

sFC&dFC-60s 0.01 0.10 NA 5.15E-04

sFC&dFC-SSTD 1.18E-08 4.93E-07 5.15E-04 NA
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