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The need to make fast decisions under risky and uncertain condi-
tions is a widespread problem in the natural world. While there
has been extensive work on how individual organisms dynami-
cally modify their behavior to respond appropriately to changing
environmental conditions (and how this is encoded in the brain),
we know remarkably little about the corresponding aspects of
collective information processing in animal groups. For example,
many groups appear to show increased “sensitivity” in the pres-
ence of perceived threat, as evidenced by the increased frequency
and magnitude of repeated cascading waves of behavioral change
often observed in fish schools and bird flocks under such cir-
cumstances. How such context-dependent changes in collective
sensitivity are mediated, however, is unknown. Here we address
this question using schooling fish as a model system, focusing on
2 nonexclusive hypotheses: 1) that changes in collective respon-
siveness result from changes in how individuals respond to social
cues (i.e., changes to the properties of the “nodes” in the social
network), and 2) that they result from changes made to the struc-
tural connectivity of the network itself (i.e., the computation is
encoded in the “edges” of the network). We find that despite the
fact that perceived risk increases the probability for individuals to
initiate an alarm, the context-dependent change in collective sen-
sitivity predominantly results not from changes in how individuals
respond to social cues, but instead from how individuals modify
the spatial structure, and correspondingly the topology of the net-
work of interactions, within the group. Risk is thus encoded as a
collective property, emphasizing that in group-living species indi-
vidual fitness can depend strongly on coupling between scales of
behavioral organization.
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A key challenge faced by animals is to appropriately adjust
their behavioral responses to changing environmental con-

texts (1). To do so, organisms must make probabilistic decisions
based on often imperfect or conflicting sensory information.
Longer-term states such as fear or hunger can be considered as
a persistent (but updatable) memory stored by the animal that
modulates the mapping from sensory input to behavioral change.
The mechanisms by which individual organisms achieve effec-
tive context-dependent behavior have been well studied (2–4),
but what has been comparatively rarely explored is how such
behavioral plasticity is encoded by organisms that live in groups.
In highly coordinated animal groups, such as many species of
schooling fish, flocking birds, or herding ungulates, individual
reproductive success is often intimately linked with the func-
tional complexity of collective behavior (5, 6). This introduces a
coupling between individual (“microscopic”) properties and col-
lective (“macroscopic”) behavior, and it is reasonable to expect
that this coupling will impact how evolution has shaped the
mechanisms by which individuals sense and respond to changing
environmental conditions.

For example, if we consider an individual in isolation, it must
base its decisions on sensory inputs and previous experience,
which may also be modulated by physiological state. However,
it is clearly the individual that is “responsible” for the decision.
If we consider instead individuals embedded in a social net-
work, another possibility is introduced: As in other information-
processing networks, such as neural circuits, computation may
be affected by changes in the individual components themselves
(network “nodes”) and/or by changes in the structural connec-
tivity (topology) among the components (network “edges”). In
animal groups, individuals often exhibit a highly dynamic group
structure, with individuals’ spatial positions, orientations, and
sensory neighborhoods changing rapidly (5, 7–9). Yet nonethe-
less, individuals exhibit the capacity to change, consistently and
repeatedly, the topology of their social connectivity by switch-
ing between what is often a relatively small number of group
structural states (e.g., ref. 9). This presents an additional nuance
to understanding collective cognition (10–12), as while individu-
als may be influenced by the topology of their network, they are
also able to modify this topology through their movements and
perception of the environment.
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Here we explore the possibility that information process-
ing may be facilitated not only by individuals changing their
internal behavioral rules/states, as is typically considered in
animal behavior, but that, by forming a networked system, indi-
viduals can facilitate collective computation by changing the
structural topology of the network (their social connectivity),
without necessarily adjusting the way they respond to sensory
information. We refer to changes in individual behavioral rules
and states as individuals changing their responsiveness and to
changes in group structure as individuals changing their spatial
positioning.

Across many animal taxa, group structure is known to be highly
sensitive to group members’ perceptions of risk and resources
(13–19). These changes have generally been attributed to sim-
ple game theoretic considerations (20, 21), where structure is
merely a byproduct of individuals acting to maximize their sur-
vival (5). But overlooked is the possibility that group structure, as
an emergent encoding of the external environment, could itself
be an important mechanism by which organisms effectively pro-
cess information in a changing world. In this way, the group’s
structure could act as a collective memory that modifies future
decisions, similar to how an individual’s memory guides its own
behavior (22, 23).

To test the relative contributions of group members’ respon-
siveness vs. spatial positioning to collective information process-
ing, here we present results from experiments with schooling fish
(golden shiners, Notemigonus crysoleucas), known to have highly
dynamic and self-regulating group structure (9, 16, 19), and use
these data to investigate context-dependent changes in individ-
ual and collective responses to perceived risk. Like many fish
species (3, 24, 25), predation is a source of extremely high mor-
tality in the wild (26) and juveniles form coordinated schools in
response to this risk. Shiners also exhibit startle responses as an
escape behavior (27) that is socially contagious (28). Startles in
this species occur even in the absence of an external stimulus,
and these spontaneous false alarms propagate through the group
in the same manner as triggered true alarms (28). In nature,
false alarms account for a high proportion of overall alarms (29–
32), very likely because there are such considerable costs to not
responding to true threats relative to false alarms (33).

In our experiments, we manipulate the magnitude of perceived
risk (individuals’ priors that an immediate threat is present) by
introducing, remotely, the natural alarm substance Schreckstoff.
Schreckstoff is a family of chondroitins released from fish skin
when punctured or torn, such as in the vicinity of a success-
ful predation event (34–37), that induces a “fear response” in
fish, increasing group cohesion and startling behavior (37–39).
However, while response to Schreckstoff is innate (37), fish will
habituate to Schreckstoff if repeatedly exposed with no paired
stimulus (39–41). As will be shown, these changes in group
structure and collective responsiveness (the increased spread of
alarms) allow us to ask whether this context-dependent change
in collective behavior results from individuals modulating their
responsiveness to neighbors and/or whether risk is encoded by
changes in the groups’ internal spatial structure. Our analyses,
involving automated tracking, computational visual field recon-
struction, and determination of the functional mapping between
socially generated sensory input and individual and collective
response, allow us to not only distinguish between these alterna-
tive mechanisms, but also demonstrate the relative importance
of each.

Results and Discussion
Group-Level Changes under Perceived Risk. Schreckstoff changed
group structure upon first exposure, but not upon third exposure
(Fig. 1). In agreement with theoretical predictions on investment
in antipredator behavior (4, 5), as well as previous empirical
results (19, 35, 42–44), average nearest-neighbor distance sharply
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Fig. 1. Effect of perceived predation risk on group structure. (A) A subset
of the school prior to Schreckstoff. Rays (purple) represent a visualization of
the field of view of the focal individual (colored white). (B) The entire school
after receiving Schreckstoff. (C) Median nearest-neighbor distance upon
exposure to Schreckstoff or water (dashed lines). Shaded regions indicate
mean of the group medians ± 1 SE. (D) Distributions of number of visible
neighbors before (black) or after (red and orange) exposure to Schreckstoff.
Left and right pairs of violin plots correspond to first and third exposures to
Schreckstoff, respectively. Dashed lines demonstrate difference in medians.
(E) Distributions of the proportion of individuals’ visual field occupied by
other fish.

dropped when individuals were first administered Schreckstoff
(permutation test, test statistic [t.s.] = −2.04 cm, P < 0.0001,
n = 7 groups; Fig. 1 A–C; similar results for density, SI Appendix,
Fig. S1). In contrast, individuals did not move closer to one
another upon third exposure to Schreckstoff (t.s.=0.073 cm,
P = 0.14, n = 6 groups), in agreement with previous observations
of groups of habituated fish (39–41).

Such dramatic changes in the spacing among individuals are
associated with corresponding changes to the visual fields of the
fish. Because golden shiners rely primarily on vision for school-
ing (28, 45, 46), we set out to quantify the visual properties of
the group structure. Upon first exposure, group members on
average saw fewer neighbors (Fig. 1D; permutation test, t.s. =
−4.47 neighbors, P < 0.0001) and more of their vision was taken
up by neighbors (Fig. 1E; t.s. = 15.59%, P < 0.0001). On the
third exposure to Schreckstoff, however, there were no signifi-
cant changes in the average number of visible neighbors (t.s. =
−0.04 neighbors, P = 0.37) or proportion of visual field occupied
by other fish (t.s. = 0.00%, P = 0.30).
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Changes to Cascade Frequencies and Sizes. Because golden shiners
frequently startle even in the absence of any apparent external
stimulus (28), we can discern between 2 forms of individual-level
responses to predation risk: changes in intrinsic alarming (the
onset of an alarm cascade) and changes in alarm propagation
(participation in an alarm cascade). We chose not to manually
trigger startles, as a global stimulus makes it impossible to dis-
tinguish between the social (response to neighbors) and asocial
(response to stimulus) progression of a cascade, and locally trig-
gering individuals is experimentally challenging. In addition, our
previous work has shown that startles triggered by an aversive
stimulus are indistinguishable from, and propagate in the same
way as, spontaneous startles (28). We developed a way of cate-
gorizing startles based on the product of speed and acceleration,
which corresponds to the change in kinetic energy (work rate)
of the startling individual (SI Appendix, section 3), allowing us
to reliably identify startling fish by thresholding (SI Appendix,
Fig. S3).

As suggested by previous studies (34, 40, 47), Schreckstoff
increased the intrinsic frequency of startling (Fig. 2A). The num-
ber of cascades significantly increased on both the first and third
exposures to Schreckstoff (1-way Wilcoxon signed-rank test on
groups’ difference in number of cascades: first exposure, V =
28, P = 0.011; third exposure, V = 15, P = 0.029). Exposure
to water did not increase the frequency of alarms (V = 11,
P = 0.219).

In addition to cascades being initiated more frequently under
the first exposure to Schreckstoff, the average cascade size also
increased (Fig. 2B; permutation test, t.s. = 0.954 individuals,
P < 0.0001). On the third exposure, however, despite cascades
occurring more frequently, the average number of participants
did not increase (t.s. = 0.060 individuals, P = 0.313) and was
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Fig. 2. Perceived predation risk changes alarm propagation. (A)
Schreckstoff increases the intrinsic frequency of alarms: The number of
startle cascades increased upon first and third exposure. Raw data are
plotted alongside the mean ± 1 SE. (B) Schreckstoff increases average
cascade size following first exposure, but not upon third exposure. Expo-
sure to water does not increase frequency of alarms or average cascade
size. (C) Distribution of cascade sizes before and after the first exposure
to Schreckstoff. Lines represent contagion model fits to data, with shaded
regions representing 95% confidence intervals. Model is described in main
text. (D) Cascade size distributions before and after the third exposure to
Schreckstoff.

comparable to the water control (SI Appendix, section 4.2, t.s. =
−0.117 individuals, P = 0.221).

Predictors of Startle Response. The increase in cascade sizes under
the first exposure to Schreckstoff can occur by 2 nonexclu-
sive mechanisms: a change in internal rules or probabilities
of response to neighboring alarms (individual responsiveness)
and/or a change in group structure that enhances alarm prop-
agation (spatial positioning). To tease apart these mechanisms,
we set out to determine 1) the top predictors of response to a
neighboring startle before and after Schreckstoff, 2) whether the
sensitivity to these predictors changes with Schreckstoff, and 3)
whether including information on when startles occurred (before
or after Schreckstoff) improves our ability to predict whether a
fish will respond.

To examine what is predictive of response to a neighboring
startle, as in ref. 28, we focused on the first responder to an ini-
tiator in cascades featuring at least 1 responder (baseline, n = 46
events; alarmed, n = 108 events), since here we have the clear-
est causal relationship between alarm initiation and response.
(Because startles are relatively rare, we combined prestimulus
data from first-exposure Schreckstoff and water trials, i.e., prior
to either treatment being given.) We then used L1-penalized
logistic regression (48, 49) to determine the features that are
most predictive of response to an initiator. We included a set
of features that can be broadly categorized into the measurable
properties about the stimulus itself (e.g., distance, relative spatial
orientation) and associated visual information. (Full details are
in SI Appendix, section 5.1.)

In agreement with previous work on this species (28), the fea-
tures best predictive of response to an initiating startle were
the logarithm of the metric distance to, and the ranked angu-
lar area subtended by, visible neighbors (Fig. 3). These features
emerged as the most predictive under both baseline and alarmed
conditions. Similar features were found for predicting startle
responses upon third exposure to Schreckstoff (SI Appendix, sec-
tion 5.1). Our data also do not provide evidence of a change in
the functional form for responding to a neighbor given these top
2 predictors after first exposure to Schreckstoff (see SI Appendix,
Tables S3 and S4 for logistic regression model coefficients
and 95% confidence intervals for before and after Schreckstoff
model fits).

We then took 2 approaches to determine whether including
information on when startles occurred (before vs. after
Schreckstoff) improved our ability to predict whether a fish will
respond. First, we fitted a mixed-effects generalized linear model
with a logistic link function on all startles in the first exposure
to Schreckstoff (SI Appendix, section 5.2). We included log met-
ric distance and ranked angular area as fixed effects, as well as
their interactions with time (before vs. after Schreckstoff). Cas-
cade ID nested within group ID was included as a random effect.
We did not find support for statistical significance for time or its
interactions with log metric distance and ranked angular area (SI
Appendix, Table S5). Then, we performed a likelihood-ratio test
comparing this model to an identical model that did not include
time or its interactions. Model fit did not significantly improve
when including information on when startles occurred (χ2 =
3.925, P = 0.270).

Taken together, these results suggest that individuals follow
the same rules for responding to neighbors, the sensitivity to
these rules does not change with Schreckstoff, and information
on when startles occurred does not improve our ability to predict
responses. While this indicates that changes in individual respon-
siveness with Schreckstoff are either negligible or small, these
results alone are insufficient to conclude that changes in respon-
siveness do not contribute to changes in collective sensitivity.
Below we employ a behavioral contagion model that builds on
these results and explicitly compares the relative contributions
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Fig. 3. Probability of an individual startling in response to an initiator as
a function of the top 2 predictors, log metric distance (Left) and ranked
angular area (Right), holding the other predictor constant at its mean value.
Gray corresponds to the first-exposure data prior to receiving Schreckstoff;
red corresponds to after receiving Schreckstoff. Solid lines are the fit of the
model with the top 2 predictors to the first-responder data; shaded regions
represent 95% confidence intervals. Top and Bottom histograms correspond
to first responders and nonresponders, respectively.

of individual responsiveness and spatial positioning on a com-
mon scale.

Changes to Cascade Size Distribution. Are changes in the spatial
positioning of group members sufficient to account for larger cas-
cades? Or are there changes in individual responsiveness that do
not play a role at the onset of cascades but still contribute to
their spread? Answering these questions requires that we con-
sider the entire behavioral contagion process, as the decision of
whether or not to startle likely depends on the decisions of all of
an individual’s observable neighbors (28).

Thus, to understand the origin of the change in average
cascade size, we investigated a generic model of behavioral con-
tagion that incorporates 2 key components: the sensitivity of
individuals to available social cues and the structure of the inter-
action network. The latter is given by a network of weighted
edges wij that represent the probability of individual i to be
a first responder given that individual j initially startled. The
interaction network for each trial is parameterized directly by
fish positions and orientations via a logistic regression on sen-
sory features detailed in the previous section (SI Appendix, Eq.
S3). In this way, the interaction network captures the relevant
differences in pre- and postexposure sensory features caused by
changes to spatial positioning (Fig. 1). Once the interaction net-
work is fixed, the complex contagion model contains a single
free parameter that specifies the social sensitivity of individuals.
This sensitivity parameter (“dose threshold”) (50) determines
how much perceived risk an individual tolerates before startling.
An internal state (the “cumulative dose,” Fig. 4A) tracks an
individual’s perceived risk based on the time course of startle
responses of its network neighbors, causing a startle once reach-
ing the threshold. See Materials and Methods and SI Appendix,
section 6 for a complete description of the model. We fit this
individual-level sensitivity parameter to the observed cascade
size distributions in 4 cases: before and after Schreckstoff in both
the first and third exposure treatments (Fig. 4 B and C).

For both experimental treatments (first and third exposure),
the 95% credible intervals of the maximum-likelihood estimated
dose thresholds before and after Schreckstoff overlap (Fig. 4C),
indicating that a change in individual responsiveness to the star-
tles of neighbors is not required to explain the observed increase
in average cascade size under perceived risk. Changes in spa-

tial positioning, however, are sufficient to explain this increase.
Moreover, the lack of a change in spatial positioning in the third
exposure case, resulting in no difference in average cascade size
pre- and post-Schreckstoff, indicates that a change in spatial
positioning is also necessary to account for a change in average
cascade size.

Finally, we quantified the relative contributions of respon-
siveness and spatial positioning to average cascade size with
a full factorial design (SI Appendix, section 6.3). We trained
a regression model that allows weights of the contagion net-
work to depend both on the presence of Schreckstoff (capturing
changes due to individual responsiveness) and on distances and
orientation (capturing changes due to spatial positioning). In
the resulting behavioral contagion model, the increase in the
average size of cascades post-Schreckstoff (Fig. 4D) could not
be accounted for by changes to individual responsiveness alone.
Instead, the increase in cascade sizes required the observed
change in spatial positioning. Thus we find that changes to spatial
positioning are essential for the increase of group responsiveness
post-Schreckstoff.

Conclusions
The central question of our paper is whether collective sensitivity
is modulated by changes in individuals’ responsiveness (rules for
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Fig. 4. SIR-type behavioral contagion model explains alarm propagation
and indicates that changes in spatial positioning are necessary to explain
increased cascade sizes. (A) Model schematic. The focal individual in the sus-
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magenta) that it integrates over timescale τm. When the cumulative dose
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producing the observed cascade sizes is plotted as a function of the sin-
gle free parameter that modulates individual responsiveness, the average
dose threshold θ̄. (C) Best-fit parameter values controlling responsiveness
are similar pre- and postexposure, with overlapping 95% credible intervals.
(D) Comparing average cascade sizes after modulating responsiveness and
spatial positioning separately reveals that a change in spatial positioning is
essential for the increase of group responsiveness post-Schreckstoff.
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translating sensory input into alarms), their spatial positioning
(the physical spacing and sensory network of group members), or
some combination of them. In solitary animals, the only option
for responding to changing environmental conditions is to mod-
ify responsiveness. For social animals such as golden shiners,
either option (or a combination) is possible. Our approach allows
us to separate the relative contributions of spatial positioning
and individual responsiveness, and we find that any changes in
collective responsiveness are predominantly encoded in spatial
positioning.

Using a combination of experiments and modeling, we demon-
strate that individual-level changes in responsiveness do not con-
tribute meaningfully to the augmented spread of startle cascades
under perceived risk. Risk did not change the sensory features
predictive of responding to neighboring alarms or the sensitiv-
ity to these features. Information on whether a startle occurred
under baseline or alarmed conditions did not improve the ability
to predict startle responses. In our behavioral contagion sim-
ulations where we explicitly vary individual responsiveness, we
found that changes in responsiveness are not necessary to gen-
erate the observed changes in cascade sizes. Finally, when simu-
lating cascades under solely changes in responsiveness, changes
in spatial positioning, or both, we find that average cascades did
not change with changes in responsiveness but did with changes
in spatial positioning.

In contrast to typical conceptualizations of collective cog-
nition, in which individuals interact on a relatively fixed net-
work structure (51, 52), the fish schools in our experiment can
change their group structure on the same timescale as rel-
evant changes in the environment. The fact that this group
structure encodes relevant environmental features suggests that
the fish could actively control and make adaptive use of their
emergent group features, a concept with growing theoretical sup-
port (53–57). The work we have presented here indicates the
potential for self-organized animal groups to reveal additional
insights into how dynamical networks may play an important
role in collective intelligence emerging from simple interacting
components.

Materials and Methods
Experiments. Groups of 40 golden shiners were filmed freely swimming in a
1.06 × 1.98-m tank filled to 4.0 cm depth. One hour after being transferred
to the tank, an automated sprayer released either Schreckstoff or water
into the tank. The group was then filmed for an additional 0.5 h. No experi-
menter was present in the room for the duration of the trial. Details on data
extraction, processing, and analysis are available in SI Appendix, section 1.
All experiments were conducted in accordance with Princeton University’s
Institutional Animal Care and Use Committee.

Behavioral Contagion Model. Our model is based on a generalized model of
contagion proposed by Dodds and Watts (50, 58). Here, we have reformu-
lated the original model in terms of activation rates to describe behavioral
contagion dynamics in continuous time. This allows us to more easily
constrain parameters based on experimentally determined timescales and
networks of influence, derived from the logistic regression’s predictions for
response probabilities given fish positions at the time of the initial startle.
We then simulate the model using a standard Euler discretization.

Individual fish, as nodes in a network, are connected by weighted
directed edges wij ∈ [0, 1] that define the rate of signaling doses received
by individual i when individual j startles. Each individual i can be in 1 of 3
states si that we call susceptible, active, and recovered. Susceptible nodes

may become activated due to inputs received from active neighbors. After a
fixed activation time τact , activated individuals transition into the recovered
state. The activation time is set to τact = 0.5 s, matching the experimentally
observed average startle duration. For simplicity, we consider the recov-
ered state as an absorbing state with no outward transitions, which restricts
the model dynamics to single, nonrecurrent cascades. A simulation run is
terminated when no active individuals remain.

As an initial condition we set all individuals as susceptible, and at time
t = 0 a single individual is activated (spontaneous startle). A susceptible
individual i receives from an active neighbor j stochastic doses of activat-
ing signal of size da at a rate rij = ρmaxwij , with ρmax being the maximal
rate of sending activation doses for wij = 1. The maximal activation rate is
bounded by limits on response times due to physiological constraints and
neuronal processing of sensory cues which trigger a startling response in
fish (59). The fastest startling responses to artificial stimuli were reported to
be of the order of few milliseconds. Therefore, we assume ρmax = 103 s−1,
which allows in our model for fastest response times of the order of 1 ms
(for wij ≈ 1). To be able to resolve this timescale, we choose the numerical
time step accordingly to ∆t = 1 ms (ρmax = 1/∆t).

Thus, with small ∆t, the activation signal received from individual j is a
stochastic time series dij(t) with 2 possible values, da and 0, whereby the
probability of receiving an activation dose per simulation time step ∆t is
pa = rij∆t. Each agent integrates all inputs over a finite memory τm = 2 s.
The agent becomes activated if the cumulative dose

Di(t) =
1

Ki

∑
j

∫ t

t−τm

dij(t
′) dt′ [1]

received by a susceptible agent i within its memory time exceeds its internal
threshold θi . Here, Ki is the in degree of the focal individual, such that the
doses received by the focal individual are rescaled by the number of its net-
work neighbors, a form supported by prior work in a similar system (28). The
individual thresholds are drawn from a uniform distribution with minimum
0 and maximum 2θ̄, producing an average threshold of θ̄. This accounts for
stochasticity due to inaccessible internal states of individuals at the time of
initial startle.

The expected value of the cumulative activation dose received by agent
i due to the activation of a single neighbor j (Ki = 1) over the activation
time τact is thus 〈Di〉= daρmaxwijτact . We choose the weights wij to be equal
to the probability that i responds and is the first responder to an initial
startle of j, inferred using the logistic regression model depicted in Fig. 3.
The linear relationship between the cumulative dose 〈Di〉 and the weights
wij , along with the uniform distribution of thresholds across fish, guaran-
tees that the complex contagion process produces the correct relative initial
response probabilities in the limit of small ∆t and wij (SI Appendix). With-
out loss of generality, we can set daρmax = 1. Thus, based on the maximal
rate ρmax = 103 s−1, we set the activation dose da = 10−3. This leaves us
with a single free parameter, the average dose threshold θ̄, which we fit
via maximum likelihood. A total of 104 independent runs were performed
for each threshold value to estimate corresponding cascade size probability
distributions.
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