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Spike-Threshold Variability 
Originated from Separatrix-
Crossing in Neuronal Dynamics
Longfei Wang1, Hengtong Wang2, Lianchun Yu1 & Yong Chen3,4

The threshold voltage for action potential generation is a key regulator of neuronal signal processing, 
yet the mechanism of its dynamic variation is still not well described. In this paper, we propose 
that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage 
thresholds which belong to the state threshold are determined by the ‘general separatrix’ in state 
space. We demonstrate that the separatrix generally exists in the state space of neuron models. The 
general form of separatrix was assumed as the function of both states and stimuli and the previously 
assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of 
neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined 
by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing 
mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus 
threshold phenomena. These proposals are also systematically verified in example models, three of 
which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing 
framework provides an overview of the neuronal threshold and will facilitate understanding of the 
nature of threshold variability.

Neurons encode stimuli into time sequences of stereotypical membrane potential pulses that are known as action 
potentials (APs). The firing of an AP is thought to be determined by whether the membrane potential exceeds a 
certain threshold value; however, the threshold (following the routine in neuroscience, ‘threshold’ in this paper 
means ‘threshold voltage/membrane potential’ unless particular threshold types are specified) is not a constant 
value. Threshold variation (i.e., dynamic thresholds) has been observed in the electrophysiological experiments 
both in vivo1–8 and in vitro6,9,10. Dynamic thresholds can shape the responses of neurons6 and enhance coinci-
dence detection2,3,5 as well as improve the feature selectivity8 of single neurons, while filter weak asynchronous 
activity in neuronal networks3,11. Threshold variability also participates in precise temporal coding9,12,13 and influ-
ences metabolic energy efficiency14.

Although the dynamic threshold plays an important role in neuronal information processing, its mechanism 
has not been well characterized. A pioneering study of threshold “accommodation” assumed that the threshold 
voltage follows a simple temporal exponential process15. Accordingly, similar first-order kinetic equations that 
describe threshold variation are still used by contemporary researchers6,9,16–19. The equation has the following 
form:

τ θ θ θ= −θ ∞
d
dt

, (1)

where θ denotes the dynamic threshold, θ∞ is a constant threshold and τθ is the time constant. In investigating 
of the quantitative laws of AP generation, Hodgkin and Huxley found that the threshold could be increased by 
Na+ channel inactivation and K+ channel activation and suggested that the threshold might be a function of the 
membrane potential20,21. Indeed, recent experiments have shown that the threshold of cortical neurons in vivo 
positively correlates with the membrane potential and negatively correlates with the rate of membrane depolar-
ization1–3. Additionally, more ion channel types may participate in determining the threshold variation22,23. In 
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principle, the relationship of threshold with either the membrane potential or the rising rate is determined by the 
activation and inactivation of all ion channels24,25.

Although the biophysical mechanism has not been well studied by neuroscientists, mathematical classifica-
tions and mechanisms describing the neuronal threshold, especially the separatrix concept and quasi-threshold 
phenomena, were proposed by FitzHugh in 1950s26. However, these mechanisms have not captured the attention 
of scientists in a long time, until recently, when similar concepts have been hypothesized or reintroduced by 
researchers19,27,28. Several experimental works on the threshold variation adopted similar methods or obtained 
results that were derived from these concepts; threshold was defined as the threshold voltage value at the time 
point that a stimulus is switched off9,24,28, and simple dynamic threshold equations similar to equation (1) were 
adopted6,9,18. Additionally, Platkiewicz and Brette deduced a simplified threshold equation that could quantify the 
contribution of different ion channels and synaptic conductances to spike thresholds16,17, and a similar form of 
equation (1) is also derivable from their equations16. However, the general mechanism of dynamic threshold for 
AP generation in a specified neuron has not been well described, especially when the neuron is subjected to dif-
fering stimuli, such as a rectangular pulse or a ramp current9,24,28. To connect the theory and experiment results, 
and considering the recent advances on the threshold phenomena associated with large difference between the 
time scales of fast and slow variables29,30 that explain the quasi-threshold well26, we introduce the general notion 
of separatrix, which is a boundary separating two different modes of dynamic behavior in state space. The general 
separatrix is equivalent to the concept of ‘threshold manifold’ in mathematics31–33 and the concept of ‘switching 
manifold’ in control sciences19. Two different mechanisms exist that describe the threshold voltages in two dif-
ferent types of neuronal models: one is the separatrix of fixed points26,31 and the other is the quasi-separatrix or 
canard26,29,31,32. The general separatrix is able to incorporate both the ‘real-separatrix’ (rigid mathematical sep-
aratrix, the manifolds of fixed points26) and the ‘quasi-separatrix’29,32,34 (‘ghost separatrix’ in refs 35–37). The 
general separatrix can provide an adequate definition for threshold voltage and a uniform mechanism to explain 
numerous threshold phenomena.

In the current study, we first propose that the threshold phenomena in excitable neurons can be classified as 
‘parameter threshold’ and ‘state threshold’. We postulate that threshold voltages belong to the state threshold and 
have a mechanism distinguished from the bifurcation theory that explains parameter threshold. We demonstrate 
that the general separatrix exists in the full state space of different types of excitable neurons. Crossing the sepa-
ratrix, i.e., separatrix-crossing, at different sites causes state threshold phenomena and threshold variation. Then, 
we introduce a general form of a separatrix in a common excitable conductance-based neuron model. According 
to the form of a separatrix, the general threshold evolving equation versus time is deduced and transformed into 
equation (1) for the simplest case.

Using the separatrix-crossing framework, we then analyze the threshold voltages and threshold phenomena 
in different models. The threshold set (i.e., separatrices) is not a fixed value but is a varying threshold point in 
a Quadratic Integrate-and-Fire (QIF) model31, a set of threshold curves in a two-dimensional (2D) model, a 
threshold plane in a three-dimensional (3D) piecewise linear (PWL) model and a threshold hypersurface in the 
Hodgkin-Huxley model. Additionally, the threshold sets of the aforementioned models dynamically vary with 
external stimuli. Through the simple but analytic threshold function in the QIF model as well as in the 2D and 
3D PWL model, we demonstrate that separatrix-crossing in the state space is one origin of threshold variability. 
We also deduce the threshold variation equations in these models and determine whether the equations can be 
simplified to equation (1). State dependent threshold parameters, e.g., the threshold timing and amplitude of the 
voltage clamp, step current and ramp current, are also determined by separatrix in these models. Additionally, 
the numerical simulation of threshold phenomena in the Hodgkin-Huxley model following voltage clamping 
demonstrates that the separatrix-determined threshold is valid in actual neurons that exhibit complex dynamics.

Results
Classification and mechanisms of threshold phenomena.  Neuronal threshold phenomena can be 
classified into different types. In general, neuronal threshold phenomena can be categorized by their application 
domains, which are as follows: in vitro, in vivo and in model16. Threshold phenomena in neural models have been 
mathematically divided into discontinuous-, singular-point- and quasi threshold phenomena (DTP, STP and QTP 
in abbreviation) by FitzHugh26. In the current study, we propose that the threshold can be generally categorized 
as either the parameter threshold or the state threshold. The parameter threshold depends on bifurcation while the 
state threshold is determined by the initial- or boundary value problem. The two common neuronal threshold 
phenomena, the threshold voltage and threshold current (usually the amplitude of direct current, i.e., DC), belong 
to the state threshold and parameter threshold, respectively.

The classification is suitable for both theoretical use and practical application. “Parameter” and “state” have 
distinct meanings in models: the parameters will not change, and the states are variables. In reality, a piece of 
functional nerve membrane have several intrinsic statistic properties, for example, the membrane potential, the 
states of different subunits of ion channels, the number of different ion channels available and the reversal poten-
tials for different ion channel types. The former two quantities are time-varying, so we call them ‘states’ (or ‘vari-
able’ in the model), while the latter two do not change, so these properties are treated as parameters. The 
biophysical properties in reality have exact correspondents in the conductance-based model. Taking the 
Hodgkin-Huxley model as an example: variables V, m, h and n form a 4-dimensional state space, while the max-
imum conductance of ion channels g i (i =​ Na, K, L) and reversal potential Ei (i =​ Na, K, L) are all parameters.

In electrophysiological experiments, besides of the intrinsic factors, current can be artificially injected by 
external circuits or received from synapses of upstream neurons. The external current is an independent variable 
and was treated as a state variable by FitzHugh26. However, the amplitude of DC or step current is unique and can 
be recognized as a parameter because the current is time-invariant as the parameters do. According to the bifur-
cation theory, the current amplitude is the most common bifurcation parameter. The varying current with special 
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fixed forms, such as periodic or pulse current, may involve parameters such as amplitude, duration and period. 
These quantities may be called ‘parameters’ for the current, but the current varies in terms of time. Therefore, the 
threshold phenomena for these quantities is hybrid.

Different types of threshold phenomena have different mechanisms. The parameter threshold is usually 
explained by bifurcation theory, e.g., threshold amplitude of DC, while the mechanism of the state threshold is 
related to the boundary separating dynamic behaviors–separatrix. In the current study, we demonstrate that the 
separatrix determines time-varying threshold phenomena, including the threshold voltages and state-dependent 
threshold quantities, e.g., threshold amplitude and time of step or ramp current.

The classification of parameters and state is rigid in principle; however, considering both the significance and 
time scale of variables at the threshold, some approximations can be made. A variable with small significance in 
threshold variation can be approximated as a parameter. The quasi-static effect with large significance should be 
treated carefully; for example, the synaptic current with a long decay may greatly change the behavior of a neuron 
by slowly varying the threshold in a long time scale, which can not be explained otherwise33. These approxima-
tions are considered in the modeling process. Once the model is established, the classification of parameters and 
states is clear.

A general mechanism of threshold voltage and threshold variation.  We begin with the general 
equations of an excitable neuron. Since the AP generation threshold depends on the complex interaction of dif-
ferent ion channels and the stimulus22–24, it is necessary to distinguish gating variables, membrane potential and 
external current. On the other hand, considering the important role of adaptation of the ion channels in threshold 
variation, we directly write the time derivative of ion channel gating variables in the the adaptation form. In con-
trast to the more general differential equations in mathematics26,38, we construct the general equations of a single 
compartment excitable conductance-based neuron as

= +Cdv
dt

f v i tX( , ) ( ), (2)e

τ
=

−∞d
dt

v
v

X X X( )
( )

,
(3)X

where v is the membrane potential and X is the vector of the gating variables of the ion channels; they are abbre-
viations of v(t) and X(t), respectively. ie(t) is the external current stimulus and f(v, X) represents the intrinsic ion 
currents. The equations allow us to focus on the dynamic threshold analysis and assist in deriving the first-order 
threshold equation.

The threshold voltage of an action potential is not clearly defined, and neuroscientists use varying criteria. The 
most commonly used threshold voltage determination is an ad hoc value of dV/dt5,9,39 obtained by visual inspec-
tion. All the criteria1–3,39 including this method are trying to determine a voltage value standing for the initial 
point of an AP in the already obtained AP time series, and produce some threshold variation39. To explain and 
predict the spike-threshold and its variation, we define the threshold voltage as instantaneous threshold voltage18,  
denoted as θ. The instantaneous threshold voltage is the voltage value that, when the membrane potential is 
instantaneously brought above or below it, will induce one AP or more (see Fig. 1). As opposed to the method in 
ref. 18, we do not limit the threshold to be a depolarized value, i.e., a hyperpolarized threshold due to inhibition 
is also acceptable. Theoretically, instantaneously shifting the membrane potential should be realized by inject-
ing instantaneous currents (ie(t) =​ qδ(t)), and the instantaneous threshold voltage is searched by adjusting the 
strength of instantaneous current. In the application, a brief current injection is a close approximation of instan-
taneous current. From the dynamic system viewpoint, the instantaneous threshold voltages are defined by the 
separatrix, i.e., the boundary that separates two behavior modes (the membrane potential returning to the resting 
state after a small rise or a large excursion).

As illustrated in Fig. 2, the different separatrix types for different neuron classes define the instantaneous 
threshold voltages well. As an excitable dynamic system, the neuron defined by equations (2) and (3) must pos-
sess at least one stable equilibrium. The stable equilibrium of a neuron is usually a resting state or sometimes a 
small oscillation31,32. From the viewpoint of a dynamical system, the resting state is a stable fixed point, and a 
small amplitude oscillation corresponds to a small limit cycle31,32. When more than one stable equilibrium exists, 
the attraction boundary of the resting equilibrium naturally forms the separatrix (see Fig. 2a,c,d). Usually, the 
stable manifolds of a saddle (the mathematical real-separatrix) play the threshold role and are called the STP by 
FitzHugh26. For those with only one stable equilibrium, the separatrix maybe the canard of a fold point29,33,40, 
which is called the quasi-separatrix34 (Fig. 2b). The threshold canard always exists and the threshold phenomenon 
is distinct when the time constants of the predominant fast and slow variables largely differ29,33. These phenom-
ena were referred to as QTP by FitzHugh, and can be called canard threshold phenomenon (CTP) on the recent 
advances29,33,40. The Fenichel’s Theorem ensures the general existence of quasi-separatrix29,30,33,41. The typical type 
I and type II neurons belong to the type with more than one equilibrium and the type with only one equilibrium 
locally, respectively. However, CTP and STP can coexist in a type I neuron (Fig. 2a with enlarged view in c, d 
and e, e shows CTP). It should be noted that the v-nullcline or the curve that dv/dt equals a certain values is not 
the threshold voltage set, especially in Fig. 2d in which both initial values exhibit a negative dv/dt. The threshold 
voltage determined by an ad hoc large positive value of dv/dt is the indication that an AP has happened but is not 
a predictive criterion of whether an AP will be generated.

As described in the above paragraph, a separatrix is a set of special state points that determines the threshold 
for AP generation in the phase/state space. For a certain neuron, a separatrix is the function of the state variables 
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and external current, but the specific form depends on parameters of channel gating variables X, such as maxi-
mum conductance g X and reversal potential EX

16. The full expression of the separatrix should be written as S(v, X; 
ie; λ) =​ 0, where λ denotes the vector of parameters. Focusing on the dynamic threshold of a specific neuron, we 
ignore the specific form of a separatrix and assume that a separatrix has a general form of S(v, X; ie) =​ 0, so the 
voltage values at the separatrix, θ(X; ie), are instantaneous threshold voltages. When the state of a neuron is 
changed by a stimulus from one side to the other of a separatrix in state space, the neuron switches between AP 
generation and subthreshold fluctuation. The crossing at different points of a dynamic separatrix caused by differ-
ent stimuli bring about the spike-threshold variation measured. In addtiton, the separatrices of a neuron deter-
mine the possible variation scale of the spike threshold.

According to the general form of a separatrix, i.e., θ(X; ie), and the normal form of the time evolving equation 
of ion channel gating variables (equation(3)), we observe that the threshold varying versus time:
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This equation indicates that the dynamic threshold depends on both the external current and the adaptation 
of all of ion channels, in principle. For neurons with DC injection or without external inputs, the first term in 
the right hand of the above equation is zero. Additionally, if one channel gating variable dominates the threshold 
dynamics, then equation (4) can be simplified as:

Figure 1.  Instantaneous threshold is defined by whether an AP will be induced when only varying the 
membrane potential. (a) Threshold voltages are the minimum/maximum values that determine AP initiation 
when shifting the membrane potential only in state space. Shifting state point si (in this figure caption, i =​ 0, 1 or 2)  
in the v-axis will produce the threshold θi in the separatrix (red dashed line). State s0 is the resting state, and the 
injection of a step current pulse with the amplitude Istep =​ 0.147 can move the state from s0 to s1 and s2. (b–d) 
Time series of membrane potential (v) and external current (ie). Instantaneous threshold θi (red dotted lines) 
determines whether the injection of a brief current will cause state si to generate an action potential. The blue 
solid lines show the time series of state si without any stimulus, while the green dashed lines (red dash-dotted 
lines) demonstrate that the application of instantaneous current bring membrane potential of state si to below 
(above) threshold θi. The durations of the step current injection to s1 and s2 are 7.429 and 12.5, respectively. The 
model is a classic FHN model with the following parameters: τw =​ 15, a =​ 1.25, b =​ 0.875.
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τ θ θ
=
∂
∂

− .∞v d
dt x

x v x( ) ( ( ) ) (5)x

If ∂​θ/∂​x is a constant, i.e., thresholds are linearly dependent on the dominant gating variable (θ(X) ~ kx, here k is 
a constant), and the characteristic time (τx(v)) is approximately a constant for sub-threshold currents, the above 
equation can be further transformed into the simplest threshold dynamic equation–equation(1). Equation (1) 
is directly assumed in refs 6, 9 and 15, while in ref. 16, it is deduced by a special condition that has no simple 
correspondence. Our derivation implies that equation (1) will fit well for the situations in which the threshold 
is linearly varied with the only one dominant modulating variable with an approximately constant characteristic 
time, in the process of DC injection or when no external current is presented.

Threshold states explained by separatrices are distinctly distinguished from and, at the same time, are asso-
ciated with threshold parameters described by the bifurcation theory. The bifurcation theory describes different 
dynamic behavior caused by the variation of fixed parameters and does not take into account the initial states. The 
separatrix determines the threshold phenomenon of different initial values. Take the external current injection 
as an example; the bifurcation theory describes the threshold amplitude of DC and explains the rate coding of 
periodic repeated firing, while the separatrix framework determines the threshold voltages under subthreshold 
DC or transient inputs (e.g., step current) and relate to the temporal coding. However, parameters determine the 
specific form of a separatrix. The variation of parameters will quantitatively change the separatrix if no bifurcation 
occurs. Parameter thresholds determined by bifurcation change the form of the separatrix, and may even cause 
the separatrix to appear or disappear, e.g., saddle-node bifurcation in the type I neuron model31,32. When entering 
into the mode of repeated firing controlled by a global limited cycle, separatrices/state thresholds disappear. To 
completely predict the response of a neuron to the varying stimuli, we should combine both mechanisms.

Recent experiments and numerical simulations have attempted to elucidate the influence of the external 
stimulus on threshold voltages by defining threshold voltages as the post-stimulus threshold values9,24,28. The 
post-stimulus threshold is a unique case in that ie(t >​ te) =​ 0 (te denote the time that the stimulus is off), i.e., the 
separatrix after the stimulus off is θ(X; 0). The separatrix is therefore the same as the old separatrix prior to the 

Figure 2.  Separatrices determine threshold voltages in the state space of type I and type II neurons. Red 
and magenta solid lines are separatrices. The black solid lines are real trajectories, and the black dotted lines are 
nullclines (dv/dt =​ 0 and dw/dt =​ 0), respectively. (a) Separatrices of type I neuron: Boltzmann-FHN neuron 
model. The red separatrices represent the two stable manifolds of the saddle (left open circle), one extends to 
minus infinity while the other connects to the unstable node (right open circle). The magenta separatrix is in 
fact a trajectory that connects the unstable node and the fold point of cubic v-nullcline. Rectangles indicate the 
enlarged regions of (c–e). (b) Separatrix of type II neuron: classic FHN neuron model. There exists only one 
equilibrium that represents the resting state, and the canard-mechanism29 determines the threshold set (quasi-
separatrix) of this type II neuron. (c–e) The enlarged regions of (a) show the coexistence of separatrices and 
the separatrices determine the thresholds rather than the v-nullcline or the curve in which dv/dt is equal to a 
certain value. Up/left and down/right blue dashed lines represent the curve that dv/dt equals −​0.015 and 0.015, 
respectively.



www.nature.com/scientificreports/

6Scientific Reports | 6:31719 | DOI: 10.1038/srep31719

stimulus. The mechanism for post-stimulus threshold indicates that the changed state crosses the same separatrix.  
Separatrix-crossing in transient responses is different: the almost unaltered state was settled in the other side of 
the separatrix by moved separatrix.29,34 (θ(X; Ie)). We emphasize the word ‘almost’, because the abrupt injected 
current does change the state; however, the magnitude of voltage shifting is far smaller than the shifting of 
v-nullcline (IΔ​t/C ≪​ I), when the switching duration Δ​t is very short. In more general situations, the state and 
separatrix vary at the mean time with the continuous varying stimulus.

A voltage clamp fixes the membrane potential, but it changes other states of the membrane and therefore also 
alters the threshold. After a voltage clamp, AP generation is also determined by whether the clamped voltage 
exceeds the instantaneous threshold θ(X; 0). After any stimulus, if no AP is produced following the most recent 
deviation from the resting potential, then whether the system will produce an AP is determined by whether the 
state after the stimulus is turned off crosses the separatrix θ(X; 0).

In the following paragraphs, we apply the separatrix to different models and explain threshold phenomena 
using the separatrix-crossing mechanism. The separatrices, i.e., threshold sets, of these model are a point in the 
QIF model, a curve in 2D models, a plane or surface in 3D models and a hypersurface in the four dimensional 
HH model.

Dynamic threshold point determined by stimulus.  In the classic Integrate-and-Fire (IF) model, 
the threshold voltage is a fixed parameter. Recently, the dynamic threshold has been introduced using artificial 
mechanisms to predict the spiking series of real neurons42,43. Here, we demonstrate the dynamic threshold in a 
one-dimensional quadratic integrate-and-fire (QIF) model31. The separatrix in a QIF model is a point, which is 
limited by parameters but varies in response to varying stimulus strengths. The dimensionless equation of the 
QIF model is31

= − − + > ← .
dv
dt

v v v v i t v v v v( )( ) ( ), if , then (6)r t e peak reset

The parameters are related in that vpeak >​ vt >​ vr >​ vreset. When ie(t) =​ 0, the resting potential is vr and the threshold 
is vt.

According to the bifurcation theory, the QIF model is topologically equal to the canonical type I neuron model 
and exhibits a saddle-node bifurcation if the DC current amplitude crosses the threshold value Irehobase

31. Irehobase 
is determined by the equation (vt +​ vr)2 −​ 4(vrvt +​ Ie) =​ 0, i.e., the discriminant of the square equation dv/dt =​ 0. 
For a DC input with the amplitude Ie, if Ie >​ Irehobase, the neuron periodically discharges; if Ie <​ Irehobase, the two real, 
unequal roots of equation dv/dt =​ 0 are two equilibria, threshold θ and resting potential vrest.

For the varying external current ie(t), replacing Ie with ie(t) leads to the dynamic threshold θ(ie) and dynamic 
resting potential vrest(ie) of:

θ =
+ ± + − +

.i t v i t
v v v v v v i t

( ( )), ( ( ))
( ) 4( ( ))

2 (7)e rest e
t r t r r t e

2

Both the threshold θ(ie) and resting potential vrest(ie) vary with the external current ie(t). The subthreshold depo-
larizing current elevates the resting potential and lowers the threshold, i.e., decrease the difference between the 
threshold and resting potential. The hyperpolarized current increases the difference between θ(ie) and vrest(ie), vice 
versa. When parameters are fixed in the QIF model, the threshold voltage is only related to the external stimulus. 
As displayed in Fig. 3a, the same membrane potential may be subthreshold with no stimulus or suprathreshold 
when a sufficiently strong current was injected. Once the membrane potential crosses the threshold, the neuron 
is in the process of AP generation. AP generation is a fast, but not instantaneous, process, and can be interrupted 
even during the depolarizing phase. After the moment the threshold is crossed, a strong and long enough hyper-
polarized current injection, which elevates the threshold, may interrupt the firing process (see Fig. 3b). In a 
rigid sense, after the membrane potential exceeds the instantaneous threshold, the application of external current 
ensured a persistent increase in the difference between the membrane potential and the instantaneous thresholds 
determine the AP. To predict the generation of an AP, it is necessary to know both the subsequent stimulus and 
the present state of the neuron.

Dynamic threshold curve in two-dimensional models.  As a one-dimensional system, the QIF model 
has a threshold value that varies with an external stimulus. In the similar 2-dimensional Izhikevich model, the 
threshold expands to a curve31. The threshold curves in a 2-dimensional model have been demonstrated in many 
dynamic systems, such as the FitzHugh-Nagumo (FHN) model19,31,44, the reduced 2-dimensional HH model44, 
the Morris-Lecar (ML) model19,34, etc.19 However, the quantitative form of the separatrix cannot be precisely 
determined in these models. We present the analytic separatrix in a bi-dimensional model with piecewise linear 
nullclines and explain, in detail, the threshold phenomena that are determined by the separatrix-crossing mech-
anism for voltage clamping and other stimuli. We also deduce the first-order differential equation that describes 
the dynamic threshold variation versus time. This 2D PWL model is analytically solvable and can be regarded as 
a modified FHN model.

As shown in Fig. 4, the separatrices determine the thresholds of our 2D PWL model. The real separatrix 
is a straight line that is precisely determined by the intersecting point (saddle) of the middle segment of the 
v-nullcline and w-nullcline. The separatrix in the hyperpolarized voltage region is in fact the trajectory connected 
to the real separatrix.

The real separatrix of our 2D PWL model is a straight line in the v −​ w state plane
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where kw, km and bm are parameters; and kθ is the slope rate of the separatrix which depends on the parameters 
including the time constant τw (see Section Methods). The threshold is linearly related to the recovery variable w. 
Because kθ >​ km >​ kw (see Section Methods), we can infer that the threshold decreases as the strength of the depo-
larizing current increases. The ie increment linearly moves the separatrix (a straight line) up in the v −​ w plane. 
Therefore, an external current linearly changes the thresholds.

In the following paragraphs of this subsection, we will demonstrate that separatrix-crossing determines 
threshold parameters and threshold voltage variation after voltage clamping, step current and ramp current 
injections.

Figure 3.  Dynamic threshold point varied with stimuli in the Quadratic Integrate-and-Fire model.  
(a) After a ramp current, an AP cannot be induced without stimulation (blue solid line); a subthreshold constant 
current that lower the threshold can elicit an AP (red solid line). The different behavior can be predicted by 
the threshold lines–corresponding dashed lines. Red lines represent the situation with subthreshold current 
Ie =​ 50. The black dash-dotted line represents the threshold current. (b) The rectangular pulse induced AP (blue 
solid line) can be prolonged (red solid line) or prevented (green solid line) by hyperpolarized current injection. 
Whether the membrane potential exceeds the corresponding threshold predicts whether the neuron will 
generate an action potential after the stimulus switching.

Figure 4.  Separatrices and the separatrix-crossing mechanism after voltage clamp in the state plane of a 2D 
PWL model. Blue and cyan dashed straight-lines represent the v-nullcline and w-nullcline, respectively. Black dots 
and circles are three fixed points; the left one (stable spiral, black dot) is real, while the middle one (stable spiral, 
black dot) and the right one (saddle, black circle) are virtual. Wide red dash-dotted curves delineate the global 
separatrices, the right straight one in the middle region is a real separatrix (stable manifold) of the saddle, while 
the left winding one is a trajectory connected to the real separatrix. Blue and green solid lines are real trajectories. 
Black lines show the voltage clamp process, the dashed one demonstrates the ideal instantaneous voltage shift and 
the solid two with an arrow marking the time evolution show the voltage holding after the sudden shift. Initialized 
at state points 1, 3, 5 or 7, the neuron will follow the blue trajectory and has a small peak, which is considered a 
subthreshold fluctuation; initialized at the state points 2, 4, 6 or 8 (on the other side of separatrix–firing region), the 
peak of the membrane potential will be large and will be considered an AP. The difference between 1 and 2 (5 and 6) 
is whether the sudden shift of membrane potential from resting potential cross the separatrix, while the difference 
between 3 and 4 (7 and 8) is whether the continuous voltage holding crosses the separatrix.



www.nature.com/scientificreports/

8Scientific Reports | 6:31719 | DOI: 10.1038/srep31719

We demonstrate the separatrix-crossing mechanism of threshold variation after voltage clamp (θ(w, 0)) in 
the state plane of our 2D PWL model in Fig. 4. For a clear demonstration, we only use two different trajectories 
that originate from the state points 1 and 2 in the phase plane with the former (blue solid line) on the non-firing 
zone and the latter (green solid line) on the other side of the separatrix (red broad dash-dotted line) representing 
the firing zone. From Fig. 4, we observe the threshold phenomenon in rapid voltage shift from resting potential: 
the instantaneous voltage shift to state 2 or 6 horizontally across the separatrix from the resting zone to the firing 
region and thus an AP was generated. Conversely, there is no firing for the shift to state 1 or 5. The continuous 
voltage holding vertically evolves and then crosses the separatrix in the state plane, thereby determines another 
threshold phenomenon: the threshold timing of a voltage clamp at a fixed voltage. For example, if a depolarized 
voltage is held at 15 mV and the holding time is lengthened, the neuron will pass through state point 7 to state 
point 8, which prevent AP generation. Inversely, if a hyperpolarized voltage is held at −​15 mV, an increased 
clamping time will cause an AP generation (state 4) while a shorter clamping will not (state 3). The long voltage 
clamping at hyperpolarized potential facilitates AP generation. Therefore, the winding separatrix around the 
resting state in the hyperpolarized region results in post-inhibitory facilitation.

As shown in Fig. 5, the threshold voltages and timing that are determined by separatrix-crossing are clearly 
exhibited by the maximum rising voltages (Vmax) after voltage clamps with clamped voltage vc and clamping dura-
tion τc. Comparing two subfigures in Fig. 5, we find that a long voltage holding at a depolarized potential hampers 
AP generation. Conversely, a long voltage holding at a hyperpolarized potential facilitates AP generation. This 
phenomenon is caused by separatrix-crossing from the firing zone to the subthreshold zone during depolarized 
voltage holding and vice versa during hyperpolarized voltage holding, as demonstrated in Fig. 4 (from state 8 to 
state 7 and from state 4 to state 3, respectively). The border that is indicated by the color in the low voltage region 
(v <​ 25 mV) in Fig. 5a represents the normally mentioned threshold voltage and correctly fits the curve vc =​ θ(vc, 
τc), which is the projection of the real-separatrix in the τc −​ vc phase plane. The border in the high voltage region 
corresponds to the line dv/dt =​ 0. Additionally, in Fig. 5b, the separatrix projection in the hyperpolarized voltage 
region (left region in phase space) precisely limits the domain of the firing region of the numerical results.

Similar to voltage clamping, current injection, such as rectangular and ramp current pulses, will push the 
state across the separatrix if the pulse duration is long enough (see Supplementary Fig. S1). The threshold pulse 
strengths and durations, which are the projection of separatrices in the v −​ w phase plane, will form a threshold 
boundary in the parameter plane.

According to eqs (4) and (8), we can deduce the first order threshold equation

τ θ θ θ
τ

= − −
−
−

.θ

θ
∞

d
dt

w i k k
k k k

di
dt

( , ) ( )
( ) (9)w e

w w

m w

e

If die/dt =​ 0, i.e., ie(t) ≡​ Ie, our 2D PWL model satisfies the conditions of equation (5), and we obtain the same 
threshold equation reported in refs 9 and 18.

Our PWL model is more like a type III neuron according to Hodgkin’s classification, as it can not generate 
periodic APs. However, if we set the slope of w-nullcline to be larger than the middle segment of v-nullcline, the 
PWL model is capable of firing periodically and of having a type II f-I curve. Additionally, the separatrix is an 
unstable manifold of the unstable node of nullclines in the middle region (See Fig. S2.). Our 2D PWL models 
have only one real equilibrium and lack fold points (v-nullcline where has dw/dv =​ 0), and more important is the 

Figure 5.  Maximum voltages indicate threshold clamping voltages and times in the 2D PWL model. 
Numerical results (colored patches) fit the analytical results (colored lines). (a) Maximum voltages after 
depolarization voltage clamp. For a fixed clamping voltage vc, threshold clamping duration (τc) in the low 
voltage region (analytical results are indicated by the magenta dash-dotted line) indicate that a long depolarized 
voltage suppresses AP firing, while threshold clamping duration for a high voltage well fit the curve dv/dt =​ 0 
(yellow lines) which indicates that longer clamping potential time-series is the lack of a depolarizing phase 
of AP. (b) Maximum voltages of hyperpolarized voltage clamping. For a constant voltage, inverse with the 
depolarized situation, a short voltage clamping cannot induce an AP but a longer voltage clamping can. The 
threshold voltage for a fixed clamping time is a monotonic increasing function of clamping duration.
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distinctiveness of threshold phenomena depends on the time constant (see Fig. S3.). The threshold phenomena 
in these models essentially belong to CTP (QTP). However, it is interesting that the v-nullcline is discontinuous 
(DTP), and the threshold is determined by a real-separatrix (STP) which locates in the layer of canards (CTP).

Threshold surface in three-dimensional neuron models.  Here, we extend the two-dimensional PWL 
model to a three-dimensional model, which provides an example of three-dimensional phase space analysis of 
threshold phenomena.

As shown in Fig. 6, a plane of threshold states that separates the 3-dimensional space into two parts defines 
the firing or non-firing region in the middle region. The separatrix in this 3D PWL model is a real separatrix that 
is actually a plane determined by the stable and unstable eigenvectors. For dynamic analysis, see Supplementary 
Note S1 and Supplementary Fig. S4.

The separatrix, i.e., a threshold plane in the middle region is

θ = − − +
+ +
+ −

+u w i au bw ak bk
k k k

b i( , , ) (1 ) ( ),
(10)e

u w

u w m
m e

where a, b, ku, kw and km are parameters (see Methods section). The threshold variation equation versus time can 
be obtained as

θ
τ τ

= −
−

−
−

+
+ +
+ −

.
d
dt

ak v u bk v w ak bk
k k k
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1
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e

The two characteristic time constants, τu and τw, prevent the simplification of equation (11) into equation (1) if 
the difference of τu and τw is neither very large nor very small.

The threshold variation phenomena of post-stimulus, such as a voltage clamp, step current or ramp current, 
are also determined by separatrix-crossing in the 3D PWL model. Additionally, it is a natural extrapolation that 
similar higher dimensional PWL models may have separatrices in the form of hyperplanes.

Similar to our 2D PWL model, the threshold in this 3D PWL model is essentially belong to CTP, but the 
threshold set can be expressed as the real-separatrix which is in the layer of canards. As shown in Figure S5, we 
also provide the continuous threshold hypersurface in 3D FHN model, which is determined by a quasi-separatrix 
in 3D state space. The fold point in Fig. 2 expands to a fold curve (see Fig. S5, the solid black straight line). The 
separatrix comprises threshold manifolds passing through the fold points in the fold curve.

Threshold hypersurface in the HH model.  We numerically demonstrate the separatrix-crossing mechanism 
in the classic HH model after voltage clamps, as shown in Fig. 7. The maximum depolarizing voltage Vmax (indicated 
by color) after a voltage clamp under the corresponding Vc (clamped voltage) and τc (clamping duration) is mapped 
onto the voltage clamping surface. The clear boundary of the maximum voltage is a numerical approximation of the 
separatrix, which shows distinct characteristics in subthreshold and firing regions. The similar separatrices can be 
numerically plotted in other 3D state spaces (such as the m-h-n space, see Supplementary Fig. S6). The separatrix 
line in the voltage-clamp surface is part of a high-dimensional separatrix that intersects the voltage clamping surface.

Voltage clamp transient processes at several different potentials are displayed as yellow solid curves with the 
potential marked at the end (Vc-lines) in Fig. 7, while the green dashed lines with time marks (τc-lines) show the 
voltage clamping duration. The red dash-dotted line indicates the asymptotic value as time approaches infinity 
under different clamp voltages (m∞(V) and h∞(V)). As Vc-lines indicate, when the voltage is clamped at a certain 

Figure 6.  Separatrix determines the threshold voltages in a three-dimensional PWL model. Trajectories 
1, 3 and 5 (blue, red and magenta lines) behind the threshold plane and trajectories 2, 4 and 6 (green, cyan and 
yellow lines) before the threshold plane exhibit small difference in initial values; however, they have great behavior 
difference, subthreshold fluctuation or firing. The gray transparent plane, which divide the space into subthreshold 
and suprathreshold regions, is a separatrix determined by stable (red arrow) and unstable (blue arrow) eigenvectors 
of an equilibrium (blue point). The legend shows the initial coordinates in the form (v0, u0) (w0 =​ 0 is ignored).
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value, an immediate release causes the system to remain in the firing zone, allowing for the generation of an AP. 
Conversely, if being held at a voltage for a long time, the system will cross the separatrix into the subthreshold 
zone, and APs cannot be generated.

As seen in the PWL models, whether the HH neuron will generate an action potential after voltage clamping 
is determined by whether the clamped voltage (Vc) exceed the instantaneous threshold, θ. We numerically show 
the scenarios of threshold variation during several voltage clampings with varying clamped voltages and clamping 
durations in Fig. S7. The intersecting points of Vc and θ form the clear threshold border in the low voltage region 
of Fig. 8, i.e., Vc =​ θ(Vc, τc; 0) as m, h and n is the function of Vc and τc according to equation (29)). The similarity 
of maximum voltages versus clamping voltages and durations in the 2D PWL model and the HH model indicate 
similar separatrix-crossing mechanism, but the differences in the details indicate the complex interaction of dif-
ferent gating of ion channels in the HH model (Supplementary Fig. S8).

According to the general equations (4) and (29), the instantaneous threshold voltage variation in the HH 
model following a voltage clamp (θ(Vc, τc; 0)) is determined by

∑θ θ
τ

=
∂
∂

− = .τ
∞

−d m h n
dt x V

x V x x m h n( , , ) 1
( )

( ( ) )e , ( , , )
(12)x x c

c

t
V0 ( )x c

Figure 7.  The separatrix-crossing mechanism of the HH model after voltage clamp in the V–m–h state 
space. Colors on the voltage clamping surface indicate maximum voltages after voltage clamping. The clear 
boundary between blue and other colors is the numerical approximation of separatrix on a voltage clamping 
surface in the V-m-h phase space. The red dash-dotted line reveals the asymptote when the voltage clamping 
time is infinity. Yellow solid lines show voltage clamp processes at several voltages (Vc-lines) and the green 
dashed lines indicate the same duration after voltage clamp (τc-lines); all are marked with a number, showing 
corresponding values at the end. The separatrix in V-m-h space is part of the global separatrix in four 
dimensional phase space and divides the voltage clamping surface into firing and no firing regions. A Vc-line 
shows that the state of the neuron continuously changes, crosses the separatrix and comes into the no firing 
region as the clamping time τc increases.

Figure 8.  Maximum voltages indicate threshold clamping voltages and times in the classic HH neuron.  
(a) Maximum voltages after depolarized voltage clamp. For a fixed clamping voltage Vc, as the clamping 
duration τc increases, the peak of the action potential decreases. Extended voltage holding inhibits AP 
generation after voltage clamping. The border in the low voltage region displays the normal threshold and 
the border in the high voltage region is determined by dV/dt =​ 0 (see Supplementary Fig. S8). (b) Maximum 
voltages of hyperpolarized voltage clamps. For a constant voltage, inverse with the depolarized situation; 
the short time clamps cannot induce an AP while the long-enough ones can. As opposed to the depolarized 
situation, the threshold voltage for a fixed clamping time is a monotonic increasing function.
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From the above equation, we observe that in principle, all channels and their subunits exert effects on the thresh-
old variations because they are all coupled to the membrane potential; however, the significance is determined by 
weights of both the time constant τx(Vc) and ∂​θ/∂​x. Additionally, if the external stimulus is not a voltage clamp, 
e.g., ramp current, the ‘time constant’ τx(V) for each gating variable also varies with the membrane potential, and 
therefore, the temporal evolution of post-stimulus threshold is more complex.

Discussion
Highly variable spiking thresholds are observed both in vitro6,9,10 and in vivo2–7. Recent studies concerning the 
threshold variation of neural spikes demonstrate three distinct characteristics. First, as the threshold is stimu-
lus dependent, most researchers use the threshold after the stimulus is off9,24,28. In the current study, we show 
that the separatrix-crossing mechanism is universal for post-stimulus9,24,28 (θ(X; 0)) and transient29,34 (θ(X; Ie))  
threshold phenomena. Second, because the threshold is not a single value, several studies have extended the 
threshold point to a threshold curve19,28. In fact, the separatrix concept has been proposed since the 1950s26,44, 
and similar hypotheses for general threshold also have recently been reintroduced19,27,28. In the current paper, 
we demonstrate that different types of separatrices generally exist in excitable neuron models and systemati-
cally show that separatrix-crossing mechanism determines threshold phenomena in example models, especially 
the 1-, 2- and 3-dimensional models with analytic separatrices. We also found that the singular-point threshold 
and canard threshold phenomena coexist in type I neuron which have previously been considered to only have 
singular-point threshold phenomena. Third, researchers attempt to simplify the threshold problem and construct 
quantitative threshold equations9,16,17,19. Incorporating dynamic thresholds into the IF model was shown to be a 
very efficient way to predict spike events in real neurons38. Researchers also have simplified the threshold varia-
tion to a threshold equation16–19. Here, we deduced a detailed threshold evolving equation versus time, which can 
be simplified to the previously assumed equation6,9,15–19 for the simplest case.

Separatrix-crossing framework includes different ion channel gating variables with different characteristic 
times. The ion channel subunits with long characteristic times may induce the threshold variation related to 
previous spikes23,45. According to ref. 33, the synaptic current with a long decay can determine the cessation of 
rebound spiking, which can not be explained by inhibitory current, as if the synaptic current was added using 
a differential equation of an independent variable. Thus, we infer that the separatrix in full state space should 
include the threshold modulation mechanisms over a long time, if all of the factors influencing the threshold are 
included in the differential equations. If the difference in characteristic time scales between dominant slow and 
fast variables is not large, intermediate-amplitude AP will be generated and threshold phenomena maybe ambigu-
ous31 (QTP), which is the the reason why the quasi-separatrix is always mentioned as ‘not well-defined threshold’ 
in neuron models31,32,38. However, considering that the type II neurons are functional in nervous systems, so it 
is reasonable to infer that either these neurons do have large enough differences of characteristic time scales, or 
other factors such as noise are able to overcome this weakness. In addition, the threshold voltages can still be 
defined by the quasi-separatrix even though the threshold phenomena are not distinct.

In the present framework of separatrix-crossing, the noise or highly fluctuating inputs are not included. In 
our framework, the noise and the fluctuating inputs do not only change the state of the neuron but also vary 
the threshold. However, because that the threshold is instantaneous, it is possible to extend the framework to 
including the noise or fluctuating inputs, which cause instantaneous random variation of the threshold and 
state. Khovanov et al.35 and Franović et al.36,37 have studied how the external and internal noise cause a spon-
taneous spike by considering quasi-separatrix (‘ghost-separatrix’35) or separatrix-like boundary (‘terminating  
boundary’36,37) using different methods in different neuron models, and a further exploration is worthwhile.

Although the full explanation for spike-thresholds (especially the threshold of spontaneous spikes) should 
resort to the model with noise, the present framework can still provide some qualitative understanding. It has 
been found that the threshold voltage is positively correlated with the membrane potential (V)1–3 and nega-
tively correlated with the rising rate of membrane potential (dV/dt) before the spike2,3,45. In state space of deter-
ministic models, long enough dwelling at a membrane potential without stimulation before the spike (250 ms in  
refs 1–3) implies that the membrane state is close to the asymptotic state of long voltage holding (the w-nullcline). 
The corresponding instantaneous threshold does increase with the membrane potential in the w-nullcline (see Fig. 
S9). The negative correlation between threshold and the rising rate of membrane potential is obvious24,25. As dis-
played in both Figs S1 and S9, the stronger currents cause trajectories on which the gating variables varied less for the 
same v increment than that of the weaker currents. The weaker adaptation of gating variables, especially the inactiva-
tion of Na+ channel and activation of K+ channel, induced by a more synchronous stimulus brings a lower threshold.

The threshold variability and the rapidity of onset of AP have inspired a recent debate4,5,10,46–49 concern-
ing whether the two characteristics can be satisfied at the same time by using the classic HH model10,47. Two 
explanations that try to reconcile the two conflicting facts concern more than one compartment47,50. In a 
multi-compartment model, the thresholds of each compartment are also affected by the neighbor’s states, such as 
the lateral current47 and the relative size of the soma and axon50. It has been demonstrated that the morphology 
and distribution of ion channels can affect the thresholds of a neuron, especially the axon initial segment, which 
has a very high sodium channel density10,47,51. How will the separatrices of compartments determine the threshold 
of the neuron? Our simple PWL models with precise thresholds provide applicable models that are suitable for 
future exploration of these concepts.

In summary, by introducing the general separatrix concept, we demonstrate that the separatrix generally exists 
in excitable neurons, and determine threshold voltages, threshold voltage variation and post-stimulus thresh-
old parameters for AP generation. We brought forward the idea that threshold phenomena can be classified 
into two general types with different mechanisms, the parameter threshold, described by the bifurcation theory, 
and the state threshold, explained by separatrix-crossing. The separatrix-crossing mechanism also determines 
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the threshold of timing-related parameters of independent variables. We also naturally deduced the threshold 
variation equation versus time and transformed it into the simple form used by previous researchers6,9,15–18 for 
a simpler case. Separatrix and separatrix-crossing-determined threshold phenomena were demonstrated and 
verified in example models. The separatrix-crossing mechanism and models we proposed will benefit further 
investigation of threshold variability on other factors, such as noise, morphology, passive membrane properties 
and the spatial distribution of the ion channels of neurons.

Methods
Classic FHN model and Boltzmann-FHN model.  The classic FHN model is described by differential 
equations:

= − − +
dv
dt

v v w i t
3

( ), (13)e

3

τ
=

+ −dw
dt

k v b w ,
(14)

w w

w

where v represents membrane potential, w is a recovery variable and ie(t) is time-varying injected external cur-
rent. To demonstrate of canard threshold phenomenon well, we let τw =​ 15, kw =​ 1.25, bw =​ 0.875 and ie(t) ≡​ 0. The 
neuron belongs to type II neuron.

Similar to ML-FHN neuron model used in ref. 29, we modified equation (14) of recovery variable w to:
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As the nullcline of w is a Boltzmann function, we call it as ‘Boltzmann-FHN model’. To show three separatrices 
determined by saddle and canard phenomenon well, we take τw =​ 8, a =​ 2, b =​ 3, c =​ 0.27 and ie(t) ≡​ 0.62. The 
model is a type I neuron.

To show how canard trajectories constitute a quasi-separatrix in three dimensional state space (Fig. S5), we 
also extend the classic FHN model to be three dimensional by adding a slow recovery variable u similar as w: u 
is substracted in equation (13) and du/dt follows the same form of equation (14). The parameters for 3D FHN 
model in Fig. S5 are as follow: τw =​ 25, kw =​ 1.25 and bw =​ 0; τu =​ 15, ku =​ 1.25 and bu =​ 0; ie(t) ≡​ −​2.5.

Two-dimensional piecewise linear model.  The piecewise linear model is named for its piecewise linear 
nullclines in the phase space. The general form of the model we used in this paper is:

= − +Cdv
dt

f v w i t( ) ( ), (16)e

τ= −
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dt

k v w( )/ , (17)w w

where f(v) is a piecewise linear function of v (membrane potential), w represents the recovery current, C is the 
membrane capacitance, τw =​ 5 is the time constant of w, and kw =​ 0.45 is a coefficient. As a model demonstrate 
threshold phenomena in principle, the equations is dimensionless, so do the equations of 3D PWL model.

We take f(v) as a piecewise linear function:
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Slope rates of left, middle and right segments are represented as kl =​ −​0.5, km =​ 0.5, and kr =​ −​0.25, respectively, 
whereas the intercepts are bl =​ 0, bm =​ −​1.5 and br =​ 17.25, and the parameters that separate the definition scales 
are vl =​ 1.5 and vr =​ 25.0.

According the derivation in Supplementary Note S1, the threshold voltages is:

θ = −
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θk
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2 , and 

bθ =​ (ie +​ bm)(kw −​ kθ)/(kw −​ km) is the intercept. The threshold boundary by projecting the separatrix into the 
plane of clamped voltage versus clamping time (τc −​ vc) is as follow:

θ τ =
−

− −
.θ

θ

−

−

τ
τ

τ
τ

w b

k k
( ) e

(1 e ) (20)
c

0
c
w

c
w



www.nature.com/scientificreports/

13Scientific Reports | 6:31719 | DOI: 10.1038/srep31719

Three-dimensional piecewise linear model.  We extended the two-dimensional piecewise linear model 
to three dimensional to show the separatrix in the three dimensional phase space:

= − − +Cdv
dt
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τ= −
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where f(v) is a piecewise linear function of membrane potential v, f(v) has the same form as in formula (18), u and 
w are the recovery variables, τu (τw) is the time constant of u (w), and ku >​ 0 (kw >​ 0) is a coefficient.

Parameters of f(v) are the same as in the 2D PWL model, with the exception of km =​ 0.95, bm =​ −​2.175, 
br =​ 57.825, and sr =​ 50.0. The slope rates are ku =​ 0.45 and kw =​ 0.6. Time constants are τu =​ 5.0 and τw =​ 10.0.

See the derivation in Supplementary Note S2, the explicit equation of the threshold can be written as:
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Supplementary equation (S3). Although two threshold planes exist, only the plane shown in Supplementary  
Fig. S4 is located properly to serve as the threshold for this 3-dimensional PWL neuron.

Classic Hodgkin-Huxley model.  The equations of the classic HH model are21
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where τx(V) =​ 1/(αx(V) +​ βx(V)) (x represents m, h or n here and in the following equations and paragraphs) is the 
time constant of x, and x∞(V) =​ αx(V)/(αx(V) +​ βx(V)) is the asymptotic value of x when time approaches +​∞​.  
The rate functions αx and βx are:
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Reversal potentials are ENa =​ 50 mV, EK =​ −​77 mV and EL =​ −​54.4 mV.
The neuronal membrane potential is clamped to the set voltage by an ideal voltage-clamp protocol. Briefly, the 

voltage is set to be the clamped voltage while the other equations are allowed to evolve. By setting V to be constant 
in equations (26)–(28), we obtain:

= + − .τ
∞ ∞

−
x V t x x V x x V( , , ) ( ) ( ( ))e (29)c c c

t
V0 0 ( )x c

This equation describes the asymptotic transient process of gating variable x when the neuron is clamped to the 
voltage Vc. Thus, we analytically calculate channel states x(Vc,τc) for the initial states x0. x(Vc,τc) is the new initial 
values to determine whether the neuron will firing or not following voltage clamping. Both the resting state and 
the subsequent evolution after voltage clamping were numerically calculated using the 4th-order Runge-Kutta 
method. The resting state was saved after 200 ms of running the model without any stimulation. After the voltage 
clamp, we did not provide other stimulus, thereby making the HH model an autonomous system again.
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