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Abstract

Background: The aim of the present study was to compare the power of single nucleotide polymorphism (SNP)-
based genome-wide association study (GWAS) and haplotype-based GWAS for quantitative trait loci (QTL)
detection, and to detect novel candidate genes affecting economically important traits in a purebred Duroc
population comprising seven-generation pedigree. First, we performed a simulation analysis using real genotype
data of this population to compare the power (based on the null hypothesis) of the two methods. We then
performed GWAS using both methods and real phenotype data comprising 52 traits, which included growth,
carcass, and meat quality traits.

Results: In total, 836 animals were genotyped using the Illumina PorcineSNP60 BeadChip and 14 customized SNPs
from regions of known candidate genes related to the traits of interest. The power of SNP-based GWAS was greater
than that of haplotype-based GWAS in a simulation analysis. In real data analysis, a larger number of significant
regions was obtained by SNP-based GWAS than by haplotype-based GWAS. For SNP-based GWAS, 23 genome-wide
significant SNP regions were detected for 17 traits, and 120 genome-wide suggestive SNP regions were detected
for 27 traits. For haplotype-based GWAS, 6 genome-wide significant SNP regions were detected for four traits, and
11 genome-wide suggestive SNP regions were detected for eight traits. All genome-wide significant SNP regions
detected by haplotype-based GWAS were located in regions also detected by SNP-based GWAS. Four regions
detected by SNP-based GWAS were significantly associated with multiple traits: on Sus scrofa chromosome (SSC) 1
at 304 Mb; and on SSC7 at 35–39 Mb, 41–42 Mb, and 103 Mb. The vertnin gene (VRTN) in particular, was located on
SSC7 at 103 Mb and was significantly associated with vertebrae number and carcass lengths. Mapped QTL regions
contain some candidate genes involved in skeletal formation (FUBP3; far upstream element binding protein 3) and
fat deposition (METTL3; methyltransferase like 3).

Conclusion: Our results show that a multigenerational pig population is useful for detecting QTL, which are
typically segregated in a purebred population. In addition, a novel significant region could be detected by SNP-
based GWAS as opposed to haplotype-based GWAS.
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Background
Even before performance testing in pig breeding, single
nucleotide polymorphisms (SNPs) associated with eco-
nomically important traits (also referred to as quantitative
trait loci [QTL]) can be useful in the selection of young
animals. Several local animal experiment stations in Japan
have performed closed-line breeding for more than five
generations of purebred pigs [1, 2]. To improve these
purebred populations using QTL information, segregation
of QTL within a purebred population is necessary. One of
the methods to detect segregation of QTL that affect eco-
nomically important traits is genome-wide linkage-based
QTL mapping in closed-line breeding populations as de-
scribed by Uemoto et al. [3] and Soma et al. [4]. Using a
purebred Duroc population comprised of multigener-
ational pedigree, these researchers detected several QTL
and further fine mapping studies revealed significant SNPs
in positional candidate genes, such as the stearoyl-CoA
desaturase (SCD) gene for fatty acid composition [5] and
the leptin receptor (LEPR) gene for fat accumulation [6].
These QTL can be used in the breeding management of
purebred populations. Therefore, closed-line breeding
population is useful to detect QTL.
Recent studies have reported genetic loci that are asso-

ciated with complex traits using genome-wide associ-
ation studies (GWAS) with high-density SNP arrays [7],
and have demonstrated the power of GWAS to detect
significant QTL in pig populations. This linkage disequi-
librium (LD)-based QTL mapping with SNP array gives
hope to the prospect of finding more QTL for econom-
ically important traits in pig populations. Linkage-based
GWAS and LD-based GWAS can both detect significant
SNPs in LD with common QTL variants that exert
medium to high effects; however, LD-based GWAS per-
mits finer mapping than linkage-based GWAS does [8].
Some studies have drawn comparisons between the
methods employed for linkage-based GWAS and LD-
based GWAS using SNP arrays in half-sib or F2 inter-
cross pig populations [9–11], and found that the results
of LD-based GWAS were generally consistent with those
of linkage-based GWAS. However, to our knowledge, a
comparison of both methods has not been performed in
a purebred population comprising multigenerational
pedigree. In addition, novel candidate regions might be
detectable in such populations.
The purpose of the present study was (1) to compare

the power between SNP-based GWAS and haplotype-
based GWAS for QTL detection in simulation and real
phenotype data analyses, and (2) to detect novel candi-
date genes affecting economically important traits. We
used real genotype data of a purebred Duroc population
comprising seven-generation pedigree in simulation ana-
lysis. These genotypes and 52 quantitative traits related
to growth, carcass, and meat quality were used in real

phenotype data analysis. We performed the linear mixed
model association test at each SNP locus for LD-based
GWAS (referred to as SNP-based GWAS), and at each
haplotype locus for linkage-based GWAS (referred to as
haplotype-based GWAS). Haplotypes were constructed
based on pedigree and LD information [12].

Methods
Experimental animals
All procedures involving animals followed the Guidelines
for the Care and Use of Laboratory Animals established
by the National Livestock Breeding Center. A total of 836
Duroc purebred pigs at the National Livestock Breeding
Center in Japan were used for GWAS. This population
comprised one family from the first to the seventh gener-
ation; therefore, all individuals were related. Table 1 shows
the number of animals by generation. The pigs had been
selected on the basis of average daily gain (DG) from 30 to
105 kg of body weight, ultrasonically measured loin eye
muscle area (LEA), backfat thickness (BF) at 105 kg
weight, and intramuscular fat (IMF) content. The set
breeding goals were as follows: 1100 g/d (for DG), 36 cm2

(for LEA), 2.6 cm (for BF), and 6 % (for IMF content). DG,
LEA, and BF were measured in all pigs, and IMF content
was measured in slaughtered sib-tested pigs. Boars (16)
and gilts (22) were mated in the first generation, and 22
gilts from among their offspring and nine boars were then
mated in the second generation. Pigs in the first and sec-
ond generations were regarded as the base population.
Closed-line breeding was performed from the third to the
seventh generation, and phenotypes were determined in
each generation. Pig in each generation were mated to ac-
count for inbreeding and to prevent rapid loss of genetic
diversity, and a new generation was obtained each year.
The inbreeding coefficient was estimated by the algorithm
of Meuwissen and Luo [13], and the inbreeding coefficient
of animals in each generation is shown in Additional file
1: Figure S1. Growth traits were measured in all pigs, and
carcass and meat quality traits were measured in slaugh-
tered sib-tested pigs. The selection method used in

Table 1 Population number by generation

Male Female Total

Generation All Sib-tested All Sib-tested All Sib-tested

1 16 0 22 0 38 0

2 19 10 40 11 59 21

3 42 19 47 10 89 29

4 67 31 86 26 153 57

5 73 40 86 21 159 61

6 71 39 86 27 157 66

7 80 44 101 30 181 74

Total 368 183 468 125 836 308
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closed-line breeding was based on the methods of Suzuki
et al. [1]. Breeding values of DG, LEA, BF, and IMF con-
tent were predicted by multi-trait animal model best liner
unbiased prediction (BLUP), and aggregate breeding
values were calculated by multiplying the relative eco-
nomic weights by the estimated breeding value of each
trait. The respective economic weights for DG, LEA, BF,
and IMF content were assumed as 0.000, 0.882, −1.778,
and 4.450, respectively. The aggregate breeding values
were used as an indicator for selection in the breeding
program.

Genotyping
Genomic DNA of 836 animals was extracted from ear tis-
sue of 10-day-old pigs using proteinase K and the phenol
method. Sample DNA was quantified and genotyped using
the Illumina PorcineSNP60 BeadChip (Illumina, San
Diego, CA, USA) according to the manufacturer protocol.
Image data were analyzed with the iScan (Illumina) and
genotype data were then called using the genotyping mod-
ule contained in the GenomeStudio software (Illumina).
Autosomal chromosomes were used and SNP quality con-
trol was assessed using the PLINK software [14]. The ex-
clusion criteria for SNPs were minor allele frequency
(MAF) <0.01, call rate <0.95, and Hardy-Weinberg equilib-
rium test <0.001. The exclusion criteria for animals was
call rate <0.95.
Fourteen SNPs were chosen based on the current

knowledge of physiological roles or the known candidate
genes affecting pig meat quality and carcass traits, as
shown in Table 2. These SNPs were genotyped by poly-
merase chain reaction-restriction fragment length poly-
morphism (PCR-RFLP), TaqMan SNP assay, or fragment
length analysis. Marker information, such as associated
production trait, PCR primers, reporters, and restriction

enzymes for discriminating sequence variations are pre-
sented in Additional file 2: Table S1. Following quality
control measures, the final data set included 831 individ-
uals, which were genotyped at 38,128 SNPs (38,114
SNPs in the SNP array and 14 SNPs in the known candi-
date genes) and which were available for GWAS.

LD information
We estimated LD coefficient (r2) values, which are a
measure of LD, for all pairs of SNPs less than 10 Mb
apart by PLINK software [14]. Average r2 values for a
given intermarker distance, with marker distances
grouped in 1 kb bins, were estimated in each autosome,
and the average r2 values among chromosomes were
then calculated. Average r2 values were then plotted
against intermarker distance, as shown in Additional file
3: Figure S2. The results showed that moderate LD (the
r2 value = 0.20) extended to about 1.0 Mb in this popula-
tion. The threshold for useful LD was assumed to be r2

value ≧ 0.20 for the application of GWAS in this study,
and the extent of LD (1.0 Mb) was applied for simula-
tion study and QTL detection.

SNP-based GWAS
We performed an SNP-based association study to detect
significant SNPs. The adjusted phenotypes were first ob-
tained by the following mixed model:

y ¼ Xbþ Zuþ e

where y is the observation; X and Z are the design
matrices for fixed and random effects, respectively; b
represents sex (three classes; boar, barrow, and gilt) and
generation (seven classes) effects as a fixed effect; this
generation effect is the environmental effect at each

Table 2 Genetic markers associated with production trait

Chromosome Gene symbol/SNPa Gene name Trait

1 CYB5A cytochrome b5 type A (microsomal) Boar taint

1 MC4R melanocortin-4 receptor Growth

2 CAST calpastatin Meat quality

4 FABP4 fatty acid binding protein 4, adipocyte Fat

6 ALGA0113531 uncharacterized LOC102157459 Boar taint

6 FTO fat mass and obesity-associated Fat

6 HFABP heart fatty acid binding protein Fat

6 LEPR leptin receptor Fat

6 PIK3C3 phosphoinositide-3-kinase, class 3 Growth

7 VRTN vertnin Thoracic vertebrae number

8 CCKAR cholecystokinin type A receptor Growth

14 GPR120 free fatty acid receptor 4 Growth

14 CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1 Boar taint
aPolymorphisms detailed information are shown in Additional file 2: Table S1
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generation; u represents polygenic effects distributed as
N(0,Aσu

2); and e represents the residual effect distributed
as N(0, Iσe

2). A is the numerator relationship matrix, σu
2 is

polygenic variance, I is the identity matrix, and σe
2 is re-

sidual variance. The ASREML program [15] was used to
estimate all effects, and the adjusted phenotypes (yadj)
were then derived by

yadj ¼ y−Xb̂

The adjusted phenotypes were then used as the
dependent traits in a linear mixed model approach for
each SNP:

yadj ¼ βiwi þ uþ e0i

where βi is the allele substitution effect; wi is a vector of
SNP genotypes (coded as 0, 1, or 2 for the homozygote,
heterozygote, and the other homozygote, respectively);
and e’i is the random residual at the i-th SNP distributed
as N(0, Iσe '

2 ). The regression coefficient and p-values
tested by the Wald test were obtained by Genome-wide
mixed-model association (GEMMA) software [16]. The
proportion of phenotypic variance explained by the i-th
SNP effects was calculated using the formula:

Proportioni ¼ 2pi 1−pið Þβ2i
V P

where pi is MAF of the i-th SNP and VP is the adjusted
phenotypic variance [17].

Haplotype-based GWAS
Haplotype-based GWAS was performed on the basis of
pedigree and LD information. Haplotypes were constructed
using the hidden Markov model with DualPHASE [12],
which assumes the number of ancestral haplotype states
(K). A compromise value of K = 20 given the simulation
considered [12] was used in the present study. The
haplotype-based association analysis was then conducted
using a linear mixed model using the GLASCOW software
[18]. The method by GLASCOW software is composed of
two steps: the residuals solved by linear mixed model with-
out haplotype effect is firstly obtained, and the residuals are
then used to test significance of association between the
haplotype effect and the phenotype at each tested position.
Adjusted phenotypes in SNP-based GWAS were used as
the dependent traits in the model as follows:

yadj ¼ 1nμþHihi þ uþ e0i

where 1n is a vector of n ones; n is the number of ani-
mals with phenotype; μ is the mean; hi is a vector of
haplotype random effect distributed as N(0, Iσh

2); Hi is
the incidence matrix of haplotype genotypes for the indi-
viduals at the i-th haplotype locus; The element of Hi

(Hjk) is equal to the number of copies (from 0 to 2) of
ancestral hapotype k carried by j-th animal; σh

2 is the
haplotypic variance; and the covariance between ances-
tral haplotype effects is assumed to be zero. For this ana-
lysis, the polygenic effects (u) distributed as N(0,Aσu

2)
and the residual effects (e’i) distributed as N(0, Iσe '

2 ) were
derived in a similar manner as they were for the SNP-
based GWAS. Using the GLASCOW software, a test sta-
tistics T based on the score tests was calculated at every
tested position as follows;

T ¼ 0:5 yadj−1nμ−u
� �

0HiHi
0 yadj−1nμ−u
� �

The T score can be interpreted as a sum over the ances-
tral haplotypes groups of the sum of the squared difference
between observed (i.e., yadj) and expected (i.e., 1nμ + u)
values of the phenotypes for each group. The significance
of the T scores can be obtained using the distribution of the
T score under the null hypothesis (σh

2 = 0) that could be
approximated using a gamma distribution. Parameters of
the gamma distribution were estimated for each tested
position.

QTL detection
For both methods, the Bonferroni correction was applied
to determine the 5 % genome-wide significance thresh-
olds (P = 1.31 × 10−6). The extent of LD in this popula-
tion was about 1.0 Mb, and the genome-wide
significance thresholds defined by the Bonferroni correc-
tion was too conservative. Therefore, the genome-wide
suggestive threshold was also defined as; P = 5.0 × 10−5.
SNP maps were updated according to the SNPchiMp v.2
database [19] and the Sscrofa 10.2 assembly. The pos-
itional candidate genes within the range of 1 Mb bin size
of the significant region were scanned using the NCBI2R
R-package [20]. r2 values between the SNPs of the sig-
nificant region were calculated, and the haplotype block
pattern was visualized using Haploview software [21].

Simulations
We used real genotype data and pedigree information in
simulation analysis. The base phenotypes under the null
hypothesis were simulated using a polygenic model with
pedigree information [22]. The additive genetic value of
j-th animal (uj) was generated based on data from the
parent. If both parents were unknown (i.e., the animal is
a founder), then uj was derived as follows: uj ~N(0, σu

2).
If both parents were known, uj was derived as follows:
uj ~N(0.5(usj + uDj), 0.5(1 − 0.5(FSj + FDj)σu

2)), where uSj
and uDj are the additive genetic values of sire and dam
of the j-th animal, respectively, and FSj and FDj are the
inbreeding coefficient for the sire and dam of the j-th
animal, respectively. The residual value of the j-th ani-
mal (ej) was derived from ej ~N(0, σe

2). The heritability of
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the base phenotype was set at 0.30, and phenotypic vari-
ance was assumed to be 1. The base phenotype was
under the null hypothesis of no phenotype-SNP correl-
ation (i.e., there was no significant effect for GWAS)
(Additional file 4: Figure S3), and was used for simula-
tion analysis.
Some missing genotypes were imputed by DualPHASE

[12], and were used to generate QTL effects in 100 repli-
cates. In each replicate, we simulated QTL effects under
two factors: different QTL MAF categories and QTL
heritabilities. Two QTL MAF categories were defined as
follows: a low MAF group (0.01≤MAF ≤0.10) and a high
MAF group (0.10<MAF ≤0.5). Six set values of QTL
heritability (0.01, 0.03, 0.05, 0.07, 0.10, and 0.15) were
used. We carried out simulations in various combinations
of QTL MAF categories (two analyses) and QTL heritabil-
ities (six analyses). In each replicate, one SNP in the SNP
array was randomly selected as the QTL and assigned a

QTL effect derived by: �
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2QTL

2p 1−pð Þ

r
; where σQTL

2 is the QTL

variance and p is the allele frequency of the QTL across
all animals. The signs of QTL effects were randomly se-
lected, and the QTL variance was the same as the setting
value of QTL heritability, because the phenotypic variance
was assumed to be 1. The QTL effect was then added to
the base phenotypic value. An error value was also added
to generate a new phenotypic value with a setting value of
heritability (0.30). The SNP selected as the QTL was then
masked. In each replicate, SNP-based GWAS and
haplotype-based GWAS were performed, and the power
to achieve 5 % genome-wide significance (P = 1.31 × 10−6)
was calculated as the proportion of replicates with a sig-
nificant SNP within ± 0.5 Mb of the selected QTL. In
addition, we also evaluated which method is practical for
finer mapping in this population. The power to achieve
5 % genome-wide significance was calculated in three dif-
ferent regions, which ranged from ± 0.5 Mb, ± 0.5–
1.0 Mb, and ± 1.0–2.0 Mb, apart from the selected QTL.
In this scenario, the QTL heritability was set to 0.10.

Phenotypes
Table 3 summarizes the data of the 52 traits of interest
in the present study. Pigs were weighed at birth and at
21 day of age. From this group, pigs (barrows and gilts)
that qualified for selection as candidates for the study
and for full-sib tests were raised until they attained a
body weight of 105 kg. The DG was calculated between
30 and 105 kg of body weight. Pigs were slaughtered at a
live weight of approximately 105 kg. The day before
slaughter, body weight, size, and length, including the
circumference of the chest (CC) and cannon bone
(CCB), the height at the withers (HEIGHT), and the
chest depth (CD) and width (CW) of all animals were

measured and recorded. Body composition traits com-
prised ultrasonically measured LEA and BF at half-body
length. Structural soundness traits, such as those of the
front and rear leg pasterns, were scored at body weights
of 30 and 105 kg, based on a scale of 1 (straight) to 5
(soft). Scoring criteria and descriptions are presented in
Additional file 5: Figure S4.
Carcasses were scalded and dehaired, and chilled over-

night. Carcass measurements were then recorded as fol-
lows: weight (CWT); lengths I (CL1), II (CL2), and III
(CL3); thickness (CT); and vertebrae number. CL1, CL2,
and CL3 denote the lengths from the first cervical verte-
bra to the pubic bone; from the first rib to the pubic
bone; and from the first rib to last lumbar vertebra, re-
spectively. Depth of backfat over the midline was mea-
sured with a ruler at the first rib (shoulder: SSFT), at the
thinnest depth over the ribs (back: BSFT), and at the
first lumbar vertebra (loin: LSFT). One side of the
carcass was split between the fourth and fifth ribs (at
45r), and at half-body length (at HBL). The longissimus
muscle was traced on acetate paper and the area was de-
termined using computerized morphometric planimetry.
Cross sections of each carcass were then recorded
photographically. The fat area ratios for subcutaneous
fat (SFA), intermuscular fat (IFA), and all fat area
(ALLFA) ratios were measured at 45r and at HBL, using
the ImageJ ver 1.48 software [23]. The classification de-
scriptions are presented in Additional file 6: Figure S5.
The weight of each wholesale cut of the remaining side

of the carcass was then recorded. Moisture (MOS), IMF,
protein (PROT), cooking loss (COOK), water holding
capacity (WHC), and shear force value (SF) were mea-
sured as described by Okumura et al. [24]. The MOS
content was determined by drying approximately 2 g of
a minced sample for 24 h at 105 °C. Using samples that
had already been analyzed for MOS content, IMF con-
tent was determined by Soxhlet extraction of the dried
samples with diethyl ether for 16 h. The PROT content
was determined by the Kjeldahl method, using a nitro-
gen distillation titration device (2400 Kjeltec Auto Sam-
pler System; FOSS, Hillerod, Denmark). The COOK was
determined by placing approximately 50 g of a cube-
shaped sample of meat into a sealed plastic bag, which
was then placed in a water bath for 1 h at 70 °C. For SF
determination, at least four pieces that had already been
analyzed for COOK were cut (vertical cross section
1 cm × 1 cm) parallel to the long axis of the muscle fi-
bers. Each piece was sheared with a Warner-Bratzler
shear device attached to an Instron Universal Testing
Machine (Model 5542; Instron Japan Co. Ltd., Kana-
gawa, Japan) with a cross head speed of 200 mm/min.
The WHC was determined by centrifugation of approxi-
mately 500 mg of a cube-shaped sample of meat at 2380 g
for 30 min at 2 °C. The pH of the longissimus muscle was
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Table 3 Summary statistics of the study subjects

Trait Abbreviation Na Mean SDb Minimum Maximum

Growth

Average daily gain from 30 to 105 kg body wt, g/d DG 779 1094.00 112.80 750.6 1440.0

Ultrasound loin muscle area, cm2 LEA 776 34.64 3.27 26.0 50.2

Ultrasound backfat thickness, cm BF 776 3.17 0.56 1.8 5.0

Body measurements

Height at withers, cm HEIGHT 779 60.97 1.98 54.4 67.4

Length, cm LENGTH 779 106.00 3.38 98.0 116.0

Front width, cm FW 779 34.72 1.49 30.0 42.5

Chest width, cm CW 779 29.88 1.51 19.0 39.2

Rear width, cm RW 779 32.29 1.21 28.6 38.8

Chest depth, cm CD 779 35.77 1.28 24.9 39.8

Circumference of chest, cm CC 779 111.40 3.01 99.0 120.0

Circumference of cannon bone at front (at 105 kg), cm CCB at F105 779 18.17 0.67 16.0 20.6

Circumference of cannon bone at rear (at 105 kg), cm CCB at R105 779 18.91 0.62 17.0 22.4

Circumference of cannon bone at front (at 30 kg), cm CCB at F30 681 13.70 0.64 12.0 16.2

Circumference of cannon bone at rear (at 30 kg), cm CCB at R30 681 14.05 0.64 12.4 16.5

Front leg score at 30 kg SCORE at F30 718 2.70 0.54 1 5

Rear leg score at 30 kg SCORE at R30 718 2.27 0.57 1 5

Front leg score at 105 kg SCORE at F105 720 3.08 0.56 1 5

Rear leg score at 105 kg SCORE at R105 720 2.73 0.57 1 5

Carcass measurements

Carcass wt, kg CWT 302 71.76 2.53 65.1 82.0

Carcass yield, % CY 286 68.98 1.46 62.4 75.4

Carcass length (1st cervical - pubic), cm CL 302 87.64 2.19 81.5 93.0

Carcass length I (1st thoracic - pubic), cm CL1 302 72.34 1.95 67.0 77.6

Carcass length II (1st thoracic - last lumbus), cm CL2 302 62.76 2.09 57.5 68.3

Carcass length III (Longissimus muscle length), cm CL3 302 52.54 2.00 47.5 58.3

Carcass thickness, cm CT 302 34.99 1.10 32.0 39.0

Vertebrae number

Thoracic TVN 302 14.71 0.67 13 16

Lumbar LVN 302 6.03 0.50 5 8

Total - 302 20.74 0.59 20 22

Subcutaneous fat thickness

Shoulder, cm SSFT 302 4.00 0.58 2.4 5.8

Back, cm BSFT 302 2.59 0.45 1.6 4.0

Loin, cm LSFT 302 3.30 0.46 2.2 6.7

Longissimus muscle area

at 4–5 rib, cm2 LEA at 45r 301 17.85 3.18 9.0 31.2

at the middle, cm2 LEA at HBL 302 36.43 4.49 26.5 50.1

Meat quality

Moisture content, % MOS 302 72.72 1.16 68.8 75.3

Intramuscular fat, % IMF 302 5.04 1.62 1.5 9.8

Protein content, % PROT 302 21.34 0.66 19.5 23.4

Cooking loss, % COOK 301 24.28 2.63 16.0 32.5
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measured using a pH meter (D-51, HORIBA Ltd., Kyoto,
Japan) equipped with a needle-type electrode (6252-10D,
HORIBA Ltd.). The appearance of meat and fat (lightness
L*, redness a*, and yellowness b*) were assessed immedi-
ately after cutting, using a Minolta spectrophotometer
CM-2002 (Minolta Camera Co. Ltd., Osaka, Japan). All
measurements were performed in duplicate, and means
and standard errors were calculated.

Results
Comparison of the two methods in simulation and real
data analysis
The powers to detect QTL by SNP-based GWAS and
haplotype-based GWAS in simulation analysis are pre-
sented in Fig. 1. With regard to the impact of QTL MAF
on QTL detection, the difference in power between
SNP-based GWAS and haplotype-based GWAS was evi-
dent. For SNP-based GWAS, the similar trend of the re-
sults was observed in the power to detect QTL with
high and low MAFs. For haplotype-based GWAS, the
power to detect QTL with high MAF was greater, as the
QTL heritability increased to more than 0.05. However,
the power to detect QTL with low MAF was quite low
at all QTL heritabilities (the maximum value of power
was 0.03). The power of SNP-based GWAS was greater
than that of haplotype-based GWAS under all simulation
conditions. For SNP-based GWAS, as the QTL heritability
increased, the power to detect QTL also increased and
was almost constant at higher QTL heritabilities (more
than 0.10). In addition, the power to detect QTL with

heritability 0.05 was 0.50 in a high-MAF scenario and 0.45
in a low-MAF scenario. Thus, QTL with smaller heritabil-
ities and both MAFs could be detected by SNP-based
GWAS. For haplotype-based GWAS, the power to detect
QTL with heritability less than 0.05 was very low (less
than 0.03) in a high MAF scenario, but increased as the
QTL heritability increased to more than 0.05.
For the practicability of finer mapping by SNP- and

haplotype-based GWAS, the power among three differ-
ent region apart from the selected QTL were calculated
by SNP- and haplotype-based GWAS, and are shown in
Fig. 2. The power of haplotype-based GWAS in a low-
MAF scenario are not shown, because of very low power
(see Fig. 1). For SNP-based GWAS, the similar trend of
the results was observed in the power to detect QTL with
high and low MAFs. The power decreased from the region
(QTL ± 0.5 Mb) to the region (QTL ± 0.5–1.0 Mb) was a
greater extent than it did from the region (QTL ± 0.5–
1.0 Mb) to the region (QTL ± 1.0–2.0 Mb), and the de-
creased power was 0.26 and 0.04, respectively On the other
hand, the power of the haplotype-based GWAS showed a
constant decrease, and the decreased power of the region
of interest was 0.07 and 0.05, respectively.
In real data analysis, SNP-based GWAS and haplotype-

based GWAS were performed for 52 traits related to
growth, carcass, and meat quality. We summarized the
genome-wide significant and suggestive SNP regions for
these traits in Fig. 3 and Additional file 7: Table S2. For
SNP-based GWAS, 23 genome-wide significant SNP re-
gions were detected in 17 traits, and 120 genome-wide

Table 3 Summary statistics of the study subjects (Continued)

Centrifugal water-holding capacity, % WHC 301 78.34 3.79 68.2 87.3

Shear force value, kg/cm2 SF 301 2.62 0.65 1.4 4.9

pH pH 301 5.64 0.23 4.9 6.3

Lightness of longissimus muscle (L*) M-L* 300 51.63 3.44 43.6 65.3

Redness of longissimus muscle (a*) M-a* 300 3.55 1.18 0.7 6.9

Yellowness of longissimus muscle (b*) M-b* 300 6.56 1.38 1.0 11.2

Lightness of subcutaneous fat (L*) F-L* 301 78.34 2.35 71.6 90.1

Redness of subcutaneous fat (a*) F-a* 301 3.50 0.00 1.3 0.6

Yellowness of subcutaneous fat (b*) F-b* 301 7.84 1.10 5.3 10.8

Fat area of carcass cross section at 4–5 rib

Subcutaneous fat area, cm2 SFA at 45r 280 81.95 15.70 47.5 131.7

Intermuscular fat area, cm2 IFA at 45r 280 76.81 16.27 33.2 124.8

All fat area, cm2 ALLFA at 45r 280 158.80 27.00 84.8 235.0

Fat area of carcass cross section at the middle

Subcutaneous fat area, cm2 SFA at HBL 280 64.78 14.41 24.1 116.8

Intermuscular fat area, cm2 IFA at HBL 280 55.79 13.49 23.4 101.9

All fat area, cm2 ALLFA at HBL 280 120.60 25.54 57.6 218.8
aN number records
bSD standard deviation
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suggestive SNP regions were detected in 27 traits. For
haplotype-based GWAS, 6 genome-wide significant SNP
regions were detected in four traits, and 11 genome-wide
suggestive SNP regions were detected in eight traits. All
genome-wide significant SNP regions detected by
haplotype-based GWAS were located in regions that were
also detected by SNP-based GWAS. Most of the genome-
wide suggestive SNP regions detected by haplotype-based
GWAS were located in regions that were also detected by

SNP-based GWAS. However, four of these regions were
detected by haplotype-based GWAS only.

QTL detection
The SNPs showing genome-wide significant association
with growth, body measurements, carcass measure-
ments, and fat area in SNP-based GWAS and haplotype-
based GWAS are presented in Table 4. In addition, three
regional plots associated with multiple traits are shown

Fig. 2 Power to achieve 5 % genome-wide significance within different ranges around selected QTL in simulation analysis. The y-axis represents
the power to detect QTL. The results of the SNP-based genome-wide association study (GWAS) in high and low minor allele frequency (MAF)
scenarios and those of haplotype-based GWAS in a high MAF scenario are shown. Three different ranges around the selected QTL were evaluated.
QTL ± 0.5 Mb: The region ranged from ±0.5 Mb apart from the selected QTL. QTL ± 0.5–1.0 Mb: The region ranged from ±0.5 to 1.0 Mb apart from
the selected QTL. QTL ± 1.0–2.0 Mb: The region ranged from ±1.0 to 2.0 Mb apart from the selected QTL

Fig. 1 Power to achieve 5 % genome-wide significance in simulation analysis. The x-axis indicates QTL heritability and the y-axis represents the
power to detect QTL. Results of varying minor allele frequency (MAF) categories (low and high) and models (SNP-based and haplotype-based
genome-wide association studies) are shown
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in Fig. 4. Significant association between rs81352956 on
Sus scrofa chromosome (SSC) 1 at 304 Mb and DG (P =
1.22 × 10−8) was evident in both SNP-based and with
haplotype-based analyses (Table 4, Fig. 4a). Each copy of
effect allele A at rs81352956 was associated with a de-
crease in DG of 34.75 g/d. Moreover, significant associa-
tions between rs81352969 on SSC1 at 304 Mb and BF
(P = 6.30 × 10−10) and CC (P = 6.82 × 10−9), respectively,
were observed in both SNP-based and haplotype-based
analyses (Table 4). However, a significant association be-
tween rs81352969 on SSC1 at 304 Mb and CW (P =
1.17 × 10−7) was only detected with SNP-based GWAS.
Each copy of effect allele A at rs81352969 was associated
with increases in BF of 0.18 cm; CW of 0.45 cm; and CC
of 0.87 cm. Both SNPs, rs81352969 and rs81352956 on
SSC1 at 304 Mb, were located within close proximity (a
distance of 27 kb) of each other.
Significant associations of one SNP derived from the

vertnin (VRTN) gene on SSC7 at 103 Mb with CL (P =
3.64 × 10−9), CL1 (P = 1.56 × 10−11), CL2 (P = 2.96 × 10−14),
CL3 (P = 3.10 × 10−18), and thoracic vertebrae number
(TVN, P = 9.42 × 10−37) were observed in both SNP-based
and haplotype-based analyses (Table 4, Fig. 4b). Each copy
of the C allele was associated with an estimated increase
in the TVN of 0.67 and the proportion of variance in
TVN explained by an SNP was about 50 %.
Two regions on SSC7, at 35–39 Mb and 41–42 Mb,

respectively, were associated with multiple traits. The re-
gion at 35–39 Mb was associated with CCB both at the
front and rear at 105 kg body weight (P = 3.14 × 10−10

and P = 4.38 × 10−8, respectively; Table 4, Fig. 4c). Each
copy of the G allele was associated with an estimated in-
crease in CCB of 0.29 and 0.21 cm, respectively. This re-
gion was related to the formation of a long-range LD
block from 35.0 to 37.5 Mb (see Additional file 8: Figure
S6). Significant associations between rs80928067 on
SSC7 at 41–42 Mb with SFA at HBL and ALLFA at HBL
(P = 5.35 × 10−7 and P = 5.09 × 10−8, respectively) were
detected with SNP-based GWAS only (Table 4). Each

copy of effect allele G (with MAF 0.030) at rs80928067
was associated with a decrease in SFA at HBL of
16.52 cm2 and in ALLFA at HBL of 30.43 cm2.
Significant SNPs were detected within six regions with

SNP-based GWAS only. Significant association between
rs81398418 on SSC8 at 25 Mb and IFA at 45r (P =
4.18 × 10−7) was detected (Table 4), which accounts for
9 % of the phenotypic variance. Each copy of the A allele
was associated with an estimated increase in IFA at 45r
of 7.15 cm2. Significant association between rs81257576
on SSC9 at 46 Mb and LSFT (P = 7.36 × 10−7) was de-
tected. Each copy of the A allele (with MAF 0.017) was
associated with an estimated increase in LSFT of
0.65 cm. Significant association between rs81415869 on
SSC9 at 124 Mb and LEA at 45r (P = 1.94 × 10−7) was
detected and accounts for 10 % of the phenotypic vari-
ance. Each copy of the G allele (with MAF 0.023) was
associated with an estimated increase in LEA at 45r of
3.98 cm2. Significant association between rs81422289 on
SSC10 at 27 Mb and BF (P = 7.04 × 10−7) was detected.
Each copy of the G allele was associated with an esti-
mated increase in BF of 0.17 cm. Significant association
between rs330963199 on SSC11 at 53 Mb and CL3 as
longissimus muscle length (P = 3.32 × 10−7) was detected
and accounts for 10 % of the phenotypic variance. Each
copy of the G allele was associated with an estimated de-
crease in longissimus muscle length of 1.00 cm. Signifi-
cant association between rs81345146 on SSC18 at 7 Mb
and BSFT (P = 4.37 × 10−7) was detected and accounts
for 10 % of the phenotypic variance. Each copy of the A
allele was associated with an estimated decrease in BSFT
of 0.19 cm.
No associations were detected in meat quality traits at

the genome-wide significance threshold; however, 27 re-
gions were suggested to be associated with meat quality
traits (Fig. 3 and Additional file 7: Table S2). We discuss
further the regions associated with IMF in greater detail,
because this population was generated for the purpose
of improving IMF content. Average IMF content was

(See figure on previous page.)
Fig. 3 Trait associations across genomic regions analyzed by SNP-based and haplotype-based genome-wide association studies (GWAS). Each row
represents a trait, and each column, a genomic region containing SNPs that are genome-wide suggestively or significantly associated with a trait.
Only traits with at least one associated SNP and SNPs associated with at least one trait are shown. Each summary shows the results of growth
traits (a) carcass traits (b) and meat quality traits (c). SSC, Sus scrofa chromosome; DG, Average daily gain; LEA, Ultrasound loin muscle area; BF,
Ultrasound backfat thickness; HEIGHT, Height at withers; FW, Front width; CW, Chest width; CD, Chest depth; CC, Circumference of chest; CCB at
F(/R) 30(/105), Circumference of cannon bone at front (/Rear) (at 30 kg/105 kg); SCORE at F(/R) 30(/105), Front (/Rear) leg score at 30 kg (/105 kg); CL,
Carcass length; CL1, Carcass length I; CL2, Carcass length II; CL3, Carcass length III; CT, Carcass thickness; TVN, Thoracic vertebrae number; LVN, Lumbar
vertebrae number; BSFT, Subcutaneous fat thickness (Back); LSFT, Subcutaneous fat thickness (Loin); 45r, carcass cross section at fourth–fifth rib; HBL, carcass
cross section at half-body length; LEA at 45r, Longissimus muscle area at 45r; LEA at HBL, Longissimus muscle area at HBL; IFA at 45r, Intermuscular fat area
at 45r; ALLFA at 45r, All fat area of 45r; SFA at HBL, Subcutaneous fat area at HBL; IFA at HBL, Intermuscular fat area at HBL; ALLFA at HBL, All fat area at
HBL; MOS, Moisture; IMF, Intramuscular fat; PROT, Protein; COOK, Cooking loss; WHC, Centrifugal water-holding capacity; SF, Shear force value; M-a*, Redness
of longissimus muscle; M-b*, Yellowness of longissimus muscle; F-L*, Lightness of subcutaneous fat; F-a*, Redness of subcutaneous fat; F-b*, Yellowness of
subcutaneous fat
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Table 4 Top genome-wide significant SNPs associated with growth, body measurements, carcass measurements and fat area

Most significant SNP Haplotype-based Nearby genesg

Traita SSCb Positionc (bp) refSNP variation ID EAd EAFd β (SE) Proportione P-value P-valuef

Growth

DG 1 304,667,314 rs81352956 A 0.454 −34.75 (6.035) 0.06 1.22 × 10−8 6.71 × 10−6 h PRDM12_EXOSC2

BF 1 304,694,455 rs81352969 A 0.495 0.18 (0.029) 0.07 6.30 × 10−10 2.26 × 10−5 h ABL1

10 27,636,391 rs81422289 G 0.227 0.17 (0.034) 0.04 7.04 × 10−7 3.63 × 10−2 KIF14

Body measurements

CW 1 304,694,455 rs81352969 A 0.495 0.45 (0.084) 0.05 1.17 × 10−7 1.45 × 10−4 ABL1

CC 1 304,694,455 rs81352969 A 0.495 0.87 (0.148) 0.06 6.82 × 10−9 3.36 × 10−5 h ABL1

CCB at F105 7 39,512,713 rs80892802 G 0.171 0.29 (0.045) 0.07 3.14 × 10−10 1.75 × 10−3 DNAH8

CCB at R105 7 39,089,506 rs196955082 G 0.249 0.21 (0.039) 0.05 4.38 × 10−8 1.19 × 10−3 BTBD9

Carcass measurements

CL 7 103,457,401 VRTN C 0.368 1.13 (0.187) 0.14 3.64 × 10−9 3.36 × 10−6 h VRTN

CL1 7 103,457,401 VRTN C 0.368 1.13 (0.162) 0.18 1.56 × 10−11 4.87 × 10−8 H VRTN

CL2 7 103,457,401 VRTN C 0.368 1.37 (0.172) 0.22 2.96 × 10−14 2.22 × 10−9 H VRTN

7 107,279,922 rs80977788 G 0.267 −0.97 (0.196) 0.09 1.20 × 10−6 1.25 × 10−5 h NRXN3

CL3 7 103,457,401 VRTN C 0.368 1.48 (0.159) 0.27 3.10 × 10−18 1.94 × 10−11 H VRTN

7 106,308,596 rs80813652 G 0.311 1.02 (0.177) 0.12 2.14 × 10−8 1.55 × 10−5 h LOC102158165

11 53,204,914 rs330963199 G 0.253 −1.00 (0.191) 0.10 3.32 × 10−7 1.31 × 10−2 LOC102167198

TVN 7 101,863,838 rs80966250 G 0.349 −0.35 (0.059) 0.13 9.93 × 10−9 4.44 × 10−16 H LOC102164420_LOC102164550

7 103,457,401 VRTN C 0.368 0.67 (0.046) 0.50 9.42 × 10−37 4.44 × 10−16 H VRTN

7 106,308,596 rs80813652 G 0.311 0.44 (0.056) 0.20 5.17 × 10−14 2.67 × 10−9 H LOC102158165

BSFT 18 7,107,781 rs81345146 A 0.361 −0.19 (0.037) 0.10 4.37 × 10−7 7.80 × 10−4 ZYX

LSFT 9 46,466,374 rs81257576 A 0.017 0.65 (0.129) 0.07 7.36 × 10−7 4.41 × 10−1 ZBTB16_NNMT

LEA at 45r 9 124,098,143 rs81415869 G 0.023 3.98 (0.746) 0.10 1.94 × 10−7 8.35 × 10−1 LOC102162561_LOC100524389

Fat area of carcass cross section at 4–5 rib

IFAat 45r 8 25,653,506 rs81398418 A 0.279 7.15 (1.380) 0.09 4.18 × 10−7 1.14 × 10−4 LOC100624133_LOC102162593

Fat area of carcass cross section at the middle

SFA at HBL 7 41,720,015 rs80928067 G 0.030 −16.52 (3.219) 0.11 5.35 × 10−7 5.11 × 10−1 LOC100737927

ALLFA at HBL 7 41,720,015 rs80928067 G 0.030 −30.43 (5.433) 0.13 5.09 × 10−8 5.41 × 10−1 LOC100737927
aAbbreviations of trait are shown in Table 2
bSSC Sus Scrofa chromosome
cPosition for genome build 10.2
dEA effect allele, EAF effect allele frequency
eThe proportion of phenotypic variance explained by the SNP effects
fThe results of haplotype-based association study are indicated by h = suggestive, H = significant difference
gNearby genes are bolded if SNP is within the reference gene
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5.04 % (SD = 1.62) with a minimum of 1.5 % and a max-
imum of 9.8 % in this study. The mean breeding value of
IMF content in each generation was as follows: generation
1 (G1) = −0.000; G2 = −0.003; G3 = 0.075; G4 = −0.064;
G5 = 0.230; G6 = 0.581; and G7 = 1.107. Suggestive associ-
ation between rs80793147 on SSC4 at 10 Mb and IMF

content (P = 1.09 × 10−5) was detected with SNP-based
GWAS only. Each copy of the A allele was associated with
an estimated decrease in IMF content of 0.59 %. Suggest-
ive association between rs336391107 on SSC7 at 83 Mb
and IMF content (P = 5.78 × 10−6) was detected with SNP-
based GWAS only. Each copy of the A allele was

A

C

B

Fig. 4 Regional plots of several loci associated with 13 traits. The x-axis indicates the Mb, and the y-axis indicates -log10 (p-value). Gene loci and
their strands were annotated based on Sscrofa10.2 assembly from the Ensemble database (http://asia.ensembl.org/Sus_scrofa/Info/Index?db=core).
Dashed line indicates the threshold of the Bonferroni 5 % genome-wide significance level. a Plots in chromosome 1 (304.2–305.0 Mb) for average
daily gain (DG), backfat thickness (BF), chest width (CW), and circumference of chest (CC). b Plots in chromosome 7 (102.8–103.9 Mb) for Carcass
length (CL), Carcass length I (CL1), Carcass length II (CL2), Carcass length III (CL3), and Thoracic vertebrae number (TVN). c Plots in chromosome 7
(34.2–42.5 Mb) for circumference of cannon bone at front (CCB at F105), circumference of cannon bone at rear (CCB at R105), Subcutaneous fat
area of carcass cross section at half-body length (SFA at HBL), and All fat area of carcass cross section at half-body length (ALLFA at HBL)

Sato et al. BMC Genetics  (2016) 17:60 Page 12 of 17

http://asia.ensembl.org/Sus_scrofa/Info/Index?db=core


associated with an estimated decrease in IMF content of
0.58 % (Additional file 7: Table S2). Each of the two SNPs
associated with IMF accounted for 7 % of the phenotypic
variance.

Discussion
Comparison of the two methods in simulation and real
data analysis
In the present study, a comparison of the power to de-
tect QTL between SNP-based GWAS and haplotype-
based GWAS was made using simulation and real data.
Several significant regions were detected by both
methods with real data. For example, the significant re-
gion on SSC7 was detected for TVN, and the variant in
the VRTN gene was also located in this region. The
VRTN gene is the candidate gene that affects TVN [25];
thus, TVN was reliably affected by the detected region.
The range of the significant region detected by
haplotype-based GWAS was larger than that detected by
SNP-based GWAS (Additional file 9: Figure S7A). This
trend was similar to that observed in the simulation
study. In the simulation study, we also evaluated the
power among three regions, which ranged from ±
0.5 Mb, ± 0.5–1.0 Mb, and ± 1.0–2.0 Mb, apart from the
selected QTL. As the region of interest grew further apart
from the selected QTL, the power of the SNP-based
GWAS decreased. In particular, the power decreased from
the region of ± 0.5 Mb to the region of ± 0.5–1.0 Mb to a
greater extent than it did from the region of ± 0.5–1.0 Mb
to the region of ± 1.0–2.0 Mb. On the other hand, the
power of the haplotype-based GWAS showed a constant
decrease, as the region of interest grew further apart from
the selected QTL. The most significant differences be-
tween SNP-based GWAS and haplotype-based GWAS are
due to differences in the number of generations consid-
ered [8]. Recombination events are scored over a limited
number of generations in the pedigree for haplotype-
based GWAS, whereas SNP-based GWAS relies on a large
number of historical recombination events in past genera-
tions. Recombination events with SNPs around the se-
lected QTL can facilitate finer mapping in the QTL
region. Previous studies have reported comparisons of
both methods in half-sib and F2 intercross pig populations
[9–11]. The present study used a multigenerational popu-
lation, in which the chances of a recombination or segre-
gation event occurring during meiosis would be greater
than they would be in a half-sib or F2 intercross popula-
tion. However, finer mapping is still not practical in this
population. Therefore, SNP-based GWAS is recom-
mended for fine mapping, provided the significant region
can be detected by both methods.
In real data analysis, a larger number of significant re-

gions was detected by SNP-based GWAS than by
haplotype-based GWAS. For example, the significant

region on SSC7 was detected for ALLFA at HBL by ana-
lysis of the SNP-based GWAS. However, the same region
was not detected by haplotype-based GWAS (Additional
file 9: Figure S7B). This trend was similar to that observed
in the simulation study, and the power of SNP-based
GWAS was higher than that of haplotype-based GWAS
under all simulation conditions. Legarra et al. [10] re-
ported that haplotype-based GWAS yielded lower power
and higher rates of false positives in simulation, in com-
parison to SNP-based GWAS. This finding is consistent
with the results of the present study as we also demon-
strated the greater power of SNP-based GWAS in com-
parison to that of haplotype-based GWAS in a
multigenerational population. Therefore, a novel region
could be detected by SNP-based GWAS.
In the present study, several significant regions were

detected in real data by haplotype-based GWAS only.
For example, the genome-wide suggestive region on
SSC17 was detected for WHC by analysis of the
haplotype-based GWAS. However, the significant region
was not detected by SNP-based GWAS (Additional file
9: Figure S7C). In the simulation study, a significant re-
gion detected by haplotype-based GWAS (but not by
SNP-based GWAS) was observed in one replicate only
under all simulation conditions (Additional file 10: Table
S3). This suggested that only SNP-based GWAS or a
combination of the two methods could reliably detect
QTL, provided one SNP is assumed to be the QTL. In
certain cases, linkage-based GWAS can detect rare vari-
ants by aggregate analysis as opposed to individual ana-
lysis [8]. In the simulations of the present study, only
one SNP was assumed to be the QTL, and the pheno-
typic value was then generated. In that case, the power
of the SNP-based GWAS was greater than that of
haplotype-based GWAS in a low MAF scenario. Thus,
several rare variants in the regions of interest might have
caused the observed effects on the trait under investiga-
tion. Another possibility is the effect of the copy number
variant (CNV), which could not be accounted for in the
SNP array. Recent studies have reported the association
between CNV and economically important traits in pigs
[26, 27]. In real data analysis of haplotype-based
GWAS of color-sidedness traits in a cattle population,
Zhang et al. [18] reported that ancestral haplotypes pre-
sented high LD with CNVs that had been previously re-
ported by Durkin et al. [28]; however, the same region was
not significant following analysis of SNP-based GWAS.
Thus, haplotype-based GWAS can capture variants asso-
ciated with the CNV, and further study is needed to detect
the variant(s) around the significant regions.

QTL detection
In the population of the present study, four regions were
associated with multiple traits. One region on SSC1 at
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304 Mb that included rs81352956 was associated with
DG, BF, CW, and CC. This region was in close proximity
to the locus at which the far upstream element (FUSE)
binding protein 3 (FUBP3) gene (which is involved in c-
Myc regulation) is located. In humans, this locus is asso-
ciated with height [29] and bone mineral density [30].
The candidate gene FUBP3 may affect skeletal formation
as it relates to both height and bone mineral density. A
region on SSC7 at 103 Mb was associated with CL and
TVN. Mikawa et al. [25] reported that the VRTN gene in
this region is responsible for the QTL for the TVN in
commercial breeds of pigs. Two of nine polymorphic
sites, an insertion of the PRE1 element in intron 1 and
an SNP in the promoter region, may have effected
changes in expression of the VRTN gene at the embry-
onic stage. Fan et al. [31] reported complete LD between
AB554652.1:g.19034A > C in the promoter region and
g.20311_20312ins291 in intron 1 as the causal mutation.
In the present study, we used the presence or absence of
an insertion of the PRE1 element in intron 1 as a marker
for simple diagnosis. An allele of VRTN affects the TVN,
CL, and the length of the longissimus muscle. These
findings are consistent with those of Nakano et al. [32]
who reported that VRTN gene polymorphisms greatly
contributed to the TVN and CL-related traits. Two re-
gions on SSC7 at 35–39 Mb and 41–42 Mb had
genome-wide significance with multiple traits. In the re-
gion at 35–39 Mb, an LD block from 35.0 to 37.5 Mb
was observed, which is consistent with the report of
Guo et al. [33]. A long-range LD block in this region
and the positions of several genes could interfere with
the detection of polymorphism(s) responsible for CCB.
The region on SSC7 at 35 Mb was in close proximity to the
locus at which the high mobility group AT-hook 1
(HMGA1) gene (which is involved in many cellular pro-
cesses, including cell growth and differentiation) is located.
A QTL for the CCB in Duroc pigs has been reported in this
region [34]. In addition, a QTL for limb bone lengths in a
Duroc crossed population has been reported by Guo et al.
[35] in the same region. In humans, HMGA2 is one of the
strong biological candidates for height [36]. Therefore,
HMGA1 is possibly also a strong candidate gene that might
improve leg strength in Duroc sires that are used in ter-
minal crosses. The region at 41–42 Mb including
rs80928067 was associated with SFA at HBL and was in
close proximity to the locus at which the triggering recep-
tor expressed on myeloid cells 2 (TREM2) gene (which is
involved in osteoclast development and the anti-
inflammatory response) is located. In humans, this gene is
identified as one with transcripts exhibiting differen-
tial patterns of expression in abdominal subcutaneous
fat between obese and normal pregnant women [37].
In the mouse, TREM2 is required for adipocyte differ-
entiation and promotes adipogenesis by upregulating

adipogenic regulators and inhibiting the Wnt10b/β-ca-
tenin signaling pathway [38]. Therefore, we suggest
that the TREM2 gene may be a candidate for the
quantitative trait of fat deposition.
In the present study, six regions had genome-wide sig-

nificance, and three of those six regions contained po-
tential candidate genes. The region on SSC9 at 124 Mb
including rs81415869 was associated with LEA at 45r
and was in close proximity to the locus at which the
thiamine pyrophosphokinase (TPK1) gene (which is in-
volved in thiamine metabolism) is located. TPK1 is a cel-
lular enzyme that catalyzes the transfer of the
pyrophosphate group from ATP to thiamine, to form
thiamine pyrophosphate (TPP). TPP is an active cofactor
for enzymes involved in glycolysis and energy gener-
ation. In humans, QTL for birth weight have been
mapped on chromosome 7, using linkage analysis [39]
and TPK1 has been tested as a candidate gene [40]. With
respect to birth weight, phenotype was markedly influ-
enced by skeletal muscle mass, and TPK1 may be a can-
didate gene for the quantitative trait LEA at 45r. The
region on SSC10 at 27 Mb including rs81422289 was as-
sociated with BF and was in close proximity to the zinc
finger protein 281 (ZNF281) gene, which was predicted
to be a potential target of microRNA-33 (miR-33) [41].
In mice, miR-33 coordinates genes that regulate progres-
sion of the cell cycle, fatty acid and glucose metabolism,
and cholesterol homeostasis [42]. Therefore, we suggest
that FUBP3 and ZNF281 may be candidate genes for the
quantitative traits DG and BF. The region on SSC18 at
7 Mb including rs81345146 was associated with BSFT
and was in close proximity to the locus at which the
zyxin (ZYX) gene (which has N-terminal proline-rich re-
peats and three copies of LIM (Lin-11, IsI-I, and Mec3)
domains in its C-terminal half [43]) is located. Macalma
et al. [43] suggested that ZYX is involved in a number of
important signaling pathways that regulate cell differen-
tiation, proliferation, and morphology. Proline-rich and
LIM domains interacted with a number of proteins and
specific protein partners, respectively. One of those part-
ners, the Homeodomain-interacting protein kinase 2
(HIPK2) gene, identified as an essential regulator of
white fat development, might have functions within the
adipocyte cell compartment of the skin in the mouse
[44]. Therefore, we suggest that ZYX may be a candidate
gene for quantitative trait of fat deposition.
In the present study, we observed no genome-wide

significant association with IMF. However, two regions
with genome-wide suggestive association contained po-
tential candidate genes. The region on SSC4 at 10 Mb
including rs80793147 was associated with IMF content
and was in close proximity to the locus at which the
ArfGAP with SH3 domain, ankyrin repeat, and PH do-
main 1 (ASAP1) gene (also known as differentiation-
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enhancing factor; DEF-1) is located. DEF-1 is involved
in the differentiation of fibroblasts and possibly that of
other cell types. In vitro, this gene encoded a Src SH3
binding protein, increased expression of DEF-1, pro-
moted adipogenesis in cultured fibroblast cell lines, and
was detected in the adipose tissue of obese and diabetic
mice. In addition, the ubiquitous expression pattern of
DEF-1 implies that its function is not restricted to adi-
pogenesis [45]. The region on SSC7 at 83 Mb including
rs336391107 was associated with IMF content, and was
in close proximity to the locus at which the methyl-
transferase like 3 (METTL3) gene (which is involved in
messenger RNA modification of N6-methyladenosine
(m6A) methylation) is located. Adenosine methylation
in RNA is a reversible modification that is widespread
throughout the transcriptome, and plays an important
role in RNA biology, which influences a wide variety of
biological pathways and physiological processes [46].
Fustin et al. [47] reported that inhibition of m6A RNA–
methylation by METTL3 suppression reduced RNA pro-
cessing efficiency. In porcine adipocytes, overexpression
of METTL3 significantly reduced the intracellular trigly-
ceride content, significantly increased glycerol content
in the medium, and significantly downregulated relative
mRNA expression of proliferator-activated receptor γ
and fatty acid synthase genes [48]. METTL3 also
enhanced m6A levels and inhibited adipogenesis. There-
fore, we suggest that METTL3 and DEF-1 may be candi-
date genes for the quantitative trait of IMF content.
As we expected that the VRTN is a responsible gene

for TVN [25, 31], only one of the 14 known candidate
genes, VRTN, was confirmed to have significant associ-
ation with TVN as well as CL. We were unable to con-
firm any significant associations, even at a suggestive
level, for the other 13 known candidate genes. These
findings could be attributed to the fact that the MAFs of
candidate genes were low (e.g., the MAF of CYB5A,
ALGA0113531, LEPR, and PIK3C3 were 0.072, 0.098,
0.025, and 0.032, respectively). The effects of candidate
genes depend on the genetic background of the popula-
tion. Further study is necessary to evaluate the effects of
candidate genes in different genetic backgrounds. Never-
theless, we identified multiple novel regions related to
growth, carcass, and meat quality traits, which were sep-
arate from the regions of known candidate genes. The
annotation of these genomic regions exhibited several
genes that function in the regulation of c-Myc, cell
growth and differentiation, thiamine metabolism, and
adipogenesis. These findings provide new insights for in-
vestigations into altered gene functions that result from
modifications of RNA and/or micro-RNA, in addition to
DNA polymorphisms. Our results also suggest that the
detected region could be useful as a means of improving
marker-assisted selection in pigs.

Conclusions
SNP-based and haplotype-based GWAS were performed
in a Duroc multigenerational population. A comparison
was drawn between the power of SNP-based GWAS and
that of haplotype-based GWAS, using simulation and
real data; SNP-based GWAS demonstrated greater
power than haplotype-based GWAS in the population
under investigation. In real data analysis, larger numbers
of significant regions were obtained and some regions
had genome-wide significant association with multiple
traits. In these significant regions, genes that serve spe-
cific functions were located. Among them, FUBP3, a
gene implicated in c-myc regulation, is highlighted as
novel candidate gene for skeletal formation associated
with average daily gain, and METTL3, a gene implicated
in messenger RNA modification, is novel candidate gene
for fat deposition associated with IMF content. Further
research could identify the causal genes involved in
growth, carcass, and meat quality traits.
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