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Development and validation 
of an institutional nomogram 
for aiding aneurysm rupture risk 
stratification
QingLin Liu1,3, Peng Jiang2, YuHua Jiang2,3, HuiJian Ge2,3, ShaoLin Li2, HengWei Jin2,3, 
Peng Liu2,3 & YouXiang Li2,3*

Rupture risk stratification is critical for incidentally detected intracranial aneurysms. Here we 
developed and validated an institutional nomogram to solve this issue. We reviewed the imaging 
and clinical databases for aneurysms from January 2015 to September 2018. Aneurysms were 
reconstructed and morphological features were extracted by the Pyradiomics in python. Multiple 
logistic regression was performed to develop the nomogram. The consistency of the nomogram 
predicted rupture risks and PHASES scores was assessed. The performance of the nomogram was 
evaluated by the discrimination, calibration, and decision curve analysis (DCA). 719 aneurysms 
were enrolled in this study. For each aneurysm, twelve morphological and nine clinical features 
were obtained. After logistic regression, seven features were enrolled in the nomogram, which were 
SurfaceVolumeRatio, Flatness, Age, Hyperlipemia, Smoker, Multiple aneurysms, and Location of 
the aneurysm. The nomogram had a positive and close correlation with PHASES score in predicting 
aneurysm rupture risks. AUCs of the nomogram in discriminating aneurysm rupture status was 0.837 
in a separate testing set. The calibration curves fitted well and DCA demonstrated positive net benefits 
of the nomogram in guiding clinical decisions. In conclusion, Pyradiomics derived morphological 
features based institutional nomogram was useful for aneurysm rupture risk stratification.

Intracranial aneurysms are pathological dilations at the primary bifurcations of intracranial vasculatures, with 
a prevalence of about 3.2% (95%CI 1.9–5.2%) of the adult population (mean age of 50 years)  worldwide1. A 
recent study reported that the annual rupture risk was only 0.95% (95%CI 0.79–1.15%)2, demonstrating a rela-
tively low rupture risk. However, once the aneurysm ruptures, the overall case fatality rate is 25 to 50%3,4, and 
the dependency rate is approximately 50% in  survivors5. Fearing of the disastrous consequence after aneurysm 
rupture, many patients go for preventive treatment. However, the overall 30-day morbidity and mortality rate 
after treatment in patients without previous hemorrhage is 13.7% and 9.7%, in open surgical and endovascular 
groups,  respectively6. These results often place the physicians in a dilemma of whether to treat an accidentally 
detected aneurysm. The solution is to screen out the most dangerous aneurysms for treatment and leave the 
relatively safe ones for conservation.

Great efforts have been paid for aneurysm rupture risk stratification. Size has been proposed as the most 
important predictive index. According to the International Study of Unruptured Intracranial Aneurysms (ISUIA), 
the 5-year cumulative rupture risks for aneurysms less than 7 mm in the anterior and posterior circulation with-
out a previous hemorrhage was 0% and 2.5%,  respectively6. This result indicates that small aneurysms (less than 
7 mm) may possess a neglectable risk considering those from preventive treatment. However, in a retrospective 
study, small aneurysms (less than 7 mm) account for 38% of all ruptured  aneurysms7, indicating the irrationality 
of only using the size in deciding whether an unruptured aneurysm should be treated or not.

Although controversies remain in different studies, patient-related clinical factors such as hypertension, 
smoking have been proven as risk factors for aneurysm  rupture1. Based on the characteristics of the patients and 
the aneurysms, a well-documented PHASES scoring system has been developed, which enrolled the following 
determinants: Population, Hypertension, Age, Sex, Earlier history of subarachnoid hemorrhage (SAH) from 
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another aneurysm and Site of the  aneurysm8. The simplicity of this scoring system makes it the most popular 
model in daily clinical practice. However, this system exhibits an unsatisfactory clinical performance. In a study 
enrolling 100 consecutive ruptured aneurysms, 70% of the patients with aneurysmal SAH would exhibit a low 
rupture risk according to the PHASES  score9. These results imply that the PHASES scoring system may have 
missed other important factors for aneurysm rupture risk stratification.

Other reports confirmed that irregularity was associated with aneurysm  stability7,10–12. In the three-year risk 
assessment system from a Japanese cohort, irregularity was enrolled as an independent risk factor for aneu-
rysm  rupture13. However, in this system, aneurysm irregularity was only qualitatively dichotomized as with or 
without a daughter sac. Quantitative indexes such as size ratio (SR), flow angle (FA), height/width ratio (H/W 
ratio), aspect ratio (AR), undulation index (UI), ellipticity index (EI), and nonsphericity index (NSI) have also 
been proposed for aneurysms rupture risk  stratification10–12. However, the low repeatability between raters or 
the complexity of calculation hindered their daily clinical usage. High reproducible quantitative morphological 
features are pressing needed.

Proposed by Lambin et al. in 2012, the term radiomics refers to the high-throughput extraction of quantitative 
imaging features from radiographic  images14. These features involve descriptors of intensity distribution, spatial 
relationships between the various intensity levels, texture heterogeneity patterns, descriptors of shape, and of the 
relations of the tumor with the surrounding  tissues14. Radiomics has provided valuable complementary informa-
tion for decision support in clinical oncology. However, lacking standardization of both feature definitions and 
image processing makes the reproduction and comparison of results  difficult15. To address this issue, an open 
Python program named PyRadiomics was released, with which radiomics features could be easily and quickly 
extracted, including morphological  features15. These morphological features can delineate the irregularity of 
an object in a quantitative manner. The application of these morphological features for aneurysm rupture risk 
stratification has not been reported.

In this study, based on the clinical features of the patients and the quantitative morphological features of the 
aneurysm automatically extracted from PyRadiomics, we developed a nomogram to predict the rupture riks for 
an unruptured aneurysm. The consistency of the nomogram and PHASES score predicted aneurysm rupture 
risks were tested, and the performance of the nomogram was validated by discrimination, calibration, and DCA 
analysis.

Methods
Patient cohort and aneurysm acquisition. The data supporting the findings of this study are available 
from the corresponding author upon reasonable request. All patients were from the Beijing TianTan Hospital of 
Capital Medical University. This study was conducted by the Declaration of Helsinki and approved by the Ethics 
Committee of Tiantan Hospital affiliated to Capital Medical University (2018-0117/2018-09-06), and written 
informed consent was obtained from each patient before the operation. The cohort of patients enrolled was 
from January 2015 to September 2018. The inclusion criteria were: patients who had 3D digital subtraction 
angiography by Siemens Artis Zee System (Siemens Healthcare, Erlangen, Germany); a confirmed ruptured or 
unruptured diagnosis of the aneurysm; sufficient image quality for 3D vessel construction with no artifacts to 
accurately represent aneurysm and parent vasculature; saccular aneurysm; and available clinical charts. Aneu-
rysms accompanied with other vascular abnormalities such as moyamoya disease, arteriovenous malformation, 
and arteriovenous fistula were excluded. A total of 719 aneurysms in 579 patients met the criteria were enrolled 
for analysis.

Acquisition of clinical and morphological features. Methods in acquiring the clinical and morpho-
logical features have been reported in our previous  study16. Clinical features enrolled in this study were those 
that have been reported as potential risk predictors for aneurysm rupture. They were gender, hypertension, 
hyperlipemia, diabetes, smoking and drinking status, and multiplicity and location of  aneurysms13,17–20. These 
features were collected by reviewing the in-hospital medical records.

Concerning morphologic features, sectional 3D imaging data of the vessels in DICOM (Digital Imaging and 
Communications in Medicine) format from the Siemens Artis Zee workstation were imported to the Software 
3D Slicer (version 4.8.0; http:// www. slicer. org), and a threshold-based algorithm was used to reconstruct the 
3D imaging of the vasculature. Then, the aneurysm was manually segmented from the parent vessel by two 
individual interventionalists (Liu QL, Ge HJ). For each aneurysm, the parent vessel and the segmented aneu-
rysm were saved in NRRD (Nearly Raw Raster Data) format files of the same size. Subsequently, the two NRRD 
format files of an aneurysm were read by the program of PyRadiomics implemented in Python, and the meas-
urements of twelve morphological features were automatically extracted for each aneurysm and exported into a 
file of EXCEL  format15. These morphological features include the following: Compactness 1 (a measure of how 
compact the shape is relative to a sphere), Compactness 2 (a measure of how compact the shape is relative to a 
sphere), SurfaceArea (the total area of the shape), SurfaceVolumeRatio (the ratio of surface area to volume of a 
shape), Sphericity (a measure of the roundness of the shape relative to a sphere), SphericalDisproportion (the 
ratio of the surface area to the surface area of a sphere with the same volume), Maximum3DDiameter (the larg-
est pairwise Euclidean distance between surface mesh vertices), Maxium2DDiameterSlice (the largest pairwise 
Euclidean distance between surface mesh vertices in the axial plane), Maximum2DDiameterColumn (the largest 
pairwise Euclidean distance between surface mesh vertices in coronal plane), Maximun2DDiameterrow (the 
largest pairwise Euclidean distance between surface mesh vertices in the sagittal plane), Elongation (a measure 
shows the relationship between the two largest principal components in the shape) and Flatness (a measure shows 
the relationship between the largest and smallest principal components in the shape). Detailed information on 
these features is available in the documentation for PyRadiomics (http:// PyRad iomics. readt hedocs. io/ en/ latest/).

http://www.slicer.org
http://PyRadiomics.readthedocs.io/en/latest/
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Development of the nomogram for aneurysm rupture risk stratification. All the aneurysms were 
randomly sampled into two separate groups, named the training and testing sets. The training set contained 70% 
of all aneurysms, and the testing set contained the rest 30% aneurysms. Data equilibrium between the training 
and testing set was tested. The training set was to select the features and determine their weights to construct the 
prediction nomogram, and the separate testing set was used to validate the performance of the nomogram. Fea-
tures were compared between ruptured and unruptured aneurysms in the training set for selecting potential risk 
factors for aneurysm rupture. Features with P < 0.1 were enrolled in multiple logistic regression and backward 
stepwise regression was employed to determine the final model. Nomogram was plotted based on the results 
from multiple logistic regression with the rms and foreign packages in the software of R (R: A Language and 
Environment for Statistical Computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 
2019, https:// www.R- proje ct. org).

Feasibility evaluation of the nomogram. The PHASES score is the most widely accepted and applicated 
tool for assessing the rupture risks for an unruptured  aneurysm8,21. To assess the feasibility of the nomogram for 
aneurysm rupture risk stratification, we tested the consistency of our nomogram predicted rupture risks with 
PHASES score in unruptured aneurysms. First, the nomogram predicted rupture risks, and the PHASES score 
of each unruptured aneurysm were calculated. Second, the correlation was tested between nomogram predicted 
rupture risks and the PHASES scores. Third, aneurysms were classified into low (PHASES score < 5), medium 
(PHASES score 5–9), and high rupture risk (PHASES score > 9) subgroups according to PHASES score. The 
nomogram predicted rupture risks were compared between these groups.

Validation of the nomogram. Ten-fold cross-validation was performed to test the robustness of the 
model in the training set. The proportions of aneurysms with a high nomogram predicted rupture risk and 
high PHASES score in ruptured aneurysms were calculated. The discrimination capacity of the nomogram and 
PHASES system for aneurysms rupture status was exhibited as receiver operating characteristics curves (ROCs). 
AUCs were used to demonstrate their discrimination capacity. Calibration curves were plotted to compare the 
nomogram predicted with the actual rupture status. The net benefit of the nomogram and PHASES system was 
evaluated by decision curve analysis (DCA).

Statistical analysis. Statistical analysis and figure plotting were conducted with the R software (R: A 
Language and Environment for Statistical Computing, R Core Team, R Foundation for Statistical Computing, 
Vienna, Austria, 2019, https:// www.R- proje ct. org). The student t-test or Wilcoxon test was used to compare the 
continuous morphological features between the training and testing set and between ruptured and unruptured 
subgroups in the training set according to the results from normality and variance equality tests. The Chi-square 
test was employed to compare the categorical clinical features between groups. Multiple logistic regression and 
backward stepwise regression were used to construct and refine the prediction model. Spearman correlation 
coefficient was calculated between the nomogram predicted rupture risks and PHASES score, and the signifi-
cance of the correlation was tested with cor.test() function in R. Comparison of the nomogram predicted rupture 
risks between the low, medium and high PHASES score groups were conducted with Kruskal–Wallis rank-sum 
test. Subsequent multiple comparisons between every two groups were conducted with Dunn’s test if the differ-
ence was significant between these three groups (P < 0.05). Calibration analysis for the nomogram was tested by 
the Hosmer–Lemeshow test. The main packages used in this study mainly include pROC, ggplot2, caret, Desc-
Tools, foreign, rms, boot, and nricens.

Results
Patient cohort and aneurysm features. A total of 719 aneurysms in 579 patients (385 females and 194 
males) were enrolled in this study, of which 503 were unruptured, and 216 were ruptured. The median maxi-
mum diameter of the aneurysms was 6.137 mm, ranging from 2.268 to 18.927 mm. As to the location of the 
aneurysms, 52.6% (378/719) located at the anterior or posterior communicating artery and posterior circulation, 
14.0% (101/719) located at the middle cerebral artery, and the rest 33.4% (240/719) located at the internal carotid 
artery. This cohort of aneurysms was randomly sampled into the training (504 aneurysms, 147 ruptured) and 
testing (215 aneurysms, 69 ruptured) set. The comparison of the features between the training and testing set 
were summarized in Table 1. As the table showed, all of the features were well balanced between these two sets 
(P > 0.05 for each feature).

Construction of the nomogram. In the training set, morphological and clinical features were compared 
between the ruptured (147 aneurysms) and unruptured groups (357 aneurysms). The results were summarized 
in Table 2. Of the 21 features, 15 were selected as candidates for multiple logistic regression (P < 0.1). They were 
Compactness1, Compactness2, SurfaceVolumeRatio, Sphericity, SphericalDisproportion, Elongation, Flatness, 
Age, Sex, Hypertension, Hyperlipemia, Smoking, Drinking, Multiple aneurysms, and Location of the aneurysm. 
These Features were taken into multiple logistic regression and backward stepwise regression was employed to 
solve colinearity and construct the final model. The model was plotted as a nomogram shown in Fig. 1. Fea-
tures enrolled in the nomogram included: SurfaceVolumeRatio, Flatness, Age, Hyperlipemia, Smoking, Multiple 
aneurysms, and Location of the aneurysm.

Feasibility evaluation of the nomogram in predicting aneurysm rupture risks. Rupture risks 
were predicted with the nomogram for all aneurysms, and the correlation of the predicted risks and the PHASES 

https://www.R-project.org
https://www.R-project.org
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scores were calculated and tested in unruptured aneurysms. Both in the training and testing set, the nomogram 
predicted risks exhibited high consistency with the PHASES score. The estimated correlation coefficient was 
0.532 (95% CI 0.453–0.602, P < 0.001) and 0.543 (95% CI 0.419–0.649, P < 0.001) for the training and testing 
set, respectively. Unruptured aneurysms were classified into low (PHASE score < 5), medium (PHASES score 
5–9), and high (PHASES score > 9) rupture risk subgroups. The nomogram predicted rupture risks were com-
pared between these subgroups in both the training (Fig. 2A) and testing (Fig. 2B) sets. In the training set, the 
median nomogram predicted rupture risks elevated with the increased PHASES score, with significant differ-
ences between all the three groups (P < 0.001), and between the low and medium (P < 0.001), the low and high 
(P < 0.001), and the medium and high (P = 0.004) PHASES score groups. Similar results were seen in the test-
ing set, with significant differences between all the three groups (P < 0.001), and between the low and medium 
(P < 0.001), the low and high (P < 0.001), and the medium and high (P = 0.019) PHASES score groups.

Validation of the nomogram. The calibration plot (Fig.  3) showed favorable agreement between our 
monogram predicted rupture risks and actual rupture status in the training (Fig. 3A, P = 0.669) and testing set 
(Fig. 3B, P = 0.803). For all ruptured aneurysms, the proportion of aneurysms with a PHASES score higher than 
7 is 57.1% (84/147) and 59.4% (41/69) in the training and testing set, respectively. The range of the nomogram 
predicted rupture risks is from 0.014 to 0.919 in the training set, and 0.029 to 0.866 in the testing set. The optimal 
cutoff value for discriminating ruptured and unruptured aneurysms for our nomogram is 0.345 in the training 
set (Fig.  4A). The proportion of ruptured aneurysms with a nomogram predicted rupture risks higher than 
0.345 is 76.9% (113/147) and 72.5% (50/69) in the training and testing set, respectively. The adjusted ten-fold 
cross-validation estimate of prediction error was 0.144 in the training set, demonstrating the high robustness of 
the model. In the training set, the AUC of the nomogram in discriminating aneurysm rupture status was 0.838 
(95% CI 0.799–0.877), which was higher than that of the PHASES system (0.684, 95% CI 0.637–0.731, P < 0.001) 
(Fig. 4A). In the testing set, the AUC of the nomogram in discriminating aneurysm rupture status was 0.837 
(95% CI 0.780–0.894), which was also higher than that of the PHASES system (0.657, 95% CI 0.585–0.729, 
P < 0.001) (Fig. 4B). DCA revealed that both the nomogram and PHASES score provided a net benefit to the 
none or all strategy in both the training (Fig. 5A) and testing (Fig. 5B) set.

Table 1.  Comparison of the features between the training and testing set. IQR interquartile range, Acom 
anterior communicating artery, Pcom posterior communicating artery, Post posterior circulation, MCA middle 
cerebral artery, ICA internal carotid artery.

Training set (N = 505) Median(IQR) Testing set (N = 214) Median(IQR) P

Morphological features

Compactness1 0.037 (0.035, 0.039) 0.037 (0.035, 0.039) 0.830

Compactness2 0.492 (0.427, 0.545) 0.493 (0.438, 0.543) 0.830

SurfaceArea 67.469 (41.920, 112.527) 75.048 (41.098, 123.606) 0.578

SurfaceVolumeRatio 1.864 (1.474, 2.358) 1.780 (1.398, 2.424) 0.535

Sphericity 0.789 (0.753, 0.817) 0.790 (0.759, 0.816) 0.830

SphericalDisproportion 1.267 (1.224, 1.328) 1.265 (1.226, 1.317) 0.830

Maximum3DDiameter 6.134 (4.586, 7.750) 6.153 (4.616, 8.091) 0.861

Maximum2DDiameterSlice 5.115 (4.082, 6.843) 5.139 (4.102, 7.181) 0.524

Maximum2DDiameterColumn 5.182 (4.001, 6.803) 5.354 (4.001, 6.832) 0.844

Maximum2DDiameterRow 5.385 (4.167, 6.990) 5.440 (4.236, 7.337) 0.807

Elongation 0.776 (0.664, 0.861) 0.768 (0.677, 0.857) 0.603

Flatness 0.633 (0.538, 0.732) 0.638 (0.554, 0.714) 0.992

Clinical features

Age(> 60) 197 (39.0%) 79 (36.9%) 0.657

Sex(Female) 329 (34.9%) 151 (29.4%) 0.186

Hypertension(yes) 283 (56.0%) 109 (50.9%) 0.24

Hyperlipemia(yes) 63 (12.5%) 32 (15.0%) 0.437

Diabetes(yes) 66 (13.1%) 26 (12.1%) 0.829

Smoking(yes) 122 (24.2%) 37 (17.3%) 0.054

Drinking(yes) 115 (22.8%) 38 (17.8%) 0.161

Multiple(yes) 183 (36.2%) 79 (36.9%) 0.930

Aneurysm location 0.170

Acom/Pcom/Post 272 (53.9%) 106 (49.5%)

MCA 75 (14.9%) 26 (12.1%)

ICA 158 (31.3%) 82 (38.3%)

Ruptured aneurysm 157 (31.2%) 59 (27.6%) 0.394
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Table 2.  Comparison of the features between ruptured and unruptured aneurysms in the training set. IQR 
interquartile range, Acom anterior communicating artery, Pcom posterior communicating artery, Post posterior 
circulation, MCA middle cerebral artery, ICA internal carotid artery. *P < 0.001, †P < 0.1, ‡P < 0.05.

Ruptured (N = 147) Median(IQR) Unruptured (n = 357) Median(IQR) P

Morphological features

Compactness1 0.036 (0.033, 0.038) 0.038 (0.036, 0.040) < 0.001*

Compactness2 0.453 (0.391, 0.526) 0.506 (0.452, 0.554) < 0.001*

SurfaceArea 66.053 (38.421, 112.653) 67.541 (43.068, 111.855) 0.612

SurfaceVolumeRatio 1.939 (1.531, 2.563) 1.833 (1.430, 2.308) 0.050†

Sphericity 0.768 (0.731, 0.807) 0.797 (0.767, 0.822) < 0.001*

SphericalDisproportion 1.302 (1.239, 1.367) 1.255 (1.217, 1.303) < 0.001*

Maximum3DDiameter 6.273 (4.565, 8.234) 5.894 (4.537, 7.556) 0.222

Maximum2DDiameterSlice 5.115 (3.873, 7.088) 5.115 (4.102, 6.695) 0.904

Maximum2DDiameterColumn 5.113 (4.001, 6.976) 5.17 (3.959, 6.642) 0.559

Maximum2DDiameterRow 5.290 (3.931, 7.318) 5.318 (4.167, 6.931) 0.996

Elongation 0.693 (0.587, 0.800) 0.808 (0.712, 0.875) < 0.001*

Flatness 0.570 (0.453, 0.659) 0.661 (0.581, 0.743) < 0.001*

Clinical features

Age(> 60) 45 (30.6%) 150 (42.0%) 0.022‡

Sex(Female) 60 (40.8%) 111 (31.1%) 0.046‡

Hypertension(yes) 89 (60.5%) 184 (51.5%) 0.081†

Hyperlipemia(yes) 37 (25.2%) 25 (7.0%) < 0.001*

Diabetes(yes) 19 (12.9%) 39 (10.9%) 0.627

Smoking(yes) 54 (34.4%) 68 (19.5%) < 0.001*

Drinking(yes) 45 (30.6%) 60 (16.8%) < 0.001*

Multiple(yes) 36 (24.5%) 160 (44.8%) < 0.001*

Aneurysm location < 0.001*

Acom/Pcom/Post 117 (79.6%) 142 (39.8%)

MCA 21 (14.3%) 52 (14.6%)

ICA 9 (6.1%) 163 (45.7%)

Points
0 10 20 30 40 50 60 70 80 90 100

SurfaceVolumeRatio
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Flatness
0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3

Age
>60

<60

Hyperlipemia
no

yes

Somker
no

yes

Multiple aneurysms
yes

no

Location
ICA Acom/Pcom/Post/ACA

MCA

Total Points
0 50 100 150 200 250 300

Diagnostic possibility
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1.  Nomogram for predicting aneurysm rupture risk. To calculate the rupture risk of an aneurysm, first 
determine the value for each feature by drawing a vertical line from that feature to the points scale. Then sum up 
all the individual values and draw a vertical line from the total points scale to the probability at the Diagnostic 
Probability line to obtain the rupture risk estimates.
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Discussion
It has reached a consensus that ruptured aneurysms should be treated as soon as possible to avoid disastrous 
rebleeding, but the treatment of unruptured aneurysms remains controversial. Although great progress has been 
made on both endovascular and open surgical techniques, the morbidity and mortality rates from preventive 
treatment remain unneglectable. This raises the issues of screening the real dangerous aneurysms for preventive 
treatment. In this study, we developed a nomogram for aneurysm rupture risk stratification, which exhibited 
high consistency with the PHASES system and provided a net benefit than the none or all treatment strategy 
in our series.

Released in 2014, the PHASES system enrolled the largest prospective cohort to predict the 5-year aneurysm 
rupture  risks8. The easy application and high-level evidence make it one of the most popular scoring systems 
in daily clinical practice, but its performance sometimes was not so  satisfying22, implying some important risk 
factors may be missed. Candidate baseline risk factors enrolled in this system included date of inclusion, age, 
sex, history of SAH, smoking status, hypertension, number of aneurysms, the maximum diameter of aneurysms, 
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and aneurysm  location8. As a widely accepted rupture risk  factor7,10–12, morphology of the aneurysm was not 
considered in this system. In another famous scoring system for assessing the 3-year aneurysm rupture risks in a 
Japanese cohort, the morphology of the aneurysm was enrolled  qualitatively13. The determination of whether an 
aneurysm was irregular and its severity was always subjective. Quantitative indexes such as SR, FA, H/W ratio, 
AR, UI, EI, and NSI have been widely studied for aneurysm rupture risk  stratification10–12, with the shortcomings 
of low repeatability between raters or the complexity of calculation. In this study, we introduced morphological 
indexes extracted from a radiomics program named Pyradiomics, which was implemented in Python. With this 
program, morphological indexes including the size and irregularity descriptors could be easily and automatically 
extracted, and high consistency could be reached between  raters15. These descriptors could delineate the size 
and irregularity of the aneurysm quantitatively. These portraits made these indexes more reliable and gave the 
potential of depicting the regularity of an aneurysm quantitatively.

The PHASES score system was developed from a large prospective  study8, which supplied high-level evidence 
for clinical practice. Data used to develop the nomogram in our study came from a respective database, which 
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Figure 4.  Discrimination of ruptured and unruptured aneurysms by the nomogram and PHASES score. ROCs 
were built to compare the performance of the nomogram and PHASES score in discriminating ruptured and 
unruptured aneurysms by comparing the AUCs in the training (A) and testing (B) sets. AUC: areas under the 
curve; Pre.model: the nomogram predicted risks; Phases score: the PHASES score; ROC: Receiver operating 
characteristic curve.
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Figure 5.  Decision cure analysis of the nomogram. Net benefit was compared between the nomogram and 
PHASES score instructed treatment. Both in the training (A) and testing (B) sets, the nomogram instructed 
treatment gained an even higher net benefit than the PHASES system in our series. All: all aneurysms were 
treated; None: no aneurysm was treated; Phases score: treatment decision was instructed by PHASES score; Pre.
model: treatment decision was instructed by the nomogram.
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provides a relatively inferior evidence level to a prospective study. A prospective patient cohort with long time 
clinical and imaging follow-up is ideal to develop the model for predicting the rupture risks of an unruptured 
aneurysm. However, the establishment of such a natural cohort is to some extent unreasonable. For example, for 
patients with relatively high rupture risks according to the existing stratification systems such as the PHASES 
and the Japanese 3-year scoring system, a conservation strategy would place them in a dangerous situation and 
encounter an ethical debate. On the other hand, only keeping the so-called low-risk aneurysms for observation 
would generate a severe selection bias and would make the comparison of the actual natural history and the 
preventive treatment-related risks less reliable. Another concern for our study is that we used the post-rupture 
morphology to predict the rupture status, and the post-rupture morphology has been reported to be different 
from their pre-rupture state in small  series23. However, the actual growth process is irregular and discontinu-
ous, which results in periods with and without aneurysm growth and with high and low risks of  rupture24. Thus, 
morphology at a specific time may also insufficient for predicting aneurysm stability. Furthermore, individual 
characteristics of the patients may have significant effects on the growth speed of unruptured  aneurysms25. Based 
on the clustering theory that individuals sharing similar features may harbor similar properties, we took the 
post-rupture morphology for constructing the prediction model. To evaluate the feasibility of our nomogram, 
we firstly tested the correlation of our nomogram predicted rupture risks and PHASES scores for the unruptured 
aneurysms in both the training and testing sets. The correlation coefficient was 0.532 and 0.543 with a significant 
correlation in the training (P < 0.001) and testing (P < 0.001) set, respectively, demonstrating a close positive cor-
relation between the nomogram and PHASES predicted rupture risks. Furthermore, the nomogram predicted 
rupture risks elevated with the low, medium, and high PHASES score subgroups (Fig. 2). These results confirmed 
the feasibility of our nomogram in predicting aneurysm rupture risks, despite it came from a retrospective cohort 
and enrolled post-rupture morphology.

Risk factors in our nomogram include SurfaceVolumeRatio, Flatness, Age, Hyperlipemia, Smoking, Multiple 
aneurysms, and Location of the aneurysm, which were slightly different from the PHASES score system. Sur-
faceVolumeRatio and Flatness were irregularity indexes that were ignored by the PHASES system at the initial 
design. SurfaceVolumeRatio and Flatness could reflect the irregularity of the object quantitatively. Our result was 
consistent with the previous study that the more irregular the higher rupture  risks13. Size was not enrolled in our 
nomogram but was deemed as the most important risk factor in the PHASES system. The absence of size in our 
nomogram might come from the patient selection bias, as this cohort came from in-hospital patients most of 
whom received preventive treatment. The selection of the patients was greatly influenced by the Chinese expert 
consensus for endovascular treatment of intracranial aneurysms (2013), which recommends that asymptomatic 
aneurysms larger than 5 mm should be considered for preventive  treatment26. Older age was a ‘protective factor’ 
in our nomogram but ranked as a risk factor in the PHASES  system8. This controversy may also come from the 
unique constitution of the patients. As the biggest neuro-intervention suit in China, most patients with rup-
tured aneurysms came from the nearby regions of the city. However, most patients with unruptured aneurysms 
may come from all over our country, and the higher imaging examination frequency for other vascular lesions 
in older patients inevitably resulted in a higher detection rate in these small populations, resulting in a higher 
average age for the patients with unruptured aneurysms. Similarly, multiplicity is thought to be a risk factor 
for aneurysm rupture and multiple aneurysms are prone to be preventively  treated26. However, multiplicity is 
statistically ‘protective’ for aneurysm rupture in our results. This reflects the selection preference of multiple 
aneurysms for preventive treatment in our cohort (44.8%). These disparity of aneurysm multiplicity and patient 
age only reflect the unique patient constitution in our institution, but not the real-world risk factor. We did not 
conclude that aneurysm multiplicity and older age were protective factors for aneurysm rupture. On contrary, 
these results reflect our concerns for higher rupture risks in older patients and multiple aneurysms. Again, we 
emphasize that the prediction nomogram was institutional. Other risk factors enrolled in our nomogram were 
consistent with the previous  studies8,13,17–20.

Several ruptured aneurysm series have been used to retrospectively assess the predicting value of the PHASES 
score  system9,27. In our cohort, 57.1% (84/147) ruptured aneurysms in the training set and 59.4% (41/69) ruptured 
aneurysms in the testing set featured a PHASES score higher than 7, which is higher than that of the previous 
 report27. When discriminated by the optimal cutoff value of 0.345 from the training set, 76.9% (113/147) and 
72.5% (50/69) of ruptured aneurysms were ranked as high rupture risk in the training and testing set respec-
tively, demonstrating a high consistency with the actual status. Calibration curves also revealed high consistency 
between the nomogram estimates and the actual rupture status (Fig. 3, P = 0.669 and 0.803 in the training and 
testing set, respectively). Discrimination capacity for ruptured and unruptured aneurysms was demonstrated 
by constructing the ROCs. As shown by Fig. 4, AUCs of our nomogram was 0.838 and 0.837 in the training and 
testing set, respectively, which was even higher than the PHASES system (0.684 and 0.657, P < 0.001, respec-
tively). DCA was initially used by Vickers and Elkin as a new analytical technique, incorporating the clinical 
consequences of a decision, to quantify the clinical usefulness of a prediction  model28. As shown in Fig. 5, the 
net benefit from decision instructed by our nomogram or PHASES system was higher than all or no treatment 
strategy in both the training and testing sets, and an even greater net benefit was gained from the nomogram than 
the PHASES system. However, this doesn’t mean that our nomogram is superior to the PHASES score system, 
as the testing set is an internal validating set for our nomogram and an external validating set for the PHASES 
system. The unique patient and aneurysm constitution may also hinder the generalization of the PHASES score 
in our institution. Furthermore, the retrospective design of our study renders an inferior evidence level to the 
PHASES score. This study was not to develop a prediction model that parallel to or even to replace the PHASES 
score, but to provide more information for aneurysm rupture risk stratification besides the PHASES score.
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Limitations. This study features certain limitations. First, the nomogram was developed on a cohort from a 
single institution with a single Race. The generalizability of the nomogram may be limited as the distinct patient 
constitution of our single center. We emphasize the term of an institutional nomogram to encourage the devel-
opment of an institutional-specific model for better predicting performance. Second, the data for developing the 
nomogram was retrospective, and the time-dependent rupture risks could not be calculated from the nomo-
gram. Third, we also ignored some features that contribute to aneurysm ruptures, such as the family history of 
 aneurysm29, previous SAH from another  aneurysm8, hemodynamic  parameters30, and aneurysm wall enhance-
ment  patterns31. Fourth, although the traditional generalized linear regression model was adopted in this study, 
generalized estimating equations or mixed-effect models may be more appropriate.

Conclusions
Despite the limitations, conclusions can still be obtained from this study. First, Pyradiomics derived morpho-
logical features could be used for aneurysm rupture risk stratification. Second, institutional specific nomogram 
could be developed and adopted as a useful tool for aiding rupture risk stratification for an incidentally detected 
intracranial aneurysm.

Data availability
Data supporting this study were available from the corresponding author on reasonable request.
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