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Abstract

Purpose: Automated distinct bone segmentation has many applications in planning and navigation tasks. 3D U-Nets have
previously been used to segment distinct bones in the upper body, but their performance is not yet optimal. Their most
substantial source of error lies not in confusing one bone for another, but in confusing background with bone-tissue.
Methods: In this work, we propose binary-prediction-enhanced multi-class (BEM) inference, which takes into account an
additional binary background/bone-tissue prediction, to improve the multi-class distinct bone segmentation. We evaluate the
method using different ways of obtaining the binary prediction, contrasting a two-stage approach to four networks with two
segmentation heads. We perform our experiments on two datasets: An in-house dataset comprising 16 upper-body CT scans
with voxelwise labelling into 126 distinct classes, and a public dataset containing 50 synthetic CT scans, with 41 different
classes.

Results: The most successful network with two segmentation heads achieves a class-median Dice coefficient of 0.85 on
cross-validation with the upper-body CT dataset. These results outperform both our previously published 3D U-Net baseline
with standard inference, and previously reported results from other groups. On the synthetic dataset, we also obtain improved
results when using BEM-inference.

Conclusion: Using a binary bone-tissue/background prediction as guidance during inference improves distinct bone seg-
mentation from upper-body CT scans and from the synthetic dataset. The results are robust to multiple ways of obtaining the
bone-tissue segmentation and hold for the two-stage approach as well as for networks with two segmentation heads.
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Introduction

The segmentation of various distinct bones visible on CT
scans is a powerful way to provide semantic information and
feedback to planning and navigation tools [1]. Bone seg-
mentations can also be used as a strong starting point for
atlas-based approaches [2], or as location anchors to detect
organs and other body structures [3]. Bone segmentation has
also sparked interest as a possible alternative or add-on to
augmented reality visualization of medical data and intraop-
erative workspaces [4].
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Manual segmentation requires a trained medical profes-
sional to go through an image slice by slice and mark voxels
as part of the structure of interest. This approach is time-
consuming and hard to scale up. Interactive segmentation
tools help by offering automated steps such as thresholding
and morphological operations to decrease the time needed
for (semi-)manual segmentation. For bone-tissue segmen-
tation from CT, convolutional neural networks (CNN) have
been found to clearly outperform threshold-based approaches
[5.,6].

In contrast to bone-tissue segmentation, which aims at
differentiating between the background and bone-tissue in
general, distinct bone segmentation also separates one bone
from another. The task is well-studied for vertebrae seg-
mentation, but the reliance on the sequential nature of the
spine hinders a direct adoption to other body parts [7].
A total of five bones in the ankle and shoulder region
are segmented in [8], where they use a U-Net [9,10] in

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-022-02650-y&domain=pdf
http://orcid.org/0000-0002-0226-9519

2114 International Journal of Computer Assisted Radiology and Surgery (2022) 17:2113-2120

combination with shape priors and adversarial regulariza-
tion. They also compare the performance of separate U-
Nets trained on one bone class each versus a multi-class
U-Net which outperformed the combined single-class net-
works.

Segmentation into a larger number of distinct bones has
not yet been investigated in many cases. A hierarchical atlas-
based approach leads to good segmentation results of 62
distinct bones from upper-body CTs at the expense of a long
inference time [2]. In [11], 49 distinct bone classes have
been segmented on upper-body CTs. They used a two-stage
approach where a landmark detection network was followed
by a voxelwise segmentation by a dilation-based CNN and
the deletion of all but the largest connected component per
class. Neither of these two approaches offers an end-to-end
method or includes the bones of the hand in the segmentation.
A segmentation that also includes these bones, totalling to
126 bone classes, has been investigated on a smaller dataset
in one of our previous works [12], where we found a 3D
U-Net to be better suited to the task than the 2D U-Nets
commonly used in a slicewise way for bone-tissue segmen-
tation.

The purpose of of this current work is to reduce the most
prevalent segmentation errors of the 3D U-Net when per-
forming distinct bone segmentation. To do so, we propose
to leverage an additional binary segmentation during the
inference process. A related approach has been examined
by [13] who combine the outputs of a semantic segmenta-
tion head and an instance segmentation head into a panoptic
segmentation for 2D traffic images. Apart from the dimen-
sionality and the image modality, our work also differs
as we stay within a semantic segmentation problem state-
ment.

We propose and investigate BEM, an inference method
that enhances a multi-class distinct bone segmentation using
a binary bone-tissue/background segmentation. We compare
the segmentation accuracy, run-time, and complexity of dif-
ferent network architectures that achieve both segmentations
within a single trained model, and contrast the results to a
two-stage approach.

Materials and methods
Upper-body CT dataset

Our in-house dataset consists of 17 upper-body CT scans,
and corresponding voxelwise segmentations created by spe-
cialists, with an isotropic resolution of 2 mm , as used in
[14]. The dataset comprises postmortem scans of 9 male and
7 female body donours aged 44-103 years. Before resam-
pling, the scans were of varying resolution with slightly less
than 1 mm resolution in-plane and up to 1.5 mm out-plane.
Due to inconsistent arm positioning, we excluded one scan
from the set in this work. The segmentation contains 126
different classes, including background (Fig. 1).

Synthetic 3D dataset

We created a synthetic dataset in order to highlight the
effect of the proposed BEM-inference on anatomical seg-
mentation tasks and to provide results on a publicly avail-
able dataset (published at https://gitlab.com/cian.unibas.ch/
cars2022-bem-inference). The dataset was constructed by
generating a randomly varying three-dimensional stick-
figure-like ground truth segmentation consisting of 41 dis-
tinct bones (see Fig. 2). Inspired by human anatomy, we chose
similar geometric shapes for similar bones such as vertebrae,
to force the networks to rely not only on shapes but also the
relative positioning of structures. To construct the soft-tissue

ground truth baseline

synthetic CT

Fig.2 Results on the synthetic dataset using the baseline 3D U-Net, and
Dual D with our proposed BEM-inference. Both false positives (around
the elbows), and false negatives (head) are reduced using our approach

Fig. 1 Volume rendering of one of our upper-body CT scans (left), and the result of our automated segmentation using BEM-inference and

label-correction (right)
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area, we created convex hulls for the torso, limbs, and head.
Finally, we filled areas of background, soft-tissue, cortical
bone and cancellous bone with typical HU-values and added
uniform random noise. Emphasis is not put on the anatomical
accuracy of the dataset, but on the ability to mimic the diffi-
culty of our primary task, which is to study the simultaneous
detection and distinction of many three-dimensional struc-
tures with groupwise similar shapes.. The final synthetic CT
scans measure 128 x 128 x 256 voxels.

Base architecture

We use an architecture based on the 3D U-Net [10], which is
composed of a decoder and encoder with skip connections.
Following [15], we add instance normalization, use leaky
rectified linear units (leReLU) and exchange the upconvolu-
tions in favor of linear upsampling. The high computational
demand of a 3D network with a large number of classes,
restricts the possible batch size to one. We implemented the
network in Tensorflow-Keras 2.5.

Dual segmentation head architecture

To obtain the multi-class and the binary background/bone-
tissue segmentation simultaneously, we explore four archi-
tectures with two segmentation heads. A comparison of their
architectures is given in Table 1 and Fig. 3.

e Dual A All layers except the classification heads are
shared.

e Dual B Both tasks still share the whole encoder and
decoder but have their own convolutional layers at full
resolution.

e Dual C Both tasks share the full encoder and decoder. The
binary segmentation head is appended after the decoder,
the distinct bone segmentation head follows after one
more convolutional block at full resolution.

e Dual D Both tasks share the encoder and feature encod-
ing, but have their own decoders.

Table 1 Network architectures

comparison for the upper-body Model

Trainable parameters (#)

Training time 1(s) Inference time 2 (s)

CT dataset

107 0.84 219
107 1.08 212
107 1.08 271
107 1.15 243
107 1.20 321

! Average time per training iteration on a 643 voxel patch.
2 Inference time for an average scan (~ 256 x 256 x 512 voxels) , including data I/O time

Baseline 3D U-Net 1.46 -

Dual A 1.46 -

Dual B 1.46 -

Dual C 1.46 -

Dual D 1.98 -
A

gl
g1

240 J
/)
/480|
| 2 blocks of 3x3x3 Conv, leRelu, 2 blocks of 3x3x3 Conv, leRelLu,
2x2x2 maxpool 2x2x2 upsample

Concatenation — 1x1x1 Conv,Softmax, N classes

D
@

g”

_— 1x1x1 Conv,Softmax, 2 classes

Fig.3 Schematic of the four network architectures with dual segmentation heads. They are all based on a 3D U-Net architectures with variances
of how the binary segmentation head is appended. See also “Dual segmentation head architecture” Section
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Two-stage approach

As an alternative to the architectures with dual segmentation
heads, we study the results using a binary prediction, which
is obtained separately from the full multi-class network. To
do so, we train an additional instance of our baseline 3D U-
Net on the background/bone-tissue problem alone and use
the resulting binary segmentation during the BEM-inference
step. As an upper bound, we also compute results using the
ground truth of the binary segmentation.

Training and standard inference

For both datasets, we optimize our networks using the Adam
optimizer with a learning rate of 0.001 for 75000 iterations,
after which all of our models had converged. Total train-
ing time is roughly one day per cross-validation fold on one
GeForce GTX Titan X (12 GB). We use five cross-validation
splits for the upper-body dataset, where we use 11 scans for
training, 2 for validation of the convergence, and 3 for test-
ing. For the synthetic dataset, we were able to create a larger
number of validation and test images to get more represen-
tative test results and thus evaluate one fold only. We use 17
volumes for training, 7 for validation, and 26 for testing.

As loss function we use an unweighted combination of
the cross-entropy loss Lx_gn: and the Dice loss Lpsc [16]. In
the dual segmentation head networks, we add the losses for
the binary background/bone-tissue task:

_aC (b, bi}
Liotal = Lx pny + Z Lbsc + LxEne + Z Lbsc
ceC ce{bg.bt}

We train our network patchwise since the use of whole
CT volumes for training is not computationally feasible
in 3D. The patch size not only influences the computa-
tional requirements, but also the network accuracy [17]. We
found a patch size of 643 voxels to be a good compromise.
The patchwise sampling also serves as a random-cropping
data-augmentation step. Other common data augmentation
techniques such as rotations, scaling, or mix-up are not used
in this work. Data augmentation has been studied in-depth for
whole-body bone-tissue segmentation, where it only leads to
very small improvements [5].

Prior to inference, we pad our scans by 20 voxels to miti-
gate the proximity of the hands to the image border in some
of the scans. After padding, our predictions are assembled
using a sliding window approach with a 20 voxel overlap to
increase the influence of the centre of the patches on the final
predictions, which has been shown to lead to good results
[15]. The voxelwise multi-class prediction is conducted by a
softmax activation.

@ Springer

BEM-inference

We refine the inference step using a binary background/bone-
tissue segmentation ypg/be. This additional prediction can
stem from a second head of the multi-class network, from
an additional network, or from a completely different seg-
mentation method.

In standard inference, all classes, including the back-
ground class, are predicted in one step. Instead, we use the
binary prediction ypg /b as a guide and ignore the background
class 0 in the distinct bone prediction. We split our N classes
into one background and N — 1 foreground classes. The final
prediction is then set to be either background, if ypg/pt = 0
or to the most likely foreground class.

In contrast to simple masking of the finished multi-class
prediction in post-processing, which could remove false neg-
ative foreground voxels, this method addresses both false
negatives and false positives. An illustration of a simplified
case in 2D with two foreground classes can be found in Fig.
4.

Connected component-based label correction

After completion of the inference process, we automat-
ically refine the segmentation by reassigning connected
components. We build upon the post-processing approach
of keeping only the biggest connected component per label
[11]. However, instead of assigning all smaller components to
the background, we assign them to their neighboring biggest
component. To do so, we define sets of bones that are easily
confused by a model. Within such a set L, we identify all con-
nected components per class and choose its largest connected
component as the class anchor. Adjacent smaller components
of other classes are then reassigned the anchor label. The
sets L are chosen based on anatomical knowledge and on
the most frequent confusions among bone classes observed
on the validation set. To save-guard against very fragmented
segmentations, an upper threshold u of connected compo-
nents ensures a runtime of O(|L|?u). Different sets can be
processed in parallel to speed up the computation. We chose
u = 100 and worked with 16 sets L, of size 4 < |L| < 12.
The detailed groups are shared along with the code at https://
gitlab.com/cian.unibas.ch/cars2022-bem-inference.

Evaluation metrics

As our main metric, we use the Sgrensen-Dice similarity
coefficient DSC, for each segmentation class c. To assess
the overall performance of our models, we give the median,
and the 16- and 84-percentile (~ lo) of all classes where at
least one true-positive voxel has been predicted as median™*?.
We account for the remaining classes, those with DSC; = 0,
by providing the fraction of classes where DSC, > 0 in
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brackets. We account for the completely missing classes by
providing the fraction of detected classes in brackets.

four flavors of U-Nets with dual segmentation heads, and a
two-stage approach.

Test We evaluated the errors most commonly experienced
while conducting a baseline U-Net segmentation on our
upper-body CT dataset. The confusion matrix (Fig. 5, left,
first column) illustrates our finding, that many errors orig-
inate from predicting bones as background, as opposed to
confusing one bone for another. This type of error is reduced
when using our proposed methods (Fig. 5, right, first col-
umn).

Results and discussion

Our results show how a BEM-inference combined with
connected-component correcting post-processing can
improve automated distinct bone segmentation from upper-
body CTs. Our evaluation involves two different datasets,

standard inference: argmax foreground BEM-inference
argmax all classes classes only

Fig. 4 Schematic of the BEM-inference process. The background class is denoted in gray, the two distinct foreground classes in blue and pink,
respectively

binary prediction  ground truth

Fig.5 Label confusion matrices
(row-normalized) for the
baseline 3D U-Net and Dual D,
including BEM-inference and
post-processing. With our
approach, less labels are

3D U-Net, standard inference

background 4 4e-05 0.000210.000160.00077 0.8

hands -JUPE]

ours

background 6.9e—05 0.000270.000260.00073 0.8

0.000680.00027 0.033 hands UL (OR:3BN 0.0033 0.011 0.039

erroneously classified as _ 0.6 _ 0.6
[ [
background (first column g g
g ( ) < B0y 015 0 [(X:EM 0.0009 0.017 < ENCE 0.054 6.5¢-07 JKEMM 0.0012 0.019
= I 2
0.4 0.4
ribs O 0  0.0041 0.034 RS 0.1 5.8¢-07 0.0036 KIIM 0.034
big bones 0.12 3.6e-05 0.0019 0.00059 0.2 [JeR LR 0.045 9e-06 0.0016 0.000QZH 0.2

hands
spine
ribs

big bones
hands
spine
ribs

big bones

0.0

background
background

Predicted label Predicted label

Table 2 Upper-body CT dataset: Results in DSC, comparing the segmentation performance when using baseline inference, against our BEM-
inference, with and without label correction

Baseline + Label correction + BEM-inference + Both

Baseline 3D U-Net 0.78%933, (0.95) 0.817092, (0.94)

Two-stage: pred. bin.

Two-stage: gt bin.
Dual A
Dual B
Dual C
Dual D

2

»

0.787030. (0.96)
0.771033, (0.95)
0.79%919.(0.96)
0.807029. (0.95)

”»

”

0.817097, (0.95)

0.8170:9. (0.94)
0.82709. (0.95)

0.84709% (0.94)

0.797918, (0.96)
0.891095, (0.96)
0.791010, (0.97)
0.79911 . (0.96)
0.79911, (0.96)
0.827011 . (0.96)

0.827097. (0.94)
0.939%, (0.95)
0.82019, (0.95)
0.8209 . (0.95)
0.827099. (0.95)
0.85709%, (0.94)

The comparison is given for the two-stage models and the different flavors of dual-segmentation heads models. For a description of the metrics, see
“Evaluation metrics” Section

@ Springer



2118 International Journal of Computer Assisted Radiology and Surgery (2022) 17:2113-2120

ground truth baseline

Fig.6 Segmentation results and typical errors obtained with the base-
line U-Net model and our Dual D model with BEM-inference and
post-processing. Using the baseline model, ribs are often not segmented
as one, but are assigned multiple labels (I). The post-processing reme-
dies this issue visibly. Other frequent errors occur around the border of
vertebrae, especially in the presence of calcifications (II). Within big
bones such as hips and femurs, we observe holes and islands where the
left/right part of the label has been mixed up (III)

We conducted an ablation study on the upper-body CT
dataset, where we examined the influence of how the binary
prediction was created (two-stage versus networks with dual
segmentation heads), the network architecture, and the label
correction post-processing. The results are listed in Table
2. Common errors are illustrated in Fig. 6. The proposed
method using a Dual D model, BEM-inference and the post-

processing label correction detected correct voxels in 94%
of all bones and achieved a median DSC of 0.85, which is an
improvement over our baseline with a median of 0.78. Both
the BEM-inference and post-processing contribute individ-
ually to the improved DSC scores, but the strongest results
are achieved in combination.

We observe a small increase of the fraction of bone classes
with DSC > 0 when using the enhanced inference, and a
slight decrease when using the post-processing. The majority
of classes with a DSC of 0 are small bones located in the
hands.

In Table 4, we compare our results to the hierarchical atlas
segmentation by Fu et al. [2] and the convolutional neural
networks by Lindgren Belal et al. [11]. Our results compete
well, although the use of different datasets hampers a direct
comparison.

Among the models with two segmentation heads, the most
complex version Dual D with two separate decoders led to
the best results. Merely training two decoders simultaneously
on two different loss functions led to first improvements over
our baseline, which improved even further when using BEM-
inference and label-correction.

The results of the two-stage approach depend on the per-
formance of both the multi-class and binary segmentation
model. We used a binary segmentation predicted by the
baseline 3D U-Net trained on the background/bone-tissue
segmentation task. This network achieved a mean DSC of
0.94 for the binary prediction, which is in the range of results
reported in [5] and [6]. For comparison, we used the binary
ground truth data during the BEM-inference step to get an

Table 3 Synthetic dataset:

Model
Results in DSC, comparing the ode

Baseline + BEM-inference

segmentation performance when
using baseline inference, against
our BEM-inference, with and
without label correction

Two-stage: gt binary seg.
Dual A: parallel losses
Dual B: parallel final layers
Dual C: sequential heads

Dual D: separate decoders

0.97379930. (1.00)
0.97079930. (1.00)
0.97179930 . (0.99)
0.96370940 . (0.99)

0.9759920(1.00)

0.99170:950, (1.00)
0.97079930. (1.00)
0.9780930. (0.99)
0.96670930. (0.99)
0.9829920 (1.00)

The comparison is given for the two-stage models and the different flavors of dual-segmentation heads models.
For a description of the metrics, see “Evaluation metrics” Section

Table 4 Comparison to other

published work on distinct bone Ours (median) [11] (median) (21 (mean)
segmentation L3 0.85 0.85 0.91
Sacrum 0.90 0.88
Clavicula 0.92 0.57
Hamate 0.86
Inference time per scan (min) ~5 ~ 20
Scans in dataset (#) 11 100 19
Classes (#) 126 49 62

Results in DSC
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upper bound of how much improvement was possible. We
observed a steep improvement of the results, suggesting that
the investment into a good binary segmentation clearly pays
off. Since the manual labelling of the ground truth data is
less time-consuming and cumbersome for the binary seg-
mentation as opposed to a full multi-class segmentation, the
additional binary labelling of new training data might yield
a good return on investment.

In comparison, the two-stage approach tends to be more
troublesome than a dual head architecture since it involves
the training and tuning of two networks and a sequential
inference first using the binary network, then the multi-class
network. The use of a network with two segmentation heads
simplifies this task to training one network only and perform-
ing an end-to-end inference. If additional scans with binary
ground truth labelling are available, they can be used to fine-
tune the binary segmentation head.

There is currently no public upper-body CT dataset with
complete distinct bone labelling available and our in-house
dataset cannot be shared as of yet. Therefore, we provided
additional results on our public synthetic dataset. The results
on the synthetic dataset mirror the findings in the upper-body
dataset. BEM-inference improves the segmentation both for
the two-stage approach and the architectures with dual seg-
mentation heads (see Table 3 and Fig. 2).

Conclusion

We proposed BEM-inference to improve the automated seg-
mentation of distinct bones from upper-body CT scans. A
substantial part of the segmentation errors made by 3D U-
Nets does not originate from the mixing-up of different
bone classes but from the mistaking of background for the
foreground , and vice versa. Therefore, we proposed an infer-
ence method that uses the information gained in a binary
background/bone-tissue segmentation to improve upon the
multi-class inference. We compared two approaches to obtain
the necessary binary segmentation: (1) Networks with dual
segmentation heads that are trained on both tasks simultane-
ously, (2) and a two-stage approach where separate networks
are trained for the multi-class and the binary segmentation
task. Using our proposed inference lead to improvements
on all architectures and on both datasets, with and without
our label-correction post-processing . The class-median DSC
of the dual decoder network with both post-processing and
BEM-inference is 0.85 on the upper-body CT dataset, out-
performing the baseline 3D U-Net and previously reported
results by other groups.

Our proposed BEM-inference is most suitable for tasks
where the binary task is simpler to solve or binary labelled
data is easier to obtain than the full multi-class labelled data.
Since an existing multi-class ground truth segmentation can

easily be converted to a binary ground truth segmentation,
any multi-class model can be retrofitted to use two-stage
BEM-inference. if a source of binary segmentations is avail-
able or trainable This makes BEM-inference a versatile
addition to anatomical multi-class segmentation workflows.
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