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A B S T R A C T   

Over the past years, Seawater Desalination (SWD) has been enhanced regularly. In this desali
nation process, numerous technologies are available. The Reverse Osmosis (RO) process, which 
requires effectual control strategies, is the most commercially-dominant technology. Therefore, 
for SWD, a novel Interpolation and Exponential Function-centered Deep Learning Neural Network 
(IEF-DLNN) and multi-objective-based optimizing control system has been proposed in this 
research methodology. Initially, the input data are gathered; then, to control the desalination 
process, an optimal control technique has been utilized by employing Probability-centric Dove 
Swarm Optimization-Proportional Integral Derivative (PDSO-PID). The attributes of permeate are 
extracted before entering the RO process; after that, by utilizing the IEF-DLNN, the trajectory is 
predicted. For optimal selection, the extracted attributes are deemed if the trajectory is present, or 
else to mitigate energy consumption along with cost, the RO Desalination (ROD) is performed. In 
an experimental evaluation, regarding certain performance metrics, the proposed model’s per
formance is analogized with the prevailing methodologies. The outcomes demonstrated that the 
proposed system achieved better performance.   

1. Introduction 

The oceans, which accounts for 97% of the water on earth, are considered to be the major alternative resource owing to the 
insufficiency of surface as well as underground potable water sources [1]. Nevertheless, for consumption, seawater is not suitable. 
Hence, a new source of potable water is required to overcome freshwater scarcity; this can be obtained by employing certain SWD 
methodologies [2]. Seawater desalination, which is a water treatment process, eliminates salt along with other minerals as of seawater; 
thus, making them useable for human consumption, and industrial along with agricultural usage [3]. (i) Thermal Desalination (TD) 
model and (ii) Membrane process are the 2 methodologies utilized by the SWD process. Multi-Stage Flash (MSF) desalination and 
Multiple Effect Evaporation (MEE) are the TD processes [4]; here, in the process of obtaining fresh water, the seawater is heated first to 
make vapour and it is then transmuted into liquid water again by condensation [5]. Nevertheless, the traditional thermal energy is 
overpowered by the membrane process like Sea Water RO (SWRO); moreover, it is deployed in over 90% of the newly constructed 
desalination plants [6]. 

Owing to its cost-effectiveness as well as lesser energy consumption, SWRO desalination is an extensively espoused desalination 
technology [1,2,7,8]. Additionally, when analogized to the TD process, SWRO desalination offers higher-quality drinking water [3–5]. 
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In a desalination system, heat is utilized to evaporate as well as distillate the seawater whereas, in membrane sort, electrical power is 
used to pump the seawater via the membranes [6,9,10]. The salt is removed by the permeate membrane and fresh water is provided. 
Nonetheless, higher energy is required by the SWRO to operate; in addition, it requires higher operation costs. Thus, during the 
desalination process, to get fresh water effectually as of the seawater, the RO plant output should be optimized. With respect to the use 
of ANNs in the field of desalination, reverse osmosis technology has been done in the existing methods, which includes optimization of 
SWRO desalination plant operation [11]. To achieve favourable objective functions like the lowest total annualized cost, lowest 
freshwater production cost, along with lowest energy consumption, the optimization procedure of any industrial process that subsumes 
the RO process is deemed to be the most projecting tool [7]. Global Optimization (GO), Non-Linear programming (NLP), Successive 
Linear Programming (SLP), Mixed Integer NLP (MINLP), Sequential Quadratic Programming (SQP), Genetic Algorithm (GA), and 
Multi-Objective Optimization (MOO) and GA (MOO + GA) are some of the researches being executed to optimize SWRO for single 
objective or multi objectives [10]. 

Plasencia et al. [12] developed a methodology to manage operations on a simple SWRO plant. For optimizing the SWRO desali
nation plant, 2 Machine Learning (ML) algorithms, Decision Trees (DTs) as well as Support Vector Machine (SVM), were utilized. 
Regarding error metrics, better performance was delivered by the DT algorithm than by the SVM. Nevertheless, the tree might lose data 
when variables were categorized in multiple categories; thus, the DT algorithm would consume more time to complete the process. 
Ahmadi et al. [13] recommended a MOO for a multi-effect desalination unit incorporated with a gas turbine plant development. 
Therefore, to identify the best decision variables, the GA-centric MOO was employed. The outcomes demonstrated that with a motive 
steam flow rate of 14 kg/s, the Distilled Water (DW) production was 12,294 m3/day. Even though an increased number of effects 
ameliorated the DW production rate, the system’s total cost rate was high. Taloba [14] presented an Artificial Neural Network (ANN) 
to optimize the water treatment process as well as the desalination process. The ANN, which predicted the RO desalination process’s 
operation, was utilized in this methodology; in addition, it was wielded to structure the supply water temperature. The outcomes 
exhibited that the model was cost-effective. Nevertheless, a higher quantity of data was required to train the ANN; moreover, it might 
not be reliable with low available data. Zhou et al. [15] proffered a model for the operation optimization of the hydroelectrical energy 
system, which included SWRO desalination. With the third generation of the constrained Non-dominated Sorting GA (NSGA-III), the 
MOO problem was addressed. The simulation outcomes displayed that for the computation of total cost along with power stability 
assessment, the presented optimal operation model was highly appropriate. The presented NSGA III algorithm was highly capable of 
estimating the system’s Pareto-optimal operational plans; however, for the MOO, the convergence was low. Leon et al. [16] introduced 
a model for the optimization of energy efficiency, cost, carbon footprint, along with ecological footprint with RO membranes on SWD 
plants. In this methodology, RO membranes with higher surface area together with energy recovery systems, which were utilized to 
recuperate the brine pressure, were employed for the mitigation of energy consumption. By performing experimental analysis on the 
Canary Island, it was established that in this model, the operational cost was abated and the energy efficiency was augmented. In the 
Canary Islands, the suggested model performed well. However, when the process is conducted in other zones, the model’s efficacy 
might get changed. Research group of Di Martino [17] established a Neural Network (NN) centered superstructure optimization model 
meant for the ROD plant. To capture the membrane behaviour precisely, the feed-forward NN with rectified linear units was employed 
here. After that, to minimize energy consumption, the ANN was transmuted into a mixed-integer linear programming formulation. The 
model was energy efficient since at most 51% of the monthly overall ROD energy consumption was constituted by the derived energy 
consumption. Nevertheless, the activation layer did not consider the negative outputs; thus, creating defects in the output. Toth [18] 
presented a mechanism for the desalination of saline process water resources grounded on the optimization of Multi-Stage Flash (MSF) 
distillation as well as RO. In this model, the desalination of saline process wastewater was examined with MSF on ChemCAD pro
fessional flow sheet simulator; then, it was analogized with the RO on the WAVE simulator. The outcomes demonstrated that the MSF 
obtained 11.7% whereas it was between 3.0% and 12.6% in the case of RO; thus, suitable for the desalination process. Nevertheless, 
whilst utilizing the ChemCAD simulator, the process became slow. Karimanzira and Rauschenbach [19] presented a predictive control 
model aimed at the ROD plant regarding a deep learning model. The Nonlinear Model Predictive Controller (NMPC) was utilized for 
ROD; here, the Long Short Term Memory (LSTM) was utilized as a predictive model. The outcomes displayed that the system provided 
a better performance on permeate flow rate. Nevertheless, owing to the usage of LSTM, more storage capacity was required for the 
presented work. Ehteram and co-workers [20] developed a methodology for the ROD plant’s efficiency evaluation regarding hy
bridized Multi-Layer Perceptron with Particle Swarm Optimization (MLP-PSO). Here, the investigation was done regarding a one-week 
advance prediction of permeate flow rate for the Sistan as well as Baluchistan provinces. The outcomes demonstrated that in the 
prediction of permeate flow rate, the present model obtained better performance than the SVM and M5Tree models. However, the 
system performed slowly owing to the PSO’s slow convergence speed. Musharavati et al. [21] presented a MOO of biomass gasification 
to produce electricity along with desalinated water by utilizing Grey Wolf Optimizer (GWO) as well as ANN. It mitigated the cost and 
obtained higher energy efficiency. To abate the computation time, the ANN was employed in the optimization process. Here, the total 
energy computed was 15.61%. Nevertheless, owing to the GWO’s lower convergence, the process became slow as time passed. 

The prevailing works for the optimization of SWRO desalination have limitations on the efficient production of fresh water. The 
limitation in existing works is that the controller feed is directly given to the RO plant without considering the unnecessary factors that 
are not required for the desalination process, which requires more energy consumption. Also, taking all the input data to process, the 
RO plant requires more cost; hence it cannot be considered as an efficient method. The conversion efficiency of the existing system is 
also high. By considering these limitations, the aim of the proposed methodology is to develop a better controller strategy and a novel 
optimization technique to overcome these limitations. 
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2. Proposed optimal control strategy for sea water reverse osmosis desalination plant 

Here, to produce fresh water, a novel IEF-DLNN and multi-objective-based optimizing control system have been proposed for SWD. 
For input data, an optimal control strategy has been discovered; then, attributes are extracted whilst the trajectory is presented. 
Furthermore, the optimal control strategy is adopted for the ROD process. Fig. 1 exhibits the proposed scheme’s block diagram. 

2.1. Input data 

Here, seawater conductivity, seawater pH, feed pressure, time, feed flow rate, feed temperature, and feed conductivity are the data 
gathered for developing the control strategy for the RO plant. After that, the collected information is provided as input into the 
proposed SWRO desalination plant system. The input data being collected is demonstrated as per the following Eq. (1); 

Dn ={D1,D2,D3, ........DN} (1)  

where, the number of data is specified as Dn. 

2.2. Optimal control selection 

Here, to control the desalination process, by utilizing the PDSO-PID model, the optimal control selection is deemed for the given 
input data Dn. In this, the PID controller is utilized; however, in some cases, the whole process’s performance might get affected by the 
controller parameters (that is to say, giving an error); thus, it required optimal parameter selection. For optimal parameter selection, 
the PDSO algorithm is utilized. Generally, in the search space, the doves search the crumbs; here, some doves might get gratified with 
the crumbs but not all. To spot more crumbs, the unsatisfied doves fly forward. Slowly, the spots could be occupied by the remaining 
fed doves with the most crumbs. The Dove Swarm Optimization (DSO) is developed by inspiring such behaviours of the dove. 
Nevertheless, selecting the learning rate randomly to update the satisfied dove’s position might lead the system not to provide the 
optimal solution in the conventional DSO since an over-selection problem may occur with the uppermost selection whereas a local 
optimum problem may occur with the lowest selection. So, to figure out the learning rate, the selection probability function is proposed 
here; thus, addressing the aforementioned issues. 

The input data are subjected to the PID controller before selecting the optimal parameters. In accordance with the variation be
tween the desired Set Point (SP) and a gauged Process Variable (PV), the PID controller automatically adjusts a control output. It is 
computed based on Eq. (2); 

Cn ∈Dn = GpE(τ) + Gi

∫

E(τ)dτ + Gp
dE
dτ (2)  

where, the PID controller’s output is specified as C, the proportional gain is signified as Gp, the integral gain is notated as Gi, the error 
value is symbolized as E(τ), the change in error value is denoted as dE, and the change in time is indicated as dτ. 

Next to this, by utilizing the PDSO-PID, the control variables are optimized in terms of the given input data Dn. Here, the optimized 
control variables are regarded as the number of doves. In the solution space on a rectangular region, the doves are initialized randomly 
as, 

Cn ={C1,C2,C3, .....CN} (3) 

In Eq. (3), the number of doves is represented as Cn. Next, the position vector is initialized as ωCm
ς, the epochs ς = 0 and degree of 

satiety for the dove are represented as δCm
ς.After setting the limit, the multi-objective function (that is to say, maximize desalination 

plant efficiency, minimize operating cost, and minimize energy consumption) is performed at the epoch as a total number of the 

Fig. 1. Block diagram of the proposed methodology.  
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crumbs in the position of the Cn dove. After that, by utilizing the maximum condition obtained by the fitness function at the epoch ς =

0, the dove is located nearby the largest number of crumbs. It is formulated based on the following equation (Eq. (4)). 

LCn = argmax{ρ(Ci
ς)} (4)  

where, the output of the locating dove is represented as LCn . By utilizing the below equation (Eq. (5)), the satiety degree of each dove 
δCi

ς is updated after locating the dove nearest to the crumb. 

δCi
ς =ℏδCi

ς− 1 + ς(ρ(Ci)) (5)  

where, the constant is denoted as ℏ, and the satiety of the previous epoch of ith dove is signified as δCi
ς− 1. After that, by the highest 

degree of satiety, the most satisfied dove is selected, which is expressed as, 

Csat
ς = arg max

1≤i≤N
{δCi

ς} (6)  

where, the dove is signified as Csat
ς in the above equation (Eq. (6)), which exhibits the best foraging performance; in addition, it is 

mocked by other doves in the flock as given in Equation (7). 

ωCi
ς+1 =ωCi

ς + ρ(Ci
ς)Ωi

ς(ωCsat
ς − ωi

ς) (7)  

where, the updating parameter is specified as Ωi
ς, and the learning rate to update the dove position vector is depicted as ρ(Ci

ς). Next, by 
utilizing the selection probability model (Eq. (8)), the learning rate is computed regarding the fitness of every single dove. 

ρ(Ci
ς)=

f (Ci)

∑N

i=1
f (Ci)

(8)  

where, the fitness of an individual i in the population is represented as f(Ci), the fitness ith dove is specified as f(Ci), and the fitness of 
every single dove is symbolized as f(Cn(each)).Until satisfying the termination conditions, the process is continued by increasing the 
epochs. Thus, from the controlled variables, the optimal parameters are selected in this manner of selecting the satisfied dove. The 
output ωopt could be attained at the last epoch of this process and it is represented as an optimal control parameter. The pseudo-code of 
the proposed PDSO-PID is,  

Input: collected datainput data Dn 

Output: optimal control parameter ωopt 

Begin 
Initialize parameters Cn, LCn , δCi

ς, ρ(Ci
ς), epoch ς 

Random initialization of dove Cn 

Initialize position vector 
Set the epochs ς and degree of satiety for dove δCm

ς 

For ς = 0 to φ 
While ς = 0 

Compute fitness function of each dove 
Locate the dove nearest to the largest number of crumbs 

LCn = argmax{ρ(Ci
ς)}

Update most satisfied dove 
Csat

ς = arg max
1≤i≤N

{δCi
ς}

Update position vector of satisfied dove 
ωCi

ς+1 = ωCi
ς + ρ(Ci

ς)Ωi
ς(ωCsat

ς − ωi
ς)

End while 
End for 
Return optimal control parameter 

End  

2.3. Attributes extraction 

The attributes of permeate like dynamic response for permeate flow rate, permeate concentration, and permeate quantity are 
extracted before implementing the optimal control strategy in the RO phase. To predict the trajectory, informative data about the 
status of permeate are obtained by performing attribute extraction; subsequently, the attributes being extracted are expressed as, 

Pn ={P1,P2,P3, .......PN} (or) Pk, k= 1, 2, 3, .....N (9)  

where, the number of extracted attributes is represented as Pn in Eq. (9). 
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2.4. Trajectory prediction 

Here, the extracted attributes Pn are inputted into the IEF-DLNN, which predicts the trajectory of permeate. DLNN, which is a sort of 
ML process, utilizes intersected nodes or neurons in a layered structure that looks like the human brain. The input layer, Output Layer 
(OL), and Hidden Layer (HL) are the 3 layers included. Here, the input layer is the first layer, the OL is the last layer, and HLs are the 
additional layers of units that lie betwixt the input layer and OL. n-Number of HLs are considered in this methodology. Therefore, 
providing accurate prediction is always a problem in the NN; in addition, owing to the weight updation procedure, there occur a 
number of iterations. Moreover, owing to the existence of a number of complex values, the traditional activation function of the 
sigmoid is not appropriate for this prediction model. To circumvent these issues, in the proposed system, instead of the sigmoid 
activation function, the exponential activation function is utilized; also, to update the NN’s weights, the interpolation methodology is 
utilized. Fig. 2 illustrates the architecture of IEF-DLNN. 

At first, the extracted attributes’ outputs are provided to the input layer. Then, from the input layer, the data is given to the HL. 
Next, for the input attributes, the hidden unit Hk in the HL is computed as, 

Hk = β +
∑N

k=1
Pk. W (10) 

In Eq. (10), the bias parameters are represented as β, the kth input attribute is notated as Pk, and the weight parameter obtained 
utilizing the Interpolation methodology is denoted as W, which is computed using Eq. (11) and is given as, 

W = b1(tarvar) +
(
atar − a1(tar)

) b2(tarvar) − b1(tarvar)

a2(tar) − a1(tar)
(11)  

where, the target and target variation values at one point are symbolized as a1(tar) and b1(tarvar), and the target and target variations at 
another point are represented as a2(tar) and b2(tarvar). Therefore, the HL’s output is fed into the OL. In the OL, the exponential activation 
function is measured as, 

α= eℵ(Hk − W) + β (12)  

where, the output unit is denoted as α, and the radial basis function is specified as ℵ. Eventually, the output of Eq. (12) could be 
classified as the trajectory presented or not presented, which are represented as αpre and αnot respectively. For optimal selection, the 
extracted attributes are considered if the trajectory is present, or else, to mitigate energy consumption along with cost, the ROD is 
performed. 

2.5. RO desalination 

Water is taken from the sear after setting all the parameters as well as strategies for the ROD process; then, the first treatment is 
performed to remove impurities, oil, seaweed, rubbish, et cetera. The saltwater is subjected to RO after removing the organic sub
stances. Following the filtration process, by utilizing a centrifuge, the waste from the pre-treatment is dried, which is either reused or 
removed for disposal. The freshwater is passed via the demineralization as well as chlorination process; subsequently, it is stored for 
distribution. 

Fig. 2. Structure of proposed IEF-DLNN.  
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3. Results and discussion 

Here, the proposed SWRO desalination is assessed. The proposed system is executed in MATLAB. 
Software and system details: 

Software: MATLAB (version R2022a) 
Processor: Intel core i7 
CPU Speed: 3 GHz 
OS: Windows 11 
RAM: 16 GB 

3.1. Performance analysis 

Controller and trajectory prediction are the two segments that are performed to assess the proposed model’s performance. 
Additionally, for the analysis of the controller, the fitness vs iteration analysis is also performed. 

3.1.1. Performance analysis for the controller 
DSO-PID (DSO-PID), Salp Swarm Optimization-PID (SSO-PID), Whale Swarm Optimization-PID (WSO-PID), and PSO-PID are the 

prevailing methodologies with which the proposed PDSO-PID is analogized regarding conductivity energy along with fitness function. 
In Fig. 3, the proposed model’s time response analysis is analogized with the prevailing algorithms. The graph shows that the 

proposed system’s conductivity initially starts below 1. For all algorithms, the conductivity increases as the time increases; then, the 
proposed algorithm’s conductivity remains constant after 10 s. Nevertheless, when analogized with the prevailing DSO-PID, SSO-PID, 
WSO-PID, and PSO-PID algorithms, the proposed one showed better conductivity. Consequently, the proposed algorithm has a better 
response time. 

The proposed model is evaluated regarding the fitness function and is analogized with the conventional models in Table 1. Here, 
fitness is analyzed to estimate the objective functions’ efficiency. For every iteration, the proposed algorithm attained higher fitness. 
For 50 iterations, the proposed methodology attained a fitness of 96, which is greater than that of the prevailing DSO-PID (91), SSO- 
PID (87), and PSO-PID (78) models. Similarly, for every iteration, the fitness is computed and correlated with the prevailing models. 
The overall analysis showed that for the optimal control strategy, the proposed model is highly suitable. 

3.1.2. Performance analysis for trajectory projection 
Regarding Root Mean Squared Error (RMSE) and accuracy, the proposed IEF-DLNN model is analogized with the conventional 

DLNN, Convolutional NN (CNN), ANN, together with SVM methodologies. 
To detect the prediction errors’ deviation, the RMSE is computed. Fig. 4 shows the RMSE analysis of the proposed IEF-DLNN al

gorithm in contrast to the prevailing DLNN, CNN, ANN, and SVM models. With lower RMSE, the model shows better performance. The 
proposed technique attained a deviated value of 0.056. However, the prevailing DLNN, CNN, and ANN attained 0.084, 0.102, and 
0.116 respectively. Therefore, it is proved that in the output prediction, the prevailing methodologies are dominated by the proposed 
framework. 

In Table 2, the proposed model is analogized with the prevailing DLNN, CNN, ANN, along with SVM methodologies regarding 
accuracy. Accuracy determines how accurately the system produces the optimal output. The proposed framework attained an accuracy 
of 96.85%, which is higher than the SVM classifier by 33.84% and higher than the DLNN algorithm by 2.7%. Thus, it is clear that for 
trajectory prediction, the proposed IEF-DLNN algorithm is more appropriate. 

Fig. 3. Conductivity analysis.  
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3.1.3. Performance analysis of permeate flow rate 
Here, regarding RMSE, the outcome of permeate flow rate is analyzed. The system attains better efficacy with a lower error rate. 

The RMSE attained by the proposed model is 0.0079 whereas the prevailing models attained the RMSE in the range of 0.0083–2.322 as 
given in Table 3. The overall analysis shows that when compared with the prevailing models, the proposed one works more effectively. 

Fig. 5 exhibits the graph regarding flux and permeate concentration. Fig. 5(a) displays the alterations in permeate flux at diverse 
applied pressure with a constant temperature. The outcomes exhibited that an augment in applied pressure generated an augment in 
the flux. Similarly, Fig. 5(b) shows the concentration of permeates at diverse applied pressure with a constant temperature. From this 
graph, it is illustrated that the concentration of pressure lessened with an increase in pressure. 

The desalination capacity of the proposed model is shown in Fig. 6. A process that takes away mineral components as of saline 
water is termed desalination. The capacity that is used to calculate desalination is called desalination capacity. At stage 5, the 
desalination capacity increased to 5.9 L. From the graph, it is concluded that an increase in the desalination stage increases the 
desalination capacity. 

Fig. 7 exhibits the comparative analysis of the proposed model and the existing models regarding energy efficiency. In existing 
models, such as SVM [12], LSTM [19], and MLP-PSO [20], the models never used trajectory prediction before the desalination process, 

Table 1 
Fitness vs iteration analysis.  

Algorithms 10 20 30 40 50 

Proposed PDSO-PID 74 78 86 92 96 
DSO-PID 69 73 79 86 91 
SSO-PID 64 61 74 82 87 
WSO-PID 58 60 68 76 82 
PSO-PID 54 59 62 72 78  

Fig. 4. RMSE analysis for the proposed IEF-DLNN approach.  

Table 2 
Comparative Analysis of the proposed and prevailing algo
rithms regarding the accuracy.  

Algorithms Accuracy (%) 

Proposed IEF-DLNN 96.85 
DLNN 94.23 
CNN 86.56 
ANN 75.62 
SVM 72.36  

Table 3 
Comparative Analysis of the proposed and existing algorithms in terms of the permeate flow 
art.  

Authors permeate flow rate (RMSE) 

Proposed research 0.0079 
(Marichal Plasencia et al., 2021) 0.0104 
(Karimanzira and Rauschenbach, 2020) 0.0083 
(Ehteram et al., 2020) 2.322  
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which leads to lower efficiency of the model. But, in the proposed system, the trajectory prediction was carried out before the 
desalination process, which improves the energy efficiency of the proposed model. Hence, it is concluded that the proposed model is 
more efficient in seawater reverse osmosis desalination plants. 

4. Conclusion 

For the SWRO desalination plant, a novel multi-objective optimization control strategy and an IEF-DLNN classifier have been 
proposed in this research methodology. Here, by utilizing the PDSO-PID model, the optimal control strategy of the SWRO desalination 
process is performed. After that, by employing the attribute extraction as well as prediction methodology, the trajectory is predicted. In 
this work, to predict trajectory, the IEF-DLNN is utilized. For the proposed model, experimental evaluation was performed; subse
quently, the outcomes obtained were analogized with the prevailing methodologies. Experimental analysis is conducted for the 
proposed method and is compared with the existing approaches. From the results of all metrics, it is concluded that the proposed model 
achieved an accuracy of 96.85%, which shows the efficiency of the model. Therefore, the outcomes obtained confirmed that for the 
SWRO desalination plant, the proposed algorithm shows better performance. To predict the classifier output, the looping of the 
proposed process consumes a little more time. In the future, to overcome this issue, the attributes will be extracted earlier to mitigate 
the operational cost further. 

Fig. 5. Graph in terms of (a) flux and (b) Permeate concentration.  
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MSF Multi-Stage Flash 
MEE Multi-Effect Evaporation 
SWRO Sea Water Reverse Osmosis 
NLP Non-linear programming 
GO Global Optimization 
SLP Successive Linear Programming 
SQP Sequential Quadratic Programming 
MINLP Mixed Integer Nonlinear Programming 
GA Genetic Algorithm 
MOO Multi-Objective Optimization 
DT Decision Trees 
SVM Support Vector Machine 
ANN Artificial Neural Network 
NSGA Non-dominated Sorting Genetic Algorithm 
NMPC Nonlinear Model Predictive Controller 
LSTM Long Short-Term Memory 
MLP-PSO Multi-Layer Perceptron with Particle Swarm Optimization 
GWO Grey Wolf Optimizer 
PID Proportional Integral Derivative 
SP Set Point 
PV Process Variable 
DSO Dove Swarm Optimization 
SSO Salp Swarm Optimization 
WSO Whale Swarm Optimization 
CNN Convolutional Neural Network 
RMSE Root Mean Squared Error 
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