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Summary 
Despite considerable evidence documenting the central nervous system as a site of immunological 
privilege, immune responses do occur within the brain and neural allografts between major 
histocompatibility complexes (MHC) and minor antigen incompatible rat strains may be rejected. 
The survival of completely MHC incompatible neural allografts has been found to be prolonged 
indefinitely after administration of a monoclonal antibody (mAb) to the interleukin 2 receptor 
(IF2R) for 10 d after transplantation. Here we present evidence that rats with long-term surviving 
lateral ventricular neural allografts, after anti-Ib2R treatment, accept subsequent neural allografts 
from the same donor strain, placed in a peripheral nonprivileged site, but rapidly reject third- 
party grafts. Thus, treatment with a mAb to the p55 chain of the IL-2R has resulted in the 
specific acceptance of second grafts of fully allogeneic neural tissue. These results suggest that 
ongoing interaction between elements of the host immune system and alloantigen within the 
brain maintains the tolerant state and furthermore, that interruption of signaling through the 
Ib2R may be important in allospecific tolerance induction. 

T he central nervous system (CNS) 1 has been well charac- 
terized as a site of immune privilege (1, 2), nonetheless, 

immune responses, such as those observed in multiple scle- 
rosis, do occur within the brain. This apparent paradox re- 
mains unresolved. Further, the rejection of completely MHC 
incompatible neural allografts placed within the brain does 
occur (3, 4), albeit at a slower rate compared with similarly 
mismatched skin allografts (5). In the case of neural allograft 
rejection, the precise mechanism of host sensitization is not 
known, however, local neural elements, in the form of mi- 
croglia and astrocytes with antigen-presenting capacity, do 
exist (2). The chronic nature of the immune response to neural 
allografts is thought to be the result of an afferent arc defect, 
indirect evidence for which is the observation that a second 
allograft of neural tissue placed in a peripheral nonprivileged 
site can elicit the rapid rejection of an earlier allograft trans- 
planted into the CNS (6). In addition, the strength of the 
immune response to transplants within the CNS is site de- 
pendent, transplants in the ventricles being more vulnerable 
than those within the brain parenchyma (6), suggesting dif- 
ferent degrees and possibly modes of host sensitization in 
these cases. 

1 Abbreviations used in thispaper: CNS, central nervous system; KC, kidney 
capsule. 

Lateral ventricular neural allografts are normally rejected 
within 150 d but have been observed to survive indefinitely 
in anti-IL-2R mAb treated recipients (7). IL-2 is a pivotal 
cytokine in the generation of immune responses (8) and fur- 
thermore, its mRNA is detectable at sites of aUograft rejec- 
tion in vivo (9). Evidence suggests that a lack of II.-2 and 
other cytokines after antigenic stimulation may be critical 
in the induction of T cell clonal anergy (10), and work in 
vitro has demonstrated suboptimal proliferative responses and 
marked reductions in the levels of IL-2 message in anergized 
T cells (11). In addition, studies in vivo have suggested that 
altered regulation of the IL-2 pathway may be implicated in 
the induction of aUospecific tolerance (12). 

In the present study, the status of long-surviving neural 
aUografts in anti-IL-2R mAb treated animals has been inves- 
tigated. We present evidence to show that treatment with 
the mAb NDS 63 to the p55 chain of the Ib2R can induce 
specific tolerance to fuUy MHC mismatched aUografts of neural 
tissue. In the PVG RT1 c (PVG) to AO RTI" (AO) rat 
strain combination treatment with NDS 63 results in indefinite 
lateral ventricular neural allograft survival. Animals  with long- 
surviving (60-300 d) brain aUografts accepted second grafts 
of donor neural tissue placed in a peripheral site beneath the 
kidney capsule (KC), whereas third-party Lewis - RT11 
(Lew) allografts were rejected rapidly within 10 d. These data 
suggest that interruption of the I1.-2 pathway at the level of 
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the I b 2 R  can result in the generation of  specific peripheral 
transplantation tolerance after aUografts of neural tissue within 
the CNS. 

Mater ia l s  and  Me thods  

Animals. 8-12-wk-old AO RTI" rats were maintained in our 
own animal research facility and used as recipients in all allograft 
experiments. PVG RT1 c and Lewis RT11 pregnant rats were ob- 
tained from Harlan Olac (Bieester, Oxon., UK), and rat pups 24-h- 
old were used as donors in all experiments. PVG adults (8-12-wk- 
old) obtained from our own animal unit were used as recipients 
for control syngeneic grafts. 

mAb Preparation. Anti-Ib2R mAb ceil lines NDS 63 (isotype 
IgG1), which functionally inhibit the IL2R, and NDS 66 (isotype 
IgG2a), a control anti-IL-2R mAb which does not block the 
receptor, were used in vivo (13). mAb activity and specificity were 
tested in immunofluorescence assays. These hybridoma cell lines 
were grown as ascites in 3-mo-old BALB/c x DBA (CD2) F1 hy- 
brid mice. The IgG fractions were obtained by DEAE ion exchange 
chromatography and purity determined by SDS-PAGE analysis. 
mAbs were dialyzed against PBS and administered at 750/~g/kg/d 
i.p. from days 0 to 9 after the initial transplant. 

Neural Transplantation Surgery. Donor tissue for transplantation 
consisted of 1-2-mm cubes of neocortical neural tissue dissected 
from neonatal rat pups <24-h-old. The tissue was placed into sterile 
physiological saline cooled to 0-4~ on ice and then taken up in 
a stainless steel cannula of ,v12/~1 volume. Recipient rats were 
anaesthetized with fentanyl citrate and fluanisone (Hypnorm; 
Janssen Pharmaceutical LTD, Oxford, UK) and midazolam (Hyp- 
novel; Roche Products, Welwyn Garden City, UK), placed in a 
stereotaxic frame, and the transplant placed in the lateral ventricle 
at the following coordinates: A, -1  mm; L, 1.5 mm; and V, 3 mm 
(A, anterior from bregma; L, lateral from bregma; and V, ventral 
from dura). 

Kidney Capsule Grafts. Neocortical neural tissue was prepared 
and anaesthetic was administered as described above. A cannula 
of volume 25/~1 was used. A dorso-ventral incision was made be- 
neath the lowest rib on the recipient animal's left flank. The left 
kidney was exposed and externalized and the KC pierced. The can- 
nula was inserted beneath the KC, and the transplant tissue ex- 
pelled and gently massaged towards the upper pole of the kidney. 
The kidney was replaced in the abdominal cavity and the peritoneum 
and skin closed. 

Exl~imental Design. Experimental allograft groups were treated 
with either NDS 63 mAb (group 1), control mAb NDS 66 (group 
2), or were untreated (group 3), as detailed in Table 1. Neural al- 
lografts were transplanted into the CNS on day 0, and at times 
of 60, 120, or 300 d thereafter animals were challenged with pe- 
ripheral KC aUografts of neural tissue. Redpients receiving allografts 
into the CNS alone were included in each group at all time points 
for comparison with the combined CNS and KC allografted animals. 
Third-party control KC allografts were of the fully MHC histoin- 
compatible Lew strain. 

Immunocytochemistry. Animals were killed at 70, 155, or 350 d 
after initial surgery. Brains were removed and quick frozen in OCT 
embedding compound (Miles Laboratories Inc., Elkhart, IN), and 
10 #m -cyrostat sections were prepared and stained by the immu- 
noperoxidase technique of Barclay (14). Secondary antibody used 
was a horseradish peroxidase-conjugated rabbit anti-mouse poly- 
clonal Ig (Dako, High Wycombe, UK) with diaminobenzidine 
(Sigma Chemical Co., Dorset, UK) used as the chromogen. Coun- 

terstaining was performed with 0.5% Toluidine blue (BDH Chem- 
ical Co., Dorset, UK). 

raAbsforlmmunocytochemistry. The following mAb were used: 
MRC OX-27, polymorphic anti-rat MHC class I, RT1 c haplo- 
type only (15); MRC OX-7 anti-Thy-l.1 antigen found on mature 
rat CNS neurons (16); MRC OX-6, anti-rat MHC class II (17); 
MRC OX-1+30, leukocyte common antigen (18); MRC OX-19 
(19) +52 (20), anti-rat T cell; MRC OX-10, anti-rat CD8 (21); 
MRC OX-39, anti-rat IL-2R (22); MRC OX-42, anticomplement 
receptor type 3 (23), and a negative control MRC OX-21, against 
human factor I. The MRC OX mAbs were kind gifts of Prof. A. F. 
Williams and Dr. D. W. Mason (Medical Research Council Cel- 
lular Immunology Unit, Oxford, UK). 

AllografiAnalysis. The survival of neural grafts within the brain 
and beneath the KC was determined by immunostaining with MRC 
OX-7 for the Thy-l.1 antigen, a cell surface marker expressed at 
high density on mature neurons of the CNS (24). 

Results 

Syngeneic grafts were performed to confirm tissue viability 
in vivo, and all such grafts to the lateral ventricle and KC 
survived indefinitely. Results of  neural allograft survival into 
the CNS and beneath the KC are shown in Table 1. In 
recipients treated with the anti-IL-2R mAb NDS 63 (group 
la) 100% survival of neural allografts in the brain was ob- 
served at day 350, whereas 37 and 67% of control grafts (NDS 
66 treated and untreated; groups 2a and 3a) were rejected 
at days 70 and 155, respectively. To further investigate the 
tolerant status of  recipients with long-surviving allografts, 
second aUografts of neural tissue, syngeneic with the original 
donor tissue, were placed in a peripheral site beneath the KC 
at 60 and 120 d after the initial brain graft, without  the ad- 
ministration of any further immunosuppression. 100% of such 
peripheral neural allografts were accepted (group lb), for 
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The survival of second neural allografts to the kidney cap- 
sule. AO RTI" rats received PVG RT1 c neural allografts transplanted into 
the lateral cerebral ventride on day 0 and were treated either with NDS 
63 mAb or were control treated (NDS 66 mAb or untreated). At times 
thereafter (days 60, 120, 300), animals received a second allograft of either 
donor-specific (PVG) or third-party (Lew RT11) neural tissue transplanted 
to the kidney capsule. The survival of these second kidney capsule neural 
allografts was examined at days 70, 155, and 350 (10, 35, and 50 d after 
transplantation, respectively). 
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Table 1. Brain and Kidney Capsule Neural Allografi Survival 

Percent survival 

Experiment Day of assessment No. Brain Kidney 

Group 1: NDS 63 mAb treatment 
a: PVG RT1 c ~>AO RT1 u VL graft alone 70 9 100 

155 10 100 

350 8 100 

b: PVG Vr graft + PVG RT1 c KC graft at 
d 60 70 6 100 100 

d 120 155 7 100 100 

d 300 350 5 100 80 

c: PVG VL allograft + third-party Lew RT11 

KC allograft at 
d 60 70 6 100 16 

d 120 155 5 100 0 
d 300 350 6 100 0 

Group 2: NDS 66 mAb control treatment 

a: PVG ~>AO VL neural allograft alone 70 9 66 - 
155 11 35 - 

350 8 0 - 

b: PVG VL ~lograft + PVGKCgra f t  at 
d 60 70 5 40 20 

d 120 155 8 0 0 
d 300 350 5 0 0 

c: PVG VL allograft + third-party L e w K C  

allograft at 
d 60 70 7 56 28 

d 120 155 6 33 0 

d 300 350 5 0 0 

Group 3: No treatment control 
a: PVG~>AOVL neural aHograft~one 70 7 57 - 

155 7 28 - 

b: PVGVL allograft + P V G K C  graft at 

d 60 70 6 33 0 

d 120 155 6 0 0 

AO RT1- rats received PVG RT1 r neural allografts to the lateral cerebral ventricle (VL) on day 0 and recipients were treated with either NDS 63 
mAb, NDS 66 mAb, or were untreated. At time point days 60, 120, or 300, these animals (except those in groups la, 2a, and 3a) received second 
allografts to the KC of either donor-specific (PVG) or third-party (Lew) neural tissue, as indicated in column one. Brain and KC neural allografts 
were examined at the times (days 70, 155, and 350) indicated in column 2, the times after KC transplantation being 10, 35, and 50 d, respectively. 
Brain and KC neural allograft survival is shown in columns 4 and 5 and was determined by the expression of the Thy-l.1 neuronal cell surface 
antigen as described in Materials and Methods. 

greater than 35 d in the case of  those transplanted at day 120, 
whereas third-party KC allografts were rejected rapidly (group 
lc and Fig. 1). In these groups (lb and lc), the initial neural 
allografts within the CNS survived indefinitely. In both 

control groups (groups 2b and 3b), peripheral KC allografts 
were acutely rejected, within 10 d in most cases, themselves 
provoking rapid rejection of  the original brain allografts 
within the same 10-d period. As predicted, third-party pe- 
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Figure 2. Immunohistological features 
of hteral ventricular neural allografts. I'VG 
to AO hteral ventricular neural allograft 
in an NDS 66 treated recipient at day 70, 
10 d after the transplantation of an AO KC 
neural allograft (a-J). (a) MRC 0X-27 ex- 
pression indicating strong donor-specific 
MHC class I induction across much of the 
graft. Patches of absent expression are noted 
as well as an area of elevated expression 
(arrow). (b) MP, C OX-6, indicating strong 
expression ofMHC chss II antigens within 
the graft (arrow). (c) MRC OX-1/30, 
showing strong leukocytic infiltration 
within the graft. (d) MILC OX-39, indi- 
cating numerous IL-2P, + cells within the 
infiltrate. (e) MP, C OX-42. Upregulation 
of this antigen is noted upon activated 
microglia within the host brain (small 
arrows) and upon macrophages within the 
graft (large arrow). (~ MRC OX-7. The al- 
lograft (G) is noted within the lateral cere- 
bral ventricle (I o .  Uniform Thy-1 expres- 
sion is seen upon the host brain and on the 
inferior part of the graft, but large areas 
of reduced or absent expression are noted 
at the allograft apex (arrow), indicative of 
allograft rejection. The latter areas corre- 
late closely with those regions of intense 
MHC class II expression and strong leu- 
kocytic infiltration. PVG to AO hteral ven- 
tricular neural allograft in an NDS 63 
treated recipient at day 350, 50 d after the 
transplantation of a donor-specific AO KC 
neural allograft (g-/). (g) MP, C OX-27. 
Weak induction of donor-specific MHC 
chss I expression is noted (arrow). (h) MR.C 
OX-6. Small clusters of MHC class II an- 
tigen expressing cells are seen within the 
graft (arrow). (t) MRC OX-1/30. Small 
numbers of infiltrating leukocytes are seen 
(arrow). (/1 MR.C OX-39. Very few IL-2R. + 
cells are noted (arrows). (k) MRC OX-42. 
Very few activated microglia or macro- 
phages are seen within the graft or host 
brain. (/) MRC OX-7. Uniform Thy-l.1 
antigen expression is noted within the al- 
lograft (G) and host brain, indicative of ex- 
cellent allograft survival. Bar (a-/), 550/~m. 
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Figure 3. Immunohistological features of second neural allografts to the kidney capsule. PVG to AO KC neural allograft in an NDS 63 treated 
recipient 50 d after transplantation (a-e). (a) MRC OX-27. Weak to moderate donor-specific MHC class I expression is noted (arrow). The host kidney 
parenchyma (k) is noted at the medial edge. (b) MRC OX-6. Patches of MHC class II expression are noted within the aUograft (arrow) and at the 
graft borders. (c) MRC-OX-1/30. Some infiltrating leukocytes are noted within the graft but most are seen at the graft borders (arrows). (d) MRC 
OX-10. Very few CD8 § cells are noted within the graft, but most of these cells are seen at the inferior graft/host interface (arrows). (e) MRC OX-7. 
Strong, uniform Thy-l.1 expression is noted upon the entire allograft (G), indicative of excellent allograft survival. FVG to AO KC neural allograft in an 
NDS 66 treated recipient 10 d after transplantation (f-/). ~ MRC OX-27. Very strong donor-specific MHC class I induction is noted upon a thin 
rim of graft tissue. The adjacent host kidney parenchyma (k) is noted. (g) MRC OX-6. Strong expression of MHC class II antigens are seen within 
the allograft (amav) and some positive cells are seen within the host kidney parenchyma. (h) MRC OX-1/30. Numerous infiltrating leukocytes are 
noted within the graft (arnnv). (0 MRC OX-10. Many CD8 + cells are seen within the allograft. (]) MRC OX-7. Very weak and patchy Thy-l.1 ex- 
pression is noted upon the allograft (G) indicative of graft rejection (large arrows). An area of stronger expression is noted within the host kidney 
parenchyma upon a glomerulus (small arrow). Bar (a-j), 500 I~m. 

ripheral KC allografts administered to control animals (group 
2c) were rejected rapidly, whereas allografts within the brains 
of these animals remained relatively intact resembling those 
in similarly treated recipients without a peripheral stimulus 
(group 2a). 

The essential immunohistological features shown in Figs. 
2 and 3 are typical of our findings. In NDS 63 treated recipients 
without a second KC transplant, grafts in the CNS demon- 
strated homogeneous Thy-l.1 expression (indicative of neu- 
ronal survival), in the absence of observable MHC antigen 
induction, although occasional weak cell infiltration was noted. 
MHC antigens are not normally detectable on healthy neu- 
ronal tissue (25). However, in reci_'pients of second KC al- 
lografts at all timepoints (group lb), original brain graft sur- 
vival was not compromised (as indicated by uniform Thyl-1. 
staining), but it is interesting that weak donor MHC class 
I and II expression and patchy cell infiltration, consisting of 
some ID2R + and CD8 + cells, were consistently observed 
(Fig. 2, a-J). It was thus readily apparent that administration 
of subsequent KC allografts had increased immune cell infiltra- 

tion and MHC antigen expression within the original lateral 
ventricular neural allografts. Accepted KC allografts in NDS 
63 treated animals (group lb) demonstrated high levels of 
uniform Thy-l.1 expression (indicative of neuronal survival) 
and mildly elevated donor MHC class I induction. Cell infiltra- 
tion was observed at the periphery of these allografts without, 
however, any evidence of allograft destruction (Fig. 3, a-e). 
Numerous CD8 + and ID2R + cells were noted within the 
infiltrate. 

In contrast, allografts within the CNS of control animals 
after the administration of a peripheral KC neural allograft 
stimulus (groups 2b and 3b), showed strong and rapid donor 
MHC class I and II induction. This was accompanied by mas- 
sive cell influx (predominantly CD8 § and II.,2R + lympho- 
cytes and OX-42 § macrophages) with evidence of marked 
graft destruction (eroded and nonuniform Thy-l.1 staining) 
detectable within 7 d (Fig. 2, g-/) and complete allograft re- 
jection in all cases by day 35. Furthermore, these control 
recipients (groups 2b and 3b) showed rapid rejection of pe- 
ripheral KC allografts. In these grafts, strongly upregulated 
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donor MHC class I expression was noted in the absence of 
uniform Thy-l.1 expression, and in most cases, only a heavy 
band of infiltrating leukocytes was detectable 10 d after trans- 
plantation (Fig. 3, f-j). 

In the final experiments, the duration of the induced state 
of specific unresponsiveness was examined. 100% survival of 
neural allografts within the CNS of NDS 63 treated recipients 
was noted at 350 d after transplantation. Peripheral KC al- 
lografts administered to such long-term brain-grafted animals 
(group lb) were accepted for >50 d in all but one case (80%), 
in which no evidence ofKC allograft survival nor of residual 
immune response could be detected. The original allograft 
in the brain of this animal survived intact, resembling others 
in this group, which suggested a technical failure of the KC 
transplant. 

Discuss ion  

The data presented demonstrate that a state of unrespon- 
siveness has been induced to allografts of neural tissue in rats 
treated with a mAb to the p55 chain of the Ib2R, NDS 63. 
This tolerance was allospecific as third-party peripheral KC 
allografts were rapidly injected with normal kinetics. In con- 
trast, control (NDS 66 and untreated) recipients rejected 
original brain allografts chronically, and rapidly rejected second 
peripheral KC allografts, demonstrating that the tolerogenic 
effect was specific to inhibition of IL2R function. Further- 
more, this alloantigen-specific nonresponsive state persisted 
for >350 d. Of  particular interest is that administration of 
short course cyclosporin A treatment in this rat strain com- 
bination does not result in indefinite neural allograft survival 
(our unpublished results), and thus the use of mAb im- 
munotherapy for neural allotransplantation may have certain 
advantages. 

It is known that NDS 63 treatment leads to modulation 
of the IL-2R and functional inactivation of the receptor 
without cell depletion (13), and thus tolerance in this model 
is not maintained by the deletion of alloreactive T cells. From 
our observations, it is clear that small numbers of circulating 
lymphocytes have the capacity to enter long-surviving neural 
allografts within the brain, an immunologically privileged 
site, such recirculation through the healthy brain not nor- 
mally being observed. After administration of second KC al- 

lografts to NDS 63 treated recipients, increased lymphocyte 
numbers were noted within the original brain grafts in the 
absence of allograft rejection. These lymphocytes were pre- 
dominantly of the CD8 + phenotype and the induced levels 
of class I and II MHC antigens observed within the allografts 
suggested that these infiltrating lymphocytes were not en- 
tirely quiescent but capable of some cytokine production. This 
supports the finding by others of a degree of cytokine produc- 
tion by anergic T cells in vitro (11). It has been suggested 
that the persistence of antigen is required to maintain an un- 
responsive state (26, 27). Our observations support this hy- 
pothesis and indicate that alloantigen within the CNS may 
be continually monitored by small numbers of lymphocytes 
sufficient to maintain the tolerant state. These findings may 
be relevant to the maintenance of self tolerance to antigens 
within the brain. Further, the present model may be useful 
to investigate the circumstances in which the breakdown of 
self tolerance to such brain-derived antigens occurs. 

Our findings resemble other models of T cell anergy in 
that inhibition of normal flux through the Ib2 pathway ap- 
pears to be an important event leading to the tolerant state. 
Furthermore, this inhibition has been found to occur at 
different levels within the pathway. Cell culture evidence has 
suggested that a >93% reduction in the level of Ib2 mes- 
sage accompanies T cell inactivation (11), whereas in vivo 
evidence from a pretransplantation blood transfusion model 
of renal transplant tolerance has indicated that normal levels 
of Ib2 mRNA are present in graft-infiltrating cells (12). 
However, in the latter case, biologically active II.-2 was not 
produced and tolerance could be overcome by Ib2 adminis- 
tration, suggesting the possibility that I1.-2 antagonists main- 
tained the unresponsive state in vivo. A decrease in effective 
II.-2 production has also been found in states of anti-CD4 
mAb induced tolerance (28). In the present report, interrup- 
tion of the Ib2 pathway at the level of IL-2R signaling has 
been shown to give rise to a state of allospecific tolerance 
in which some cytokines are produced. Hence, prevention 
of the normal interaction between Ib2 and its receptor would 
seem to be critical to the generation of peripheral transplan- 
tation tolerance. Direct analysis of intragraft events with the 
examination of cytokine production in situ should shed light 
on the nature of the tolerance induced in this model. 
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