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Abstract  30 

Recent technological advancements in high-density multi-channel electrodes have made it 31 

possible to record large numbers of neurons from previously inaccessible regions. While the 32 

performance of automated spike-sorters has been assessed in recordings from cortex, dentate 33 

gyrus, and thalamus, the most effective and efficient approach for spike-sorting can depend on 34 

the target region due to differing morphological and physiological characteristics. We therefore 35 

assessed the performance of five commonly used sorting packages, Kilosort3, MountainSort5, 36 

Tridesclous, SpyKING CIRCUS, and IronClust, in recordings from the rostral ventromedial 37 

medulla, a region that has been characterized using single-electrode recordings but that is 38 

essentially unexplored at the high-density network level. As demonstrated in other brain regions, 39 

each sorter produced unique results.  Manual curation preferentially eliminated units detected 40 

by only one sorter. Kilosort3 and IronClust required the least curation while maintaining the 41 

largest number of units, whereas SpyKING CIRCUS and MountainSort5 required substantial 42 

curation. Tridesclous consistently identified the smallest number of units. Nonetheless, all 43 

sorters successfully identified classically defined RVM physiological cell types. These findings 44 

suggest that while the level of manual curation needed may vary across sorters, each can 45 

extract meaningful data from this deep brainstem site.  46 

Significance Statement  47 

High-density multichannel recording probes that can access deep brainstem structures 48 

have only recently become commercially available, but the performance of open-source spike-49 

sorting packages applied to recordings from these regions has not yet been evaluated. The 50 

present findings demonstrate that Kilosort3, MountainSort5, Tridesclous, SpyKING CIRCUS, 51 

and IronClust can all be reasonably used to identify units in a deep brainstem structure, the 52 

rostral ventromedial medulla (RVM). However, manual curation of the output was essential for 53 

all sorters. Importantly, all sorters identified the known, physiologically defined RVM cell classes, 54 

confirming their utility for deep brainstem recordings. Our findings provide suggestions for 55 
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processing parameters to use for brainstem recordings and highlight considerations when using 56 

high-density silicon probes in the brainstem. 57 

  58 
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Introduction  59 

“Spike-sorting” refers to the process of assigning extracellularly recorded action potential 60 

waveforms, or “spikes” to distinct individual neurons. Historically, extracellular recordings have 61 

been performed using a single electrode, recording a small number of neurons, followed by 62 

semi-automated sorting based on template matching and waveform features (shape, amplitude, 63 

or width) and extensive manual curation on an individual spike basis (Gerstein and Clark 1964; 64 

Rey et al. 2015). However, the advent of multichannel recording technologies has increased 65 

data output by several orders of magnitude, making this method of sorting increasingly 66 

infeasible (Stevenson and Kording 2011; Rey et al. 2015). More fully automated spike-sorting 67 

approaches have consequently been introduced, with the goal of reducing the time, effort, and 68 

human subjectivity associated with earlier sorting techniques (Lefebvre et al. 2016). Newer 69 

sorters employ a combination of template matching, density-based approaches, and clustering, 70 

with manual curation verifying the resulting clusters (Lefebvre et al. 2016; Hennig et al. 2019; 71 

Buccino et al. 2022).  72 

The most accurate and efficient approach for sorting a given dataset likely depends on the 73 

morphological and physiological properties of the brain region of interest. For example, 74 

recordings from brain regions with densely-packed cells with high firing rates suffer from 75 

overlapping spikes that can be assigned incorrectly during unit identification (Averbeck et al. 76 

2006). Sorters that rely on density-based approaches have been shown to fail at resolving 77 

overlapping spikes at a higher rate than those using template-matching (Pillow et al. 2013; 78 

Garcia et al. 2022). Conversely, low firing rates can impact the performance of template-based 79 

sorters, which rely on an average waveform shape to distinguish units (Shoham et al. 2006; 80 

Pedreira et al. 2012). Therefore, the specific neuron populations in a region and corresponding 81 

firing rate distributions must be considered when choosing a spike-sorting package. 82 

While the performance of a number of automated sorters has been evaluated and compared 83 

in recordings from the cortex, hippocampus, dentate gyrus, and thalamus (Buccino et al. 2020; 84 
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Magland et al. 2020), the defined morphological cell types and layered structure in these 85 

regions gives neurons distinct electrical properties that result in distinguishable waveforms 86 

(Trainito et al. 2019). In contrast, brainstem regions, which have only recently begun to be 87 

explored at the high-density network level, have received less attention, partly due to 88 

technological challenges. Multielectrode arrays are too large to be inserted into deep brainstem 89 

structures without serious injury, and high-density silicon probes long enough to reach deep 90 

structures have only recently become commercially available (e.g. (Ulyanova et al. 2019; Shoup 91 

et al. 2024)). To date, few multichannel recordings have been reported from this region (e.g., 92 

Tsunematsu et al. 2020; Concha-Miranda et al. 2022; Malfatti et al. 2022; Strickland and 93 

McDannald 2022; Yang et al. 2023). It is therefore important to systemically assess the 94 

performance of different automated sorters in the brainstem to help identify the most effective 95 

strategies for sorting.  96 

Given that there are differences in neuronal size, density, and firing patterns across different 97 

brain regions (Mochizuki et al. 2016), and that these might impact sorter performance, the 98 

present study compared the performance of different sorters applied to recordings from a deep 99 

brainstem region, the rostral ventromedial medulla (RVM). The RVM is a ventral brainstem 100 

region, encompassing the ventromedial aspects of gigantocellular and magnocellular reticular 101 

formation and medullary raphe, that has been well characterized using single-electrode 102 

approaches (Fields et al. 1983; Heinricher et al. 1987; Heinricher et al. 1989; Clarke et al. 103 

1994). The different cell classes lack distinct morphology (Winkler et al. 2006), but are defined 104 

by firing changes associated with noxious-evoked withdrawal behaviors: “ON”-cells exhibit a 105 

burst of activity and “OFF”-cells a pause in activity associated with behavioral withdrawal from 106 

the stimulus (De Preter and Heinricher 2024). The third class of cells, “NEUTRAL”-cells, do not 107 

exhibit any change in activity in response to noxious stimuli. Over the last 30 years, RVM spike 108 

waveforms have been sorted using software template matching, cluster analysis, and manual 109 

verification on an individual spike-to-spike basis (Hryciw et al. 2021; De Preter and Heinricher 110 
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2023), a time- and labor-intensive approach that would be impossible in multi-channel 111 

recordings.  112 

Here we took advantage the novel application of silicon-probe technology in RVM and the 113 

well-defined firing patterns to assess performance of these different sorters.  We used 114 

SpikeInterface, a Python toolkit that integrates multiple sorters (Buccino et al. 2020), to compare 115 

performance of five different sorters, with and without manual curation. 116 

  117 
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Methods  118 

All animal procedures were performed in accordance with Oregon Health & Science 119 

University’s animal care committee’s regulations and followed the guidelines of the National 120 

Institutes of Health and the Committee for Research and Ethical Issues of the International 121 

Association for the Study of Pain. Male and female Sprague Dawley rats were housed in a 12-122 

hour light-dark cycle environment with free access to water and food for at least one week prior 123 

to experiments.  124 

Electrophysiological recordings  125 

Rats were briefly anesthetized (4-5% isoflurane) for external jugular vein catheter 126 

implantation. Animals were then transferred to a stereotactic frame and anesthetic plane was 127 

maintained with continuous methohexital infusion. A small craniotomy was made to gain access 128 

to the RVM and dura was removed. Following preparatory surgery, the anesthetic plane was set 129 

to maintain a stable heat-evoked paw withdrawal threshold. Heart rate and body temperature 130 

were monitored and maintained throughout the experiment. Testing was performed in low 131 

ambient light conditions (< 5 lux).  132 

A 64-channel, high-density silicon probe was used to record RVM neuronal activity 133 

(Cambridge Neurotech M1, Cambridge, UK). Prior to placement, the probe was painted with DiI 134 

to identify probe location (Sigma-Aldrich: Cat. #42364). The probe was lowered at a rate of 1.25 135 

micron/s using a hydraulic microdrive (David Kopf Instruments, Tujunga, CA) until the entire 136 

length (632 µm) of the contact distribution was within the RVM.  137 

Probes were paired with a RHD 64-channel recording headstage (Intan Technologies, Los 138 

Angeles, CA) using an adaptor (ADPT A64-Om32x2, Cambridge Neurotech), and connected to 139 

both the Intan Recording Systems (RHD 1024-channel) and, in parallel, to a CED Spike2 140 

(Cambridge Electronic Design, Cambridge, UK) data acquisition system. Signals were band-141 

pass filtered (500 Hz to 15 kHz), sampled at 30 kHz, and stored for offline analysis.  142 
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A 25-min recording from each of six animals was used in this study. Noxious stimulation was 143 

delivered at 5-min intervals: three heat stimulations followed by a hindpaw pinch with toothed 144 

forceps. Noxious heat stimuli were applied to the plantar surface of the hindpaw using a custom-145 

built Peltier device. The surface temperature was increased at a rate of 1.5 °C/s from 35 °C to a 146 

maximum of 53 °C. Withdrawal was determined from hamstring rectified and smoothed (0.05 s) 147 

electromyographic (EMG). EKG and core temperature were also collected.  148 

Histology  149 

At the conclusion of the experiment, rats were deeply anesthetized using methohexital 150 

before being perfused intracardially with 0.9% saline followed by 4% formalin. Brains were 151 

extracted and fixed in a 4% formalin solution for 24 hours, then stored in 30% sucrose. Brains 152 

were sectioned (60 µm), and probe placement confirmed by location of DiI tracks using a 153 

fluorescence microscope (BZ-X710, Keyence Corporation of America, Itasca, IL) and plotted 154 

according to the Paxinos & Watson rat brain atlas (Paxinos and Watson 2009). Only recordings 155 

in which the entire length of the contacts (632 µm) were in the RVM were used. 156 

Spike sorters 157 

We compared the performance of five established sorters on the RVM recordings: 158 

MountainSort5 (MS5) (Chung et al. 2017), IronClust (IC) (Jun et al. 2017), Kilosort3 (KS3) 159 

(Pachitariu et al. 2023), Tridesclous (TDC) (Garcia and Pouzat 2015), and SpyKING 160 

CIRCUS (SC) (Yger et al. 2018). KS3 assigns units as “good” or “mua” (multi-unit activity), and 161 

only the units labeled “good” were considered in further analyses. MS5 and IC employ a 162 

clustering algorithm, KS3 and TDC template matching, and SC a combination of clustering and 163 

template matching. Each of these sorters has been validated against “ground-truth” datasets 164 

(Buccino et al. 2020; Magland et al. 2020). Outputs from each sorter were loaded into 165 

SpikeInterface for post-processing and comparison. 166 

Post-processing of sorter output and comparison 167 
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The raw output of each sorter (1241 units) was post-processed (SpikeInterface 168 

postprocessing module) to eliminate units unlikely to correspond to a valid neuronal signal 169 

based on low signal-to-noise ratio (< 4.0), a high (> 0.5) interspike interval violations ratio 170 

(Vincent and Economo 2024), or few spikes (< 500). This resulted in a reduction in the of total 171 

number of unique units found by the five sorters to 671 that were used for all analyses. The 172 

post-processed output of each sorter was also manually curated in Phy (Rossant and Harris 173 

2013). Sorted units were accepted, rejected, and split or merged to form new units (Rossant 174 

and Harris 2013; Buccino et al. 2020). Units were rejected if they were not present throughout 175 

the recording (e.g. drifted in or out during the recording), if they had contamination (e.g. two 176 

units colliding), or if they were a duplicate (e.g. units recorded from the same contacts with 177 

similar waveforms and a zero-lag cross-correlogram peak). For duplicates, only the unit with the 178 

greater number of spikes was accepted for further analysis. The curated output was then 179 

reloaded into SpikeInterface for analysis of the impact of curation.  180 

Spike trains were compared using the SpikeComparison package of SpikeInterface. A 50% 181 

spike train match was used to extract matched units (Buccino et al., 2020). Sorter performance 182 

was compared using a Chi-square test, t-test, or ANOVA with Holm-Sidak post-hoc tests in 183 

GraphPad Prism. 184 

Comparison Type of test Effect of sorter p-value n  

Number of units identified: One-way 
ANOVA F4,25 = 14.2 p < 0.0001 30 

 
Percentage of consensus 

units: 
One-way 
ANOVA F4,25 = 42.1 p < 0.0001 30 

 

Percentage of unique units: One-way 
ANOVA F4,25 = 31.9 p < 0.0001 30 

 
Effect of curation on output 

from different sorters: 
One-way 
ANOVA F4,25 = 10.1 p < 0.0001 30 
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Number of UNCLASSIABLE 
units eliminated during 

curation 
t-test t29 = 5.8 p < 0.0001 30 

 
Number of cells eliminated 
during curation or surviving, 

two or more sorters vs. single 
sorter: 

Chi-squared c2
(1) = 200.2 p < 0.0001 671 

 
Interaction of curation with 

classifiability: 
Two-way 
ANOVA F4,40 = 0.90 p = 0.47 60 

 
 185 

RVM neuron functional classification 186 

Units were classified as ON-, OFF-, or NEUTRAL-like based on change in firing rate in the 187 

5-s interval immediately before and after onset of noxious-evoked withdrawal (Fields et al. 188 

1983). A unit was classified as OFF-like if it exhibited an average percent decrease in firing rate 189 

greater than 40%, and ON-like if it showed an average firing rate increase greater than 100%. 190 

For units without ongoing activity, those exhibiting an increase of at least 5 spikes in the 5 s 191 

after EMG onset were also classified as ON-cells. NEUTRAL-like units had a minimum of 192 

0.1 spikes/s and displayed no average change in firing rate greater than 50% overall, and no 193 

single trial with a decrease greater than 40% or increase greater than 100%. Units that did not 194 

match these criteria and inconsistently responded across trials were considered 195 

UNCLASSIFIABLE units. 196 

Results  197 

Comparison of five sorters  198 

To assess the agreement between the outputs of the five tested sorters, we compared 199 

performance on six RVM recordings, from 3 male and 3 female rats. An example of units 200 

identified on 18 probe channels before and after delivery of noxious pinch to the hindpaw is 201 

shown in Figure 1A. Units had discriminable waveforms (Figure 1A, inserts) and the recording 202 

location in RVM was confirmed (Figure 1B). Of 117 units identified by at least one sorter in this 203 

recording, different sorters identified different numbers of units. SC identified the greatest 204 
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number of units (70) and TDC the fewest (24). MS5, KS3, and IC identified intermediate 205 

numbers of units, with 47, 45, and 38 respectively (Figure 1C). There was also substantial 206 

variation in the degree of agreement across sorters. Of 117 total units detected by at least one 207 

sorter in this recording, 15 were identified by all five, 13% of the total (Figure 1C, red). However, 208 

these consensus units represented different proportions of the number identified by the different 209 

sorters. That is, these 15 represented almost 63% of the total identified by TDC, 39% of those 210 

found by IC, about a third of those identified by MS5 and KS3, and only 21% of those found by 211 

SC. However, another 22 units were agreed upon by two to four sorters (19% of total cells 212 

identified, Figure 1C, orange). Conversely, each sorter also identified unique units only found by 213 

that sorter (Figure 1C, yellow). TDC, which identified the fewest units overall, also identified the 214 

fewest unique units (2). IC and KS3 yielded a similar number of units not found by other sorters 215 

(7 and 11, respectively), and MS5 identified 21 unique units. SC identified 39 units that were not 216 

found by any other sorter, consistent with the large number of units identified by this sorter 217 

relative to the others. Of the 117 units identified, 80 (68%) were reported by only a single sorter, 218 

and almost half of those 80 were reported by SC. 219 

Comparison of sorter outputs across all six recordings showed that these trends seen in the 220 

example recording were consistent (Figure 1D). SC reported significantly more units than any of 221 

the other four sorters, whereas TDC identified fewer than any of the other sorters except IC 222 

(F4,25 = 14.2, p < 0.0001, n = 30). MS, KS, and IC identified intermediate numbers of units.   223 

Of the 671 total units across all recordings that were detected by at least one sorter, 69 224 

(10%) were agreed upon by all five sorters (Figure 1E, red, 9 to 15 units per recording). As with 225 

the example recording, these consensus units represented different proportions of the number 226 

identified by the different sorters. That is, these 69 represented over half of the total identified by 227 

TDC (57%), 36.4% of those found by IC and, 26% of identified by MS5 and 28.6% of those 228 

found by KS3, but only 20% of those found by SC. The percentage of all units identified by TDC 229 

that were consensus units was significantly greater than that for any of the other sorters, while 230 
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the percentage that were consensus units was significantly less for SC than for any of the other 231 

sorters (F4,25 = 42.1, p < 0.0001, n = 30, Holm-Sidak post-hoc test). Another 115 (17%) were 232 

agreed upon by two to four sorters (Figure 1E, orange). By contrast, 487 (73%) were identified 233 

by only one sorter (Figure 1E, yellow). The percentage of unique units was different for the five 234 

sorters, and paralleled the total number of units identified (F4,25 = 31.9, p < 0.0001, n = 30, 235 

Holm-Sidak post-hoc test). That is, over half of the units identified by SC were found only by SC, 236 

whereas only about 10% of the units identified by TDC were unique to TDC.  237 

Effect of manual curation 238 

A stated goal of most automated sorters is to reduce the need for manual curation. 239 

Therefore, the automated output was compared to curated output to determine which sorter 240 

likely yielded the greatest number of true units. During curation, a unit was accepted or rejected 241 

based on whether it was present throughout the recording, whether it was contaminated by a 242 

second waveform, or whether it was a duplicate unit. An example of a duplicate unit identified 243 

during curation is shown in Figure 2A. Units 21 and 22 in this example recording demonstrated 244 

similar waveform shapes and a zero-lag peak on the cross-correlogram. Unit 21 had fewer 245 

spikes and was consequently rejected as a duplicate of Unit 22.  246 

Of the 671 units identified in the automated output from the five sorters, 248 (37%) survived 247 

curation. Comparison of the effect of curation on the output from the different sorters showed 248 

substantial variability (Figure 2B, F4,25 = 10.1, p < 0.0001, n = 30). Thus, while TDC initially 249 

reported the smallest number of units, almost 72% of these were accepted during curation. By 250 

contrast, less than half of the units identified by MS5 and SC were accepted as valid units 251 

during curation. Considering only the 69 units originally agreed upon by all five sorters in the 252 

automated output, 52 (75%) survived curation (Figure 2C, Overall Curated, red). Of 184 units 253 

identified by at least two sorters, 136 survived curation (74%).  By comparison, of the 487 254 

unique units reported in the automated output, only 108 (22%) survived curation (Figure 2C, 255 

Overall Curated, yellow). Thus, units uniquely identified by a single sorter are less likely to 256 
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survive curation that those identified by two or more sorters (c(1) = 200.2, p < 0.0001). SC and 257 

KS3 identified the greatest total number of units that remained after curation, with 159 and 153, 258 

respectively (Figure 2C). IC and MS5 identified a similar number of units after curation, 123 and 259 

115, respectively, and TDC identified 88 total units after curation (Figure 2C).  260 

All five sorters identify physiologically classifiable units 261 

We next determined the ability of each sorter to identify RVM units that could be classified 262 

as ON-, OFF-, or NEUTRAL-like units. Units that exhibited changes in activity associated with 263 

noxious-evoked withdrawal can be seen in the example trials shown in raster plots (Figure 2D) 264 

before and after curation. All sorters identified both UNCLASSIFIED and classifiable RVM units 265 

(Figure 2E). Between 54% and 70% of the cells identified in the automated output were 266 

classifiable, and assigned to the ON-, OFF-, OR NEUTRAL-like classes. In the curated output, 267 

between 75% and 80% of the cells were classifiable. There was no difference amongst sorters 268 

in the percentage of classifiable units identified in the automated or curated output (two-way 269 

ANOVA, p > 0.05).   270 

Although all sorters identified classifiable units, curation differentially eliminated 271 

UNCLASSIFIABLE units. As shown in Figure 2E, the numbers of both classifiable and 272 

unclassifiable units were reduced by curation. SC identified the greatest number of classifiable 273 

RVM units, with 202 total ON-, OFF-, and NEUTRAL-like units. However, curation reduced this 274 

number by almost half, to 106. The number of UNCLASSIFIABLE units was reduced by about 275 

66%, from 157 units to 53. KS3 identified the next highest number of classifiable units with a 276 

total of 159 ON-, OFF-, NEUTRAL-like units in the automated output. Curation reduced this 277 

number by 30%, resulting in a total number of 112 units, 6 more units than SC. The number of 278 

UNCLASSIFIABLE units was reduced by about 55%, from 91 to 41. IC and MS5 reported 279 

similar numbers of classifiable units, 134 and 140 units, respectively. However, MS5 identified a 280 

much greater number of UNCLASSIFIABLE units, with 126 compared to the 57 281 
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UNCLASSIFIABLE units found by IC. After curation, the number of MS5 classifiable units was 282 

reduced by about 41% and UNCLASSIFIABLE units by around 75%, while for IC, curation 283 

resulted in a reduction of about 26% for classifiable units and 58% for UNCLASSIFIABLE units. 284 

TDC was the least impacted by curation compared to the other sorters, although it identified 285 

only 84 classifiable units prior to curation. This was reduced to 67 units after curation. The 286 

number of UNCLASSIFIABLE units was reduced by about 48%, from 40 to 21 units. 287 

On average across sorters, there was about a 64% reduction in UNCLASSIFIABLE units but 288 

only about a 35% reduction in classifiable units following curation. Thus, across all sorters and 289 

all six recordings, curation substantially reduced the number of UNCLASSIFIABLE units, with a 290 

much smaller impact on classifiable units (t29 = 5.8, p < 0.0001, n = 30). In sum, all five sorters 291 

successfully identified RVM units that exhibit changes in firing that have been defined using 292 

single-electrode approaches. 293 

  294 
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Discussion  295 

The advent of high-density, multi-channel recording technologies has enabled the study of 296 

network level activity across brain regions. However, these advances also bring challenges for 297 

traditional spike-sorting approaches, as the increased data volume and signal complexity 298 

require new spike-sorting methods to most accurately identify individual units. The performance 299 

of different open-source sorters has been systematically evaluated and compared in recordings 300 

from cortex, hippocampus, dentate gyrus, and thalamus (Buccino et al. 2020; Magland et al. 301 

2020). However, the relative performance of various sorters may differ in other brain regions, 302 

given that performance can be influenced by both firing patterns and the anatomical properties 303 

of the target brain region, including cell morphology, density, and arrangement of neurons 304 

(Shoham et al. 2006; Pedreira et al. 2012; Mochizuki et al. 2016; Garcia et al. 2022). Therefore, 305 

the current study addressed this knowledge gap by evaluating the performance of five open-306 

source sorters in recordings from the rostral ventromedial medulla (RVM), a pain-modulating 307 

brainstem structure with well-characterized physiological cell classes and multiple decades of 308 

single-unit definition. Using the SpikeInterface framework, Kilosort3 (KS3), MountainSort5 309 

(MS5), Tridesclous (TDC), IronClust (IC), and SpyKING CIRCUS (SC) were each applied to 310 

RVM recordings. Although prior studies have applied both KS3 and SC to brainstem recordings 311 

(Tsunematsu et al. 2020; Concha-Miranda et al. 2022; Malfatti et al. 2022; Strickland and 312 

McDannald 2022; Yang et al. 2023), the current study took advantage of the well-characterized 313 

physiology of RVM neurons and used the SpikeInterface framework to compare the 314 

performance of five different sorters, MS5, IC, KS3, SC, and TDC, in brainstem recordings. 315 

Agreement among output of different sorters applied to RVM recordings 316 

Sorters varied widely in the total number of units identified. SC, which uses a combination of 317 

clustering and template matching (Yger et al. 2018), identified the most units, whereas TDC, 318 

which relies mostly on template matching with minimal clustering (Garcia and Pouzat 2015), 319 

consistently identified the smallest number of units. IC and MS5, which employ a clustering 320 
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approach (Chung et al. 2017; Jun et al. 2017), and KS3, which uses template learning 321 

(Pachitariu et al. 2023), yielded similar numbers of units.  322 

The five sorters also identified variable numbers of unique units – units not identified by any 323 

other sorter. SC not only identified the largest number of units, it also identified the largest 324 

number of unique units. Although IC, KS3, and MS5 yielded similar numbers of units overall, 325 

MS5 found more unique units.   326 

Performance of sorters might be influenced by anatomical and physiological differences that 327 

contribute to either too few spikes to resolve a unit, which impacts template-based sorters, or 328 

overlapping spikes, which impacts density-based clustering sorters. The medial reticular core 329 

differs significantly from cortical and hippocampal regions in terms of cellular organization. 330 

Unlike the layered cortical and hippocampal structures with distinct morphological cell types 331 

creating varied electrical properties that result in relatively distinguishable waveforms (Trainito et 332 

al. 2019), the RVM is marked by medium to large multipolar neurons compressed in the rostro-333 

caudal plane, giving a “stacked poker chip” organization (Scheibel and Scheibel 1967; 334 

Humphries et al. 2006). Additionally, the RVM functional classes do not have distinct 335 

morphological features that would contribute to characteristic extracellular action potential 336 

waveforms (Winkler et al. 2006). Nonetheless, the variation in the total number of units, 337 

agreement amongst sorters, and number of unique units found by each sorter is not inconsistent 338 

with a previous analysis of sorters applied to a single recording spanning cortex, hippocampus, 339 

dentate gyrus, and thalamus (Buccino et al. 2020). Based on both manual curation of their 340 

sample recording and on analysis of a simulated dataset, for which ground-truth was available, 341 

these authors argued that units agreed upon by more than one sorter are likely real, whereas 342 

unique units are more likely false positives. In the present study, about 27% of all units identified 343 

in the automated output from the five sorters were detected by at least two of the sorters, and 344 

units agreed upon by at least two sorters were more likely to survive manual curation, 345 

suggesting these units likely correspond to real units. 346 
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One false-positive that was observed across sorters was the identification of duplicate units. 347 

Duplicate units arise when a spike is assigned to multiple clusters, due to slight shifts in 348 

waveform shape (Dehnen et al. 2021). This is problematic in densely packed regions like the 349 

brainstem, where spikes from neighboring neurons or from different parts of the same neuron 350 

(e.g. somata, dendrites) overlap frequently. The presence of duplicates in all sorter outputs 351 

highlights the necessity of careful manual curation to prevent duplicate units from artificially 352 

inflating unit counts and distorting interpretations of firing dynamics.  353 

An additional factor that could influence the sortability of recordings from different brain 354 

regions is probe geometry, as contact spacing and layout influence the ability to resolve distinct 355 

units. Indeed, while the goal of the present study was to compare performance of different 356 

sorters applied to recordings from a brainstem site with well-characterized physiological 357 

properties, it could be useful to assess performance of these same sorters on recordings with 358 

this probe in different brain regions to determine whether and how probe geometry interacts with 359 

the sorter. This could also help determine whether certain probes geometries are more effective 360 

in deep brain structures and guide future development of recording technologies. 361 

All sorters identified classifiable RVM units 362 

The mutually exclusive and exhaustive OFF/ON/NEUTRAL-cell framework for classification 363 

of RVM neurons is based on noxious event-related changes in firing, with OFF-cells exhibiting a 364 

pause in firing and ON-cells a burst associated with nocifensive withdrawal. NEUTRAL-cells are 365 

defined by exclusion, failing to show either a pause or a burst associated with nocifensive 366 

behaviors (Fields et al. 1983; Heinricher et al. 1989). Units corresponding to each of these three 367 

classes were identified by all sorters, and present in both the automated and curated output of 368 

each sorter.     369 

Given the robust classification of RVM neurons in single-electrode recordings, and despite 370 

identification of OFF-, ON-, and NEUTRAL-like units in our multichannel recordings, it may be 371 

surprising that we also identified units that could not be classified. Units were considered 372 
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UNCLASSIFIABLE either because they lacked sufficient activity to characterize possible 373 

responses or because apparent responses were inconsistent. The presence of 374 

UNCLASSIFIABLE units thus likely reflects the difficulty of fully characterizing each individual 375 

unit in a multi-channel recording. The single-electrode approach allows an investigator to 376 

optimize stimulus delivery so that changes in firing will be visible. That is, a “pause” in firing can 377 

only be seen during periods when the unit to be classified is spontaneously active, whereas a 378 

“burst” would be most evident only when the unit is not spontaneously active. The single-379 

electrode approach allows full characterization of an individual unit, but is not feasible with a 380 

multi-channel recording, in which spontaneous firing can vary across different channels at 381 

different times. We therefore used a relatively insensitive measure, average change in firing 382 

rate, to classify an individual unit as OFF-, ON-, or NEUTRAL-like. With that approach, an OFF-383 

cell with low ongoing activity or an ON-cell with high ongoing activity would have at best 384 

inconsistent changes in firing rate, causing it to be categorized as UNCLASSIFIABLE here.  385 

More sustained noxious stimulation or pharmacological interventions, such as morphine, which 386 

reliably activates OFF-cells and suppresses firing of ON-cells (Fields and Heinricher 1985; 387 

Hryciw et al. 2021), may be necessary to fully and accurately classify RVM neurons in high-388 

density recordings.   389 

Interestingly, the number of UNCLASSIFIABLE units was preferentially reduced by curation:  390 

overall, by about two-third. By contrast, the number of classified (OFF/ON/NEUTRAL-like) units 391 

was reduced by only about a third. This suggests that UNCLASSIFIABLE units more frequently 392 

represented false-positives, whereas “real” units more commonly exhibit firing patterns 393 

consistent with what has been reported with single-electrode approaches. The slight reduction 394 

in classifiable units during curation was not a limitation. Indeed, one false-positive that was 395 

observed in both classifiable and UNCLASSIFIABLE groups and across sorters was duplication, 396 

which could lead to incorrect conclusions about population coding and dynamics in this region. 397 

Duplicate units arise when a spike is assigned to multiple clusters, presumably due to slight 398 
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shifts in waveform shape. If not ruled out in curation, duplicate units would artificially inflate the 399 

total unit count and distort interpretations of firing dynamics. 400 

MS5, IC, KS3, SC, and TDC can all be used to sort high-density RVM recordings 401 

In the present study, MS5 required the most amount of curation, with 57% reduction in 402 

classified units, and about 75% of UNCLASSIFIABLE units eliminated during curation. SC 403 

required a similar level of curation, with more than half of all units eliminated during curation. IC, 404 

KS3, and TDC required less curation. Almost three-quarters of units identified by TDC survived 405 

curation, and this sorter also identified the smallest number of UNCLASSIFIABLE units.  406 

However, it also consistently identified the smallest number of units compared to the other 407 

sorters. IC identified the second-smallest number of UNCLASSIFIABLE units and curation 408 

resulted in a relatively small decrease in the number of classifiable units. For KS3, over a third 409 

of units were eliminated during curation. However, this sorter identified the greatest number of 410 

classifiable units that survived curation. KS3 and IC thus produced the greatest number of 411 

classifiable RVM units with less intense curation.  412 

Conclusions 413 

Any method for assessing activity of a neuronal population necessarily samples a subset of 414 

that population. Extracellular recording reveals only neurons that are active or for which there is 415 

a search stimulus, and with action potentials that can be resolved with a particular electrode 416 

technology.  This depends both on the properties of the electrode and of the cell population 417 

under study including packing density, morphology of individual cells, and their arrangement 418 

(Robinson 1968; Lemon 1984). Choice of sorter is thus one of many factors that will influence 419 

which cells are “seen” using a given experimental protocol. Parallel limitations apply in use of 420 

calcium imaging, where expression of the indicator, optical constraints, thresholding, and 421 

selection based on activity define the subset of the relevant population that is sampled 422 

(Papaioannou and Medini 2022). Thus, although different sorters tested here revealed different 423 
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subsets of the RVM population, any of the sorters in this study could reasonably be used to sort 424 

high-density brainstem recordings, albeit with varying degrees of curation efforts. 425 

The present study highlights some considerations that will be important in any application of 426 

multi-channel recording technologies. Investigators should explicitly report how units were 427 

accepted for further study. Further, analyses of both ongoing and evoked firing patterns will be 428 

more accurate if the experimental protocol is informed by “ground truth” understanding of the 429 

neurophysiological properties of system under study. However, focusing on those units thought 430 

to be relevant to the research question should be balanced by consideration of units that might 431 

exhibit potentially interesting, but new, firing patterns. Finally, consensus amongst sorters 432 

appears to improve confidence in results in brainstem recordings, as shown previously in 433 

forebrain (Buccino et al. 2020). 434 

   435 
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Table Legends: 436 

Table 1. Statistical analysis results for effect of sorter and manual curation on number of units 437 

for brainstem recordings. 438 

 439 

  440 
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Figure captions: 441 

Figure 1. Performance of different automated sorters in brainstem recording. (A) Example 442 

recording. 3-s sample of spiking activity seen on 18 channels. Two example waveforms in 443 

insets. (B) Location of the probe. The probe was confirmed to be in RVM (632 µm, probe tip 444 

was coated with DiI (red) for visualization). py: pyramid, VII: facial nucleus. (C) Number of units 445 

identified by each individual sorter and across all five sorters for the example recording. Of 117 446 

units identified by at least one sorter, 15 were agreed upon by all five, whereas 80 were found 447 

by only a single sorter. Number of sorters that agreed upon a given unit ranged from all five 448 

(red, x = 5), to only a single sorter (yellow, x = 1). Pie charts are scaled to the total number of 449 

units identified by each sorter. (D) Mean (± SD) number of units identified by each sorter across 450 

all 6 recordings. (E) Number of units identified by each individual sorter and across all five 451 

sorters summed over the six recordings. Of 671 units identified by at least one sorter, 69 were 452 

agreed upon by all five (red), whereas 487 were found by only a single sorter (yellow).  453 

 454 

Figure 2. Effect of curation and interaction with physiological classification. (A) Example of 455 

curation of duplicate units. Unit 21 and 22 are identified as duplicates based not only on the 456 

overlapping waveform shape but on zero-lag peak in the cross-correlogram (top row, middle). 457 

Autocorrelograms (top row, left and right) show expected absence of coincident spikes. 458 

(B) Percentage of units (mean ± SD) identified by each sorter that survived curation. 459 

(C) Number of units identified by each individual sorter and across all five sorters that survived 460 

curation. Number of units agreed upon by all five sorters (red), by 4, 3, or 2 sorters (orange), or 461 

unique to a single sorter (yellow). (D) Example of classification of individual neurons as 462 

UNCLASSIFIED, NEUTRAL-, OFF- and ON-like. Rasterplot shows activity for 25 units identified 463 

in the curated output of KS3 during the 10 seconds before and after noxious evoked withdrawal 464 

(Flick, red line). (E) All sorters were able to identify neurons in the three classically defined RVM 465 
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classes. UNCLASSIFIED units were disproportionately eliminated during curation. MS5 and SC 466 

identified the greatest number of UNCLASSIFIABLE units.  467 

  468 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

References 469 

Averbeck, B.B., Latham, P.E. and Pouget, A. (2006). Neural correlations, population coding and 470 

computation. Nat Rev Neurosci 7: 358-366. 471 

Buccino, A.P., Garcia, S. and Yger, P. (2022). Spike sorting: New trends and challenges of the 472 

era of high-density probes. Progress in Biomedical Engineering 4: 022005. 473 

Buccino, A.P., Hurwitz, C.L., Garcia, S., Magland, J., Siegle, J.H., Hurwitz, R. and Hennig, M.H. 474 

(2020). Spikeinterface, a unified framework for spike sorting. Elife 9. 475 

Chung, J.E., Magland, J.F., Barnett, A.H., Tolosa, V.M., Tooker, A.C., Lee, K.Y., Shah, K.G., 476 

Felix, S.H., Frank, L.M. and Greengard, L.F. (2017). A fully automated approach to spike 477 

sorting. Neuron 95: 1381-1394 e1386. 478 

Clarke, R.W., Morgan, M.M. and Heinricher, M.M. (1994). Identification of nocifensor reflex-479 

related neurons in the rostroventromedial medulla of decerebrated rats. Brain Res 636: 480 

169-174. 481 

Concha-Miranda, M., Tang, W., Hartmann, K. and Brecht, M. (2022). Large-scale mapping of 482 

vocalization-related activity in the functionally diverse nuclei in rat posterior brainstem. J 483 

Neurosci 42: 8252-8261. 484 

De Preter, C.C. and Heinricher, M.M. (2023). Direct and indirect nociceptive input from the 485 

trigeminal dorsal horn to pain-modulating neurons in the rostral ventromedial medulla. J 486 

Neurosci 43: 5779-5791. 487 

De Preter, C.C. and Heinricher, M.M. (2024). The 'in's and out's' of descending pain modulation 488 

from the rostral ventromedial medulla. Trends Neurosci 47: 447-460. 489 

Dehnen, G., Kehl, M.S., Darcher, A., Muller, T.T., Macke, J.H., Borger, V., Surges, R. and 490 

Mormann, F. (2021). Duplicate detection of spike events: A relevant problem in human 491 

single-unit recordings. Brain Sci 11. 492 

Fields, H.L., Bry, J., Hentall, I. and Zorman, G. (1983). The activity of neurons in the rostral 493 

medulla of the rat during withdrawal from noxious heat. J Neurosci 3: 2545-2552. 494 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


26 
 

Fields, H.L. and Heinricher, M.M. (1985). Anatomy and physiology of a nociceptive modulatory 495 

system. Philos Trans R Soc Lond B Biol Sci 308: 361-374. 496 

Garcia, S., Buccino, A.P. and Yger, P. (2022). How do spike collisions affect spike sorting 497 

performance? eNeuro 9. 498 

Garcia, S. and Pouzat, C. (2015). "Tridesclous." from https://github.com/tridesclous/tridesclous. 499 

Gerstein, G.L. and Clark, W.A. (1964). Simultaneous studies of firing patterns in several 500 

neurons. Science 143: 1325-1327. 501 

Heinricher, M.M., Barbaro, N.M. and Fields, H.L. (1989). Putative nociceptive modulating 502 

neurons in the rostral ventromedial medulla of the rat: Firing of on- and off-cells is 503 

related to nociceptive responsiveness. Somatosens Mot Res 6: 427-439. 504 

Heinricher, M.M., Cheng, Z.F. and Fields, H.L. (1987). Evidence for two classes of nociceptive 505 

modulating neurons in the periaqueductal gray. J Neurosci 7: 271-278. 506 

Hennig, M.H., Hurwitz, C. and Sorbaro, M. (2019). Scaling spike detection and sorting for next-507 

generation electrophysiology. Adv Neurobiol 22: 171-184. 508 

Hryciw, G., De Preter, C.C., Wong, J. and Heinricher, M.M. (2021). Physiological properties of 509 

pain-modulating neurons in rostral ventromedial medulla in female rats, and responses 510 

to opioid administration. Neurobiol Pain 10: 100075. 511 

Humphries, M.D., Gurney, K. and Prescott, T.J. (2006). The brainstem reticular formation is a 512 

small-world, not scale-free, network. Proc Biol Sci 273: 503-511. 513 

Jun, J.J., Mitelut, C., Lai, C., Gratiy, S., Anastassious, C.A. and Harris, T.D. (2017). Real-time 514 

spike sorting platform for high-density extracellular probes with ground-truth validation 515 

and drift correction. bioRxiv. 516 

Lefebvre, B., Yger, P. and Marre, O. (2016). Recent progress in multi-electrode spike sorting 517 

methods. J Physiol Paris 110: 327-335. 518 

Lemon, R. (1984). Methods for neuronal recording in conscious animals. Chichester, John Wiley 519 

& Sons. 520 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://github.com/tridesclous/tridesclous
https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

Magland, J., Jun, J.J., Lovero, E., Morley, A.J., Hurwitz, C.L., Buccino, A.P., Garcia, S. and 521 

Barnett, A.H. (2020). Spikeforest, reproducible web-facing ground-truth validation of 522 

automated neural spike sorters. Elife 9. 523 

Malfatti, T., Ciralli, B., Hilscher, M.M., Leao, R.N. and Leao, K.E. (2022). Decreasing dorsal 524 

cochlear nucleus activity ameliorates noise-induced tinnitus perception in mice. BMC 525 

Biol 20: 102. 526 

Mochizuki, Y., Onaga, T., Shimazaki, H., Shimokawa, T., Tsubo, Y., Kimura, R., Saiki, A., Sakai, 527 

Y., Isomura, Y., Fujisawa, S., Shibata, K., Hirai, D., Furuta, T., Kaneko, T., Takahashi, S., 528 

Nakazono, T., Ishino, S., Sakurai, Y., Kitsukawa, T., Lee, J.W., Lee, H., Jung, M.W., 529 

Babul, C., Maldonado, P.E., Takahashi, K., Arce-McShane, F.I., Ross, C.F., Sessle, B.J., 530 

Hatsopoulos, N.G., Brochier, T., Riehle, A., Chorley, P., Grun, S., Nishijo, H., Ichihara-531 

Takeda, S., Funahashi, S., Shima, K., Mushiake, H., Yamane, Y., Tamura, H., Fujita, I., 532 

Inaba, N., Kawano, K., Kurkin, S., Fukushima, K., Kurata, K., Taira, M., Tsutsui, K., 533 

Ogawa, T., Komatsu, H., Koida, K., Toyama, K., Richmond, B.J. and Shinomoto, S. 534 

(2016). Similarity in neuronal firing regimes across mammalian species. J Neurosci 36: 535 

5736-5747. 536 

Pachitariu, M., Sridhar, S. and Stringer, C. (2023). Solving the spike sorting problem with 537 

kilosort. bioRxiv. 538 

Papaioannou, S. and Medini, P. (2022). Advantages, pitfalls, and developments of all optical 539 

interrogation strategies of microcircuits in vivo. Front Neurosci 16: 859803. 540 

Paxinos, G. and Watson, C. (2009). The rat brain in stereotaxic coordinates, Elsevier. 541 

Pedreira, C., Martinez, J., Ison, M.J. and Quian Quiroga, R. (2012). How many neurons can we 542 

see with current spike sorting algorithms? J Neurosci Methods 211: 58-65. 543 

Pillow, J.W., Shlens, J., Chichilnisky, E.J. and Simoncelli, E.P. (2013). A model-based spike 544 

sorting algorithm for removing correlation artifacts in multi-neuron recordings. PLoS One 545 

8: e62123. 546 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

Rey, H.G., Pedreira, C. and Quian Quiroga, R. (2015). Past, present and future of spike sorting 547 

techniques. Brain Res Bull 119: 106-117. 548 

Robinson, D.A. (1968). The electrical properties of metal microelectrodes. Proceedings of the 549 

IEEE 56: 1065-1071. 550 

Rossant, C. and Harris, K.D. (2013). Hardware-accelerated interactive data visualization for 551 

neuroscience in python. Front Neuroinform 7: 36. 552 

Scheibel, M.E. and Scheibel, A.B. (1967). Anatomical basis of attention mechanisms in 553 

vertebrate brains. The neurosciences, a study program. New York, NY, The Rockefeller 554 

University Press: 577–602. 555 

Shoham, S., O'Connor, D.H. and Segev, R. (2006). How silent is the brain: Is there a "dark 556 

matter" problem in neuroscience? J Comp Physiol A Neuroethol Sens Neural Behav 557 

Physiol 192: 777-784. 558 

Shoup, A.M., Porwal, N., Fakharian, M.A., Hage, P., Orozco, S.P. and Shadmehr, R. (2024). 559 

Rejuvenating silicon probes for acute neurophysiology. J Neurophysiol 132: 308-315. 560 

Stevenson, I.H. and Kording, K.P. (2011). How advances in neural recording affect data 561 

analysis. Nat Neurosci 14: 139-142. 562 

Strickland, J.A. and McDannald, M.A. (2022). Brainstem networks construct threat probability 563 

and prediction error from neuronal building blocks. Nat Commun 13: 6192. 564 

Trainito, C., von Nicolai, C., Miller, E.K. and Siegel, M. (2019). Extracellular spike waveform 565 

dissociates four functionally distinct cell classes in primate cortex. Curr Biol 29: 2973-566 

2982 e2975. 567 

Tsunematsu, T., Patel, A.A., Onken, A. and Sakata, S. (2020). State-dependent brainstem 568 

ensemble dynamics and their interactions with hippocampus across sleep states. Elife 9. 569 

Ulyanova, A.V., Cottone, C., Adam, C.D., Gagnon, K.G., Cullen, D.K., Holtzman, T., Jamieson, 570 

B.G., Koch, P.F., Chen, H.I., Johnson, V.E. and Wolf, J.A. (2019). Multichannel silicon 571 

probes for awake hippocampal recordings in large animals. Front Neurosci 13: 397. 572 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

Vincent, J.P. and Economo, M.N. (2024). Assessing cross-contamination in spike-sorted 573 

electrophysiology data. eNeuro 11. 574 

Winkler, C.W., Hermes, S.M., Chavkin, C.I., Drake, C.T., Morrison, S.F. and Aicher, S.A. (2006). 575 

Kappa opioid receptor (KOR) and GAD67 immunoreactivity are found in OFF and 576 

NEUTRAL cells in the rostral ventromedial medulla. J Neurophysiol 96: 3465-3473. 577 

Yang, W., Kanodia, H. and Arber, S. (2023). Structural and functional map for forelimb 578 

movement phases between cortex and medulla. Cell 186: 162-177.e118. 579 

Yger, P., Spampinato, G.L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C., Stimberg, M., 580 

Jetter, F., Zeck, G., Picaud, S., Duebel, J. and Marre, O. (2018). A spike sorting toolbox 581 

for up to thousands of electrodes validated with ground truth recordings in vitro and in 582 

vivo. Elife 7. 583 

 584 

 585 

 586 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.11.623089doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623089
http://creativecommons.org/licenses/by-nd/4.0/

