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Abstract: Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets,
where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate
that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other
mitochondria-enriched tissues such as the heart, muscle, brain, and liver. Abundance of Parkin in a
small, short-lived anucleate cell suggest significance in various key processes. Through proteomics
we identified 127 Parkin-interacting proteins in DM platelets and compared them to healthy
controls. We assessed the 11 highest covered proteins by individual IPs and confirmed seven
proteins that interacted with Parkin; VCP/p97, LAMP1, HADHA, FREMT3, PDIA, ILK, and 14-3-3.
Upon further STRING analysis using GO and KEGG, interactions were divided into two broad
groups: targeting platelet activation through (1) actions on mitochondria and (2) actions on integrin
signaling. Parkin plays an important role in mitochondrial protection through mitophagy (VCP/p97),
recruiting phagophores, and targeting lysosomes (with LAMP1). Mitochondrial β-oxidation may
also be regulated by the Parkin/HADHA interaction. Parkin may regulate platelet aggregation
and activation through integrin signaling through interactions with proteins like FREMT3, PDIA,
ILK, and 14-3-3. Thus, platelet Parkin may regulate the protection (mitophagy) and stress response
(platelet activation) in DM platelets. This study identified new potential therapeutic targets for
platelet mitochondrial dysfunction and hyperactivation in diabetes mellitus.
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1. Introduction

Diabetes mellitus (DM) is a progressive and chronic metabolic disorder characterized by
hyperglycemia arising from impaired insulin levels, insulin sensitivity, and/or insulin activity. Currently,
over 19.7 million adults in the USA have diagnosed DM, and an estimated 8.2 million have undiagnosed
DM [1]. Cardiovascular disease is the major cause of morbidity and mortality among DM patients with
approximately 65% of deaths caused by thrombotic events like myocardial and cerebrovascular ischemia
and infarction [2]. Platelets play key roles in thrombotic occlusions of major vessels and tissue death.

Platelets are short-lived (7 to 10 days) circulating cells (2 to 4 µm) that contain many critical factors
required for the regulation of thrombus formation, vascular homeostasis, and immune responses [3–6].
Platelets are capable of many fundamental cellular functions despite having no transcriptional
capabilities (anucleate) including de novo protein synthesis [4,7,8] and programmed cell death [9,10].
Basal autophagy [11,12], which is distinct from induced autophagy [9,13,14], has only recently been
described in platelets. This well-orchestrated process requires considerable energy for prepacking
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all the relevant mRNAs (no transcription) to maintain normal cellular function (basal autophagy)
and for protection (induced autophagy) against severe oxidative stressors as observed with DM [13].
DM platelets have a highly induced protective autophagy processes including Parkin-dependent
mitophagy [9,14].

Parkin is a Parkinson’s disease (PD)-related protein with several mutations identified in PD patients [15,16].
Parkin has ubiquitin E3 ligase activity and increased substrate ubiquitination via lysine 27, 29, 48, and 63
of ubiquitin [17–19]. Recent reports suggest that Parkin is inactivated by post-translational modifications
like oxidation [14] and nitrosylation [16,20]. Additionally, Parkin regulates mitochondrial quality control
through a well-orchestrated mitophagy process [21]. During mitochondrial damage, PTEN-induced kinase1
(PINK1) accumulates on damaged mitochondria and recruits Parkin, after which damaged mitochondria is
then recognized by LC3-conjugated phagophore structures [21,22]. Parkin expression was increased in DM
platelets and readily interacted with MsrB2 to remove damaged mitochondria [9,14].

Parkin is highly expressed in platelets compared to other mitochondrial-enriched tissues. However,
the roles of Parkin remain largely unexplored in platelets. To determine alternative functions of Parkin in
platelets, interacting proteins in healthy control and DM platelets were documented through literature
investigations, we suggest functional associations between platelet aggregation, mitochondrial damage,
mitophagy, and Parkin in DM platelets.

2. Results

We recently demonstrated that Parkin plays a key protective role against oxidative stress in
platelets by inducing mitophagy [9,14]. The absence of Parkin during such stressors like DM and H2O2

leads to platelet apoptosis [9,14].

2.1. Parkin Interacts with Various Key Platelet Proteins

We previously verified that mitophagy induction in DM platelets occurs through a Parkin-dependent
mechanism [9]. Surprisingly, Parkin is highly expressed in human DM platelet (Figure 1A) [9,14].
Although Parkin expression was only slightly increased in murine DM platelets, its expression was more
than double that of other mitochondria-rich tissues like the heart, muscle, liver, and brain. (Figure 1B) [14].
Electron microscopy demonstrated that Parkin is localized within mitochondria and granules (blue
arrows), cytosol, and cell membrane (red arrows) in DM platelets, further elaborating on its potentially
diverse functions (Figure 1C). Mitochondrial Parkin also colocalizes with LC3, an autophagy marker
(Figure 1C). No other functions beyond mitophagy induction in platelets have been reported for
Parkin [14].

To understand the various functions of Parkin in platelets, we identified Parkin-interacting
proteins through immunoprecipitation (IP) with Parkin-specific antibodies and LC-MS/MS (Figure 2).
We identified 127 interacting proteins (Tables 1–3). Coverage was more than 40% for 33 interacting
proteins (Table 1). These proteins include contain platelet aggregating factors such as fibrinogen,
coagulation factors, and platelet factors 4. Ubiquitin E2 ligase (UBE2V1), actin related (ARPC5
and cofilin-1), and mitochondria-related proteins (prohibitin, NDUFA2 and ATP5l) were also identified.
Moreover, several isoforms of 14-3-3 isoforms were also identified. The 94 proteins with coverage
below 40% are listed in Tables 2 and 3.
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Figure 1. Parkin was highly expressed in platelets. (A) Western blot analysis of Parkin expression in 

human platelets (platelets isolated from three healthy control and four diabetic patients) (left). 

Quantification of Parkin in HC and DM (right) (B) Platelets, heart, muscle, liver, and brain tissues 

isolated from non-DM and DM mice (platelets isolated from three non-DM and five DM mice). 

Western blot analysis of Parkin in each sample with lanes representing individual mice. (C) Parkin 

and LC3 immuno-EM analysis of DM platelets where 5 nm dots indicate immunogold-labeled 

Parkin clusters, and 10 nm dots indicate immunogold-labeled LC3 clusters. Representative areas of 

clusters of gold labeling in DM patients (A–C) are presented. Blue arrows indicate mitochondrial 

and granular Parkin. Red arrows indicate parkin in other regions. 
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Figure 1. Parkin was highly expressed in platelets. (A) Western blot analysis of Parkin expression
in human platelets (platelets isolated from three healthy control and four diabetic patients) (left).
Quantification of Parkin in HC and DM (right) (B) Platelets, heart, muscle, liver, and brain tissues
isolated from non-DM and DM mice (platelets isolated from three non-DM and five DM mice). Western
blot analysis of Parkin in each sample with lanes representing individual mice. (C) Parkin and LC3
immuno-EM analysis of DM platelets where 5 nm dots indicate immunogold-labeled Parkin clusters,
and 10 nm dots indicate immunogold-labeled LC3 clusters. Representative areas of clusters of gold
labeling in DM patients (A–C) are presented. Blue arrows indicate mitochondrial and granular Parkin.
Red arrows indicate parkin in other regions.
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Figure 2. Identification of Parkin-interacting proteins in human DM platelets. (A) 

Immunoprecipitation of Parkin-interacting proteins in human DM platelets visualized by silver 

staining. We isolated 10 enriched bands from DM and compared it with HC for LC-MS/MS analysis. 

(B) Potential interacting proteins were analyzed by LC-MS/MS and using Mascot analysis. 

  

Figure 2. Identification of Parkin-interacting proteins in human DM platelets. (A) Immunoprecipitation
of Parkin-interacting proteins in human DM platelets visualized by silver staining. We isolated
10 enriched bands from DM and compared it with HC for LC-MS/MS analysis. (B) Potential interacting
proteins were analyzed by LC-MS/MS and using Mascot analysis.



Int. J. Mol. Sci. 2020, 21, 5869 5 of 20

Table 1. Identification of Parkin-interacting proteins in DM platelets (above 40% coverage).

Protein ID Protein Name MW (Da) % Coverage

FIBG_HUMAN Fibrinogen gamma chain OS = Homo sapiens GN = FGG PE = 1 SV = 3 51,479 78.8
TERA_HUMAN Transitional endoplasmic reticulum ATPase OS = Homo sapiens GN = VCP PE = 1 SV = 4 89,266 78.5
FIBB_HUMAN Fibrinogen beta chain OS = Homo sapiens GN = FGB PE = 1 SV = 2 55,892 75.4

1433Z_HUMAN 14-3-3 protein zeta/delta OS = Homo sapiens GN = YWHAZ PE = 1 SV = 1 27,728 74.7
ARPC5_HUMAN Actin-Related protein 2/3 complex subunit 5 OS = Homo sapiens GN = ARPC5 PE = 1 SV = 3 16,310 72.2
1433F_HUMAN 14-3-3 protein eta OS = Homo sapiens GN=YWHAH PE = 1 SV = 4 28,201 69.1
DYL1_HUMAN Dynein light chain 1, cytoplasmic OS = Homo sapiens GN = DYNLL1 PE = 1 SV = 1 10,359 64
1433B_HUMAN 14-3-3 protein beta/alpha OS = Homo sapiens GN = YWHAB PE = 1 SV = 3 28,065 63

GSTO1_HUMAN Glutathione S-transferase omega-1 OS=Homo sapiens GN = GSTO1 PE = 1 SV = 2 27,548 61.4
TPM4_HUMAN Tropomyosin alpha-4 chain OS=Homo sapiens GN = TPM4 PE = 1 SV = 3 28,504 60.1
1433E_HUMAN 14-3-3 protein epsilon OS = Homo sapiens GN = YWHAE PE = 1 SV = 1 29,155 59.2
TSP1_HUMAN Thrombospondin-1 OS = Homo sapiens GN = THBS1 PE = 1 SV = 2 129,300 58.1
FIBA_HUMAN Fibrinogen alpha chain OS = Homo sapiens GN = FGA PE = 1 SV = 2 94,914 56.9
URP2_HUMAN Fermitin family homolog 3 OS = Homo sapiens GN = FERMT3 PE = 1 SV = 1 75,905 55.8

PRDX6_HUMAN Peroxiredoxin-6 OS = Homo sapiens GN = PRDX6 PE = 1 SV = 3 25,019 54
CAP1_HUMAN Adenylyl cyclase-associated protein 1 OS=Homo sapiens GN = CAP1 PE = 1 SV = 5 51,869 53.5
S10A8_HUMAN Protein S100-A8 OS = Homo sapiens GN = S100A8 PE = 1 SV = 1 10,828 52.7
1433T_HUMAN 14-3-3 protein theta OS = Homo sapiens GN = YWHAQ PE = 1 SV = 1 27,747 51.4
F13A_HUMAN Coagulation factor XIII A chain OS = Homo sapiens GN = F13A1 PE = 1 SV = 4 83,215 51.2

PDIA5_HUMAN Protein disulfide-isomerase A5 OS=Homo sapiens GN = PDIA5 PE = 1 SV = 1 59,556 50.5
PHB_HUMAN Prohibitin OS = Homo sapiens GN = PHB PE = 1 SV = 1 29,786 50.4
ILK_HUMAN Integrin-linked protein kinase OS = Homo sapiens GN =I LK PE = 1 SV = 2 51,386 49.1

MMRN1_HUMAN Multimerin-1 OS = Homo sapiens GN = MMRN1 PE = 1 SV = 3 138,023 48.4
COF1_HUMAN Cofilin-1 OS = Homo sapiens GN = CFL1 PE = 1 SV = 3 18,491 47
1433G_HUMAN 14-3-3 protein gamma OS = Homo sapiens GN = YWHAG PE = 1 SV = 2 28,285 47
LTOR1_HUMAN Ragulator complex protein LAMTOR1 OS = Homo sapiens GN = LAMTOR1 PE = 1 SV = 2 17,734 45.3
UB2V1_HUMAN Ubiquitin-conjugating enzyme E2 variant 1 OS = Homo sapiens GN = UBE2V1 PE = 1 SV = 2 16,484 44.2
CALR_HUMAN Calreticulin OS = Homo sapiens GN = CALR PE = 1 SV = 1 48,112 43.9
PLF4_HUMAN Platelet factor 4 OS = Homo sapiens GN = PF4 PE = 1 SV = 2 10,838 43.6

PDIA6_HUMAN Protein disulfide-isomerase A6 OS = Homo sapiens GN = PDIA6 PE = 1 SV = 1 48,091 42
ATP5I_HUMAN ATP synthase subunit e, mitochondrial OS = Homo sapiens GN = ATP5I PE = 1 SV = 2 7928 40.6
EMIL1_HUMAN EMILIN-1 OS = Homo sapiens GN = EMILIN1 PE = 1 SV = 2 106,601 40.4

NDUA2_HUMAN NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 OS = Homo sapiens
GN = NDUFA2 PE = 1 SV = 3 10,915 40.4
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Table 2. Identification of Parkin-interacting proteins in DM platelets (39~20% coverage).

Protein ID Protein Name MW (Da) % Coverage

PDE5A_HUMAN cGMP-specific 3′,5′-cyclic phosphodiesterase OS = Homo sapiens GN = PDE5A PE = 1 SV = 2 99,921 38.7
CXCL7_HUMAN Platelet basic protein OS = Homo sapiens GN = PPBP PE = 1 SV = 3 13,885 38.3
ATP5L_HUMAN ATP synthase subunit g, mitochondrial OS = Homo sapiens GN = ATP5L PE = 1 SV = 3 11,421 37.9
S10A9_HUMAN Protein S100-A9 OS = Homo sapiens GN = S100A9 PE = 1 SV = 1 13,234 37.7

NDUA4_HUMAN Cytochrome c oxidase subunit NDUFA4 OS = Homo sapiens GN = NDUFA4 PE = 1 SV = 1 9,364 37
CALM_HUMAN Calmodulin OS = Homo sapiens GN = CALM1 PE = 1 SV = 2 16,827 36.9
S10A4_HUMAN Protein S100-A4 OS = Homo sapiens GN = S100A4 PE = 1 SV = 1 11,721 36.6
MIC60_HUMAN MICOS complex subunit MIC60 OS = Homo sapiens GN = IMMT PE = 1 SV = 1 83,626 35.6
FINC_HUMAN Fibronectin OS = Homo sapiens GN = FN1 PE = 1 SV = 4 262,460 34.5

NEXN_HUMAN Nexilin OS = Homo sapiens GN = NEXN PE = 1 SV = 1 80,609 34.5
ITB3_HUMAN Integrin beta-3 OS = Homo sapiens GN = ITGB3 PE = 1 SV = 2 87,000 33.6
PSA7_HUMAN Proteasome subunit alpha type-7 OS = Homo sapiens GN = PSMA7 PE = 1 SV = 1 27,870 33.1
SAMP_HUMAN Serum amyloid P-component OS = Homo sapiens GN = APCS PE = 1 SV = 2 25,371 32.7
SKAP2_HUMAN Src kinase-associated phosphoprotein 2 OS = Homo sapiens GN = SKAP2 PE = 1 SV = 1 41,191 32.3
NUBP2_HUMAN Cytosolic Fe-S cluster assembly factor NUBP2 OS = Homo sapiens GN = NUBP2 PE = 1 SV = 1 28,807 31.4

SSBP_HUMAN Single-Stranded DNA-binding protein, mitochondrial OS = Homo sapiens GN = SSBP1 PE = 1
SV = 1 17,249 31.1

GPIX_HUMAN Platelet glycoprotein IX OS = Homo sapiens GN = GP9 PE = 1 SV = 3 19,034 30.5
A4_HUMAN Amyloid beta A4 protein OS = Homo sapiens GN = APP PE = 1 SV = 3 86,888 30

PSME2_HUMAN Proteasome activator complex subunit 2 OS = Homo sapiens GN = PSME2 PE = 1 SV = 4 27,384 29.3
CXCL7_HUMAN Platelet basic protein OS = Homo sapiens GN = PPBP PE = 1 SV = 3 13,885 27.3
KAD2_HUMAN Adenylate kinase 2, mitochondrial OS=Homo sapiens GN = AK2 PE = 1 SV = 2 26,461 27.2
UB2L3_HUMAN Ubiquitin-conjugating enzyme E2 L3 OS = Homo sapiens GN = UBE2L3 PE = 1 SV = 1 17,850 26.6
KPYM_HUMAN Pyruvate kinase PKM OS = Homo sapiens GN = PKM PE = 1 SV = 4 57,900 26.2
DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 OS = Homo sapiens GN = HSD17B4 PE = 1 SV = 3 79,636 25.7

NDUA7_HUMAN NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 7 OS =Homo sapiens
GN = NDUFA7 PE =1 SV=3 12,544 25.7

PSA3_HUMAN Proteasome subunit alpha type-3 OS = Homo sapiens GN = PSMA3 PE = 1 SV = 2 28,415 24.7
PRDX1_HUMAN Peroxiredoxin-1 OS = Homo sapiens GN = PRDX1 PE = 1 SV = 1 22,096 23.6
PLMN_HUMAN Plasminogen OS = Homo sapiens GN = PLG PE = 1 SV = 2 90,510 23.5
UBP5_HUMAN Ubiquitin carboxyl-terminal hydrolase 5 OS = Homo sapiens GN = USP5 PE = 1 SV = 2 95,725 23.3

HECD3_HUMAN E3 ubiquitin-protein ligase HECTD3 OS = Homo sapiens GN = HECTD3 PE = 1 SV = 1 97,051 22.8
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Table 2. Cont.

Protein ID Protein Name MW (Da) % Coverage

CAN1_HUMAN Calpain-1 catalytic subunit OS = Homo sapiens GN = CAPN1 PE = 1 SV = 1 81,838 22.5
RGS18_HUMAN Regulator of G-protein signaling 18 OS = Homo sapiens GN = RGS18 PE = 1 SV = 1 27,565 22.1
PSME1_HUMAN Proteasome activator complex subunit 1 OS = Homo sapiens GN = PSME1 PE = 1 SV = 1 28,705 22.1
PDIA1_HUMAN Protein disulfide-isomerase OS = Homo sapiens GN = P4HB PE = 1 SV = 3 57,081 22
GPX1_HUMAN Glutathione peroxidase 1 OS = Homo sapiens GN = GPX1 PE = 1 SV = 4 22,075 21.7
PDIA3_HUMAN Protein disulfide-isomerase A3 OS = Homo sapiens GN = PDIA3 PE = 1 SV = 4 56,747 21
VWF_HUMAN von Willebrand factor OS = Homo sapiens GN = VWF PE = 1 SV = 4 309,058 20.1

Table 3. Identification of Parkin-interacting proteins in DM platelets (below 20% coverage).

Protein ID Protein Name MW (Da) % Coverage

RAC1_HUMAN Ras-Related C3 botulinum toxin substrate 1 OS = Homo sapiens GN = RAC1 PE = 1 SV = 1 21,436 19.8

KAP0_HUMAN cAMP-dependent protein kinase type I-alpha regulatory subunit OS = Homo sapiens GN = PRKAR1A PE = 1
SV = 1 42,955 19.4

PSA4_HUMAN Proteasome subunit alpha type-4 OS = Homo sapiens GN = PSMA4 PE = 1 SV = 1 29,465 19.2
FA5_HUMAN Coagulation factor V OS = Homo sapiens GN = F5 PE = 1 SV = 4 251,546 17.9

NDUAC_HUMAN NADH dehydrogenase (ubiquinone)1 alpha subcomplex subunit 12 OS =Homo sapiensGN = NDUFA12 PE =1
SV=1 17,104 17.9

VATG1_HUMAN V-type proton ATPase subunit G 1 OS = Homo sapiens GN = ATP6V1G1 PE = 1 SV = 3 13,749 16.9
S10A6_HUMAN Protein S100-A6 OS = Homo sapiens GN = S100A6 PE = 1 SV = 1 10,173 16.7
EMRE_HUMAN Essential MCU regulator, mitochondrial OS = Homo sapiens GN = SMDT1 PE = 1 SV = 1 11,434 15.9
ACO13_HUMAN Acyl-Coenzyme A thioesterase 13 OS = Homo sapiens GN = ACOT13 PE = 1 SV = 1 14,951 15.7
UBL4A_HUMAN Ubiquitin-Like protein 4A OS = Homo sapiens GN = UBL4A PE = 1 SV = 1 17,766 15.3
IMB1_HUMAN Importin subunit beta-1 OS = Homo sapiens GN = KPNB1 PE = 1 SV = 2 97,108 15.1
STAT3_HUMAN Signal transducer and activator of transcription 3 OS = Homo sapiens GN = STAT3 PE = 1 SV = 2 88,011 13.6
ATP8_HUMAN ATP synthase protein 8 OS = Homo sapiens GN = MT-ATP8 PE = 1 SV = 1 7986 13.2
RBX1_HUMAN E3 ubiquitin-protein ligase RBX1 OS = Homo sapiens GN = RBX1 PE = 1 SV = 1 12,266 13
THIO_HUMAN Thioredoxin OS = Homo sapiens GN = TXN PE = 1 SV = 3 11,730 12.4
TGFB1_HUMAN Transforming growth factor beta-1 OS = Homo sapiens GN = TGFB1 PE = 1 SV = 2 44,313 12.1
ROCK2_HUMAN Rho-Associated protein kinase 2 OS = Homo sapiens GN = ROCK2 PE = 1 SV = 4 16,0799 12
S10A9_HUMAN Protein S100-A9 OS = Homo sapiens GN = S100A9 PE = 1 SV = 1 13,234 11.4
QCR9_HUMAN Cytochrome b-c1 complex subunit 9 OS = Homo sapiens GN = UQCR10 PE = 1 SV = 3 7304 11.1
PSB7_HUMAN Proteasome subunit beta type-7 OS = Homo sapiens GN = PSMB7 PE = 1 SV = 1 29,946 10.8

TGFI1_HUMAN Transforming growth factor beta-1-induced transcript 1 protein OS = Homo sapiens GN = TGFB1I1 PE = 1 SV = 2 49,782 10.6
GLRX1_HUMAN Glutaredoxin-1 OS = Homo sapiens GN = GLRX PE = 1 SV = 2 11,768 10.4
ANT3_HUMAN Antithrombin-III OS = Homo sapiens GN = SERPINC1 PE = 1 SV = 1 52,569 10.1
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Table 3. Cont.

Protein ID Protein Name MW (Da) % Coverage

UB2L6_HUMAN Ubiquitin/ISG15-Conjugating enzyme E2 L6 OS = Homo sapiens GN = UBE2L6 PE = 1 SV = 4 17,757 9.8
UFM1_HUMAN Ubiquitin-Fold modifier 1 OS = Homo sapiens GN = UFM1 PE = 1 SV = 1 9112 9.4

MGST3_HUMAN Microsomal glutathione S-transferase 3 OS = Homo sapiens GN = MGST3 PE = 1 SV = 1 16,506 9.2
ECHA_HUMAN Trifunctional enzyme subunit alpha, mitochondrial OS = Homo sapiens GN = HADHA PE = 1 SV = 2 82,947 9
ECHB_HUMAN Trifunctional enzyme subunit beta, mitochondrial OS = Homo sapiens GN = HADHB PE = 1 SV = 3 51,262 8.9
PSA5_HUMAN Proteasome subunit alpha type-5 OS = Homo sapiens GN = PSMA5 PE = 1 SV = 3 26,394 8.7
PSA2_HUMAN Proteasome subunit alpha type-2 OS = Homo sapiens GN = PSMA2 PE = 1 SV = 2 25,882 8.1

DNJA2_HUMAN DnaJ homolog subfamily A member 2 OS = Homo sapiens GN = DNAJA2 PE = 1 SV = 1 45,717 8
SODC_HUMAN Superoxide dismutase (Cu–Zn) OS = Homo sapiens GN = SOD1 PE = 1 SV = 2 15,926 7.8
UB2D2_HUMAN Ubiquitin-Conjugating enzyme E2 D2 OS = Homo sapiens GN = UBE2D2 PE = 1 SV = 1indistinguishable 16,724 7.5
UBE2N_HUMAN Ubiquitin-Conjugating enzyme E2 N OS = Homo sapiens GN = UBE2N PE = 1 SV = 1indistinguishable 17,127 7.2
GSTM3_HUMAN Glutathione S-transferase Mu 3 OS = Homo sapiens GN = GSTM3 PE = 1 SV = 3 26,542 7.1
CH10_HUMAN 10 kDa heat shock protein, mitochondrial OS = Homo sapiens GN = HSPE1 PE = 1 SV = 2 10,925 6.9

UBE2O_HUMAN (E3-independent) E2 ubiquitin-conjugating enzyme OS = Homo sapiens GN = UBE2O PE = 1 SV = 3 141,205 6.9
NDUS5_HUMAN NADH dehydrogenase (ubiquinone) iron–sulfur protein 5 OS = Homo sapiens GN = NDUFS5 PE = 1 SV = 3 12,509 6.6
TIM16_HUMAN Mitochondrial import inner membrane translocase subunit TIM16 OS = Homo sapiens GN = PAM16 PE = 1 SV = 2 13,816 6.4
COX5B_HUMAN Cytochrome c oxidase subunit 5B, mitochondrial OS=Homo sapiens GN=COX5B PE=1 SV=2 13,687 6.2
CD36_HUMAN Platelet glycoprotein 4 OS = Homo sapiens GN = CD36 PE = 1 SV = 2 53,019 5.3

COX41_HUMAN Cytochrome c oxidase subunit 4 isoform 1, mitochondrial OS = Homo sapiens GN = COX4I1 PE = 1 SV = 1 19,564 4.7
AN32B_HUMAN Acidic leucine-rich nuclear phosphoprotein 32 family member B OS = Homo sapiens GN = ANP32B PE = 1 SV = 1 28,770 4.4
TXND9_HUMAN Thioredoxin domain-containing protein 9 OS = Homo sapiens GN = TXNDC9 PE = 1 SV = 2 26,517 4

ITB1_HUMAN Integrin beta-1 OS = Homo sapiens GN = ITGB1 PE = 1 SV = 2 88,357 3.9
ROCK1_HUMAN Rho-Associated protein kinase 1 OS = Homo sapiens GN = ROCK1 PE = 1 SV = 1 158,076 3.8
GRCR2_HUMAN Glutaredoxin domain-containing cysteine-rich protein 2 OS = Homo sapiens GN = GRXCR2 PE = 3 SV = 1 28,266 3.6
CATA_HUMAN Catalase OS = Homo sapiens GN = CAT PE = 1 SV = 3 59,719 3.6
VPS35_HUMAN Vacuolar protein sorting-associated protein 35 OS = Homo sapiens GN = VPS35 PE = 1 SV = 2 91,649 3.6
ITA2B_HUMAN Integrin alpha-IIb OS = Homo sapiens GN = ITGA2B PE = 1 SV = 3 113,306 2.9

ANGL5_HUMAN Angiopoietin-rrelated protein 5 OS = Homo sapiens GN = ANGPTL5 PE = 2 SV = 3 44,115 2.6
FA10_HUMAN Coagulation factor X OS = Homo sapiens GN = F10 PE = 1 SV = 2 54,697 1.4
UBP8_HUMAN Ubiquitin carboxyl-terminal hydrolase 8 OS = Homo sapiens GN = USP8 PE = 1 SV = 1 127,444 1
UBR4_HUMAN E3 ubiquitin-protein ligase UBR4 OS = Homo sapiens GN = UBR4 PE = 1 SV = 1 573,476 0.9
HD_HUMAN Huntingtin OS = Homo sapiens GN = HTT PE = 1 SV = 2 347,383 0.7

MYCB2_HUMAN E3 ubiquitin-protein ligase MYCBP2 OS = Homo sapiens GN = MYCBP2 PE = 1 SV = 3 509,759 0.6
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We confirmed interactions between Parkin and the identified proteins in human and murine
platelets (Figure 3). Initially, we selected 11 candidates for Parkin interaction verification. VCP/p97,
FREMT3, PDIA, ILK, and 14-3-3 (G1) interacted with Parkin in human platelets but prohibitin,
PKM, cofillin-1, and Rac1 did not (G2) (Figure 3A). Additionally, the mitochondrial β-oxidation
related protein Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase alpha
subunits (HADHA), and LAMP1 (mitophagy related) (G3) also interacted with Parkin in platelets
(Figure 3A). VCP/p97, FERMT3, LAMP1, HADHA, 14-3-3, and prohibitin interacted with Parkin in
murine platelets (Figure 3B).
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Figure 3. Confirmation of interactions between Parkin and selected target proteins in human and murine
platelets. (A) Immunoprecipitation of each specific antibody in pooled human DM platelets (4 HC,
5DM1, and 6DM2). We incubated 500 µg protein lysates incubated with specific antibodies overnight
at 4 ◦C with 10% input as control. G1 represents interacting protein groups from LC-MS/MS results.
G2 represents the non-interacting proteins group in LC-MS/MS results. G3 represents protein that
interacted with Parkin and that were not found in the LC-MS/MS results. (B) Immunoprecipitation
of each specific antibody in pooled murine platelets (3 WT and 5DM). We incubated 500 µg protein
lysates incubated with specific antibodies overnight at 4 ◦C with 10% input as control.
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2.2. Determining the Potential Roles of Platelet Parkin-Interacting Proteins through Literature Analysis

2.2.1. Parkin Plays an Important Role in Mitochondrial Protection through Mitophagy

Transitional Endoplasmic Reticulum ATPase (VCP/p97)

VCP/p97 is a hexameric protein of the AAA (ATPases associated with diverse cellular activities)
family which generally utilizes energy from ATP hydrolysis [23]. VCP/p97 has been linked to various
membrane trafficking processes, including Golgi reassembly post-mitosis [24] and control of lipid
droplet biogenesis [25]. Emerging evidence has connected VCP/p97 to lysosomal protein degradation
through its ability to facilitate cargo sorting via the endosomal pathway and autophagy [26–28].
One VCP/p97 mutation causes a rare multisystem disease, IBMPFD (inclusion body myopathy with
Paget’s disease and frontotemporal dementia) [28]. Several recent studies reported the involvement of
VCP/p79 in mitophagy [29,30]. Here, we identified that VCP/p97 interacts with Parkin in DM platelets,
possibly regulating the mitophagy process (VCP/p97: 78.5% coverage, Table 1).

Lysosomal-Associated Membrane Protein 1 (LAMP1)

LAMP1 is a well-known lysosomal protein that we previously confirmed to colocalize with Parkin
and LC3 in DM platelets [9,14] and, again, in this study through IP (Figure 3). Although not identified
in the LC-MS/MS, LAMP1 was used to confirm Parkin’s role in autophagy activation (Tables 1–3).
This highlights the potential deficiencies and false negatives of the LC-MS/MS, potentially due to
the complex processing.

Mitochondrial Three Functional Protein A (TFPα, HADHA)

TFPα is a multienzyme mitochondrial complex harboring three major enzymes from
the β-oxidation cycle of long-chain fatty acids. TFPα deficiencies present in neonates as a severe cardiac
phenotype, often with death in the first weeks. Deficiency is related to maternal HELLP (hydrolysis,
elevated liver enzyme and low platelets) syndrome and reduced birth weight [31]. HADHA is involved
in long-chain fatty acid-induced autophagy of intestinal epithelial cells and is therefore proposed as a
new therapeutic target for inflammatory bowel disease (IBD) [32]. A functional relationship may exist
between Parkin and HADHA.

Prohibitin (PHB, Murine Only)

Two members of the prohibitin family, PHB1 and PHB2, are highly homologous proteins
localized to the mitochondrial inner membrane [33,34]. The PHB complexes perform diverse functions
in mitochondria, including regulation of membrane protein degradation, chaperones, regulation
of oxidative phosphorylation, maintenance of mitochondrial genetic stability, and regulation of
mitochondrial morphology [33,34]. PHB1 and 2 also function as autophagy receptors [35–38].
PHB2 directly interacts with LC3 potentially regulating the mitophagy process [37]. In platelets,
prohibitin is expressed in membranes and is involved in PAR1-mediated platelet aggregation [39].
Here, we confirmed that prohibitin can interact with Parkin in murine platelets but not in human DM
platelets (Figure 3B).

2.2.2. Parkin Regulates DM Platelets through Protein Interactions with Integrin Complex Proteins

We analyzed the enriched function (GO) and KEGG pathways using the identified proteins
(Figure 4). Parkin-interacting proteins were associated with integrin binding, signaling, and ubiquitin
proteasome system in DM platelets (Figure 4A). Parkin may participate in the metabolic pathway
and oxidative phosphorylation of DM platelets as well as platelet activation and the coagulation cascade
(Figure 4B). Parkin is localized to the mitochondrial outer membrane during mitophagy activation.
Furthermore, Parkin may be associated with integrin signaling through 14-3-3, Amyloid beta A4
protein [1], Calreticulin (CALR), EMILIN1, fermitin family homolog3 (FERMT3), integrin-linked
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protein kinase [1], integrin beta 1 and 3 (ITGB1 and ITGB3), protein disulfide isomerase (PDI/P4HB),
thrombospondin-1 (THBS1), and von Willebrand factor (VWF) in platelets (Tables 1–3). Our study
confirmed the interaction between Parkin and 14-3-3, FREMT3, PDI, and ILK (Figure 3). Parkin may
integrate outside-in signaling in platelets and may induce platelet activation through these interactions.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 20 
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Figure 4. Enriched function (GO) and KEGG analysis of identified proteins. STRING (functional
protein association networks) used in the grouping of identified proteins. (A) Top 20 enriched functions
of Parkin-interacting proteins in human DM platelets. (B) Top 16 enriched KEGG pathways of
Parkin-interacting proteins in human DM platelets.

14-3-3

Hyperactivation and hyperaggregation are well-known phenotypes of DM platelets [5,6].
Additionally, 14-3-3 is involved in platelet aggregation with GPIB-IX-V [40,41]. The 14-3-3 proteins
family are highly conserved intracellular proteins with several isoforms: β, ε, ζ, γ, η, τ, and σ.
These isoforms associate as homo- and heterodimers interact with over 200 different proteins including
serine and threonine phosphorylated intracellular proteins. The 14-3-3 proteins interact with diverse
intracellular molecules, signaling proteins, metabolic enzymes, cytoskeletal proteins, transcription
factors, and apoptosis-related proteins and can regulate platelet mitochondrial respiratory [42–44].
It has also been associated with neuronal diseases [36,45,46]; 14-3-3 η is a well-known negative
regulator of Parkin E3 activity through direct interactions in mice brains [46]. Six 14-3-3 isoforms
have been detected in human platelets including β, ε, ζ, γ, η and τ, with ζ and γ expressed at high
levels [43,47]. The first identified 14-3-3 ζ binds to the cytoplasmic tails of GPIbα and GPIbβ [40,48]
while other reports have suggested that the GPIb-14-3-3ζ interactions can promote VWF-dependent
integrin αIIββ3-activation and cell spreading [48,49]. Mice that are 14-3-3ζ-deficient exhibit defective
pro-coagulant function reduced arterial thrombosis, reduced thrombin generation, and pulmonary
embolism in vivo. Platelet bioenergetics has revealed enhanced mitochondrial respiratory reserve
capacities in 14-3-3ζ-deficient platelets that correlated with sustained levels of metabolic ATP levels.
Moreover, 14-3-3ζ serves as an important regulator of platelet bioenergetic functioning and, therefore,
also pro-coagulant and thrombosis in vivo [47]. The LC-MS/MS results indicated that Parkin interacted
with 14-3-3 ε, λ, θ, η, δ, ζ, α, and β in DM platelets (Table 1). Therefore, Parkin may interact indirectly
with GPIbα-V-IX, integrin beta3, and cellular signaling through interactions with diverse 14-3-3
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isoforms. The 14-3-3 inhibitor, BVO2, inhibited the GPIb-IX-V complex and collagen induced platelet
aggregation (Figure 5B). Parkin may regulate integrin-14-3-3-induced platelet activation. Collectively,
our results and previous reports, predict that Parkin may regulate platelet aggregation through
14-3-3 and GPIb-IX-V complexes. Furthermore, Parkin participates in platelet activation through
integrin signaling.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 20 
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ImageJ software. (B) Collagen induced platelet aggregation in human platelets (n = 3) after BVO2
(14-3-3 inhibitor) treatment.

Fermitin Family Homolog 3 (FERMT3: URP2/Kindlin-3)

The kindlin family members, including kindlin-1, kindlin-2, and kindlin-3, have high sequence
homology but display different tissue expression patterns [50]. These proteins strongly associate with
human diseases, as a lack of kindlin-1 in humans cause Kindler syndrome. Kindlin-2 deficiencies
have not been reported with lethal consequences [51–53]. Kindlin-3 deficiencies display severe
bleeding and recurrent infections due to the dysfunctional integrin in platelet and leukocytes [54–56].
Kindlin-3 deficiencies are key to supporting integrin activation and platelet thrombus formation [50].
Parkin interacts with kindlin-3 in human and murine DM platelets (kindlin-3/FERMT3: 55.8% coverage,
Figure 3). Based on this and Parkin’s role in mitophagy, we suggest that FERMT3 is involved in platelet
mitophagy and thrombus formation through integrin signaling with Parkin.

Protein Disulfide-Isomerase (PDI, P4HB)

Protein disulfide isomerase (PDI) was identified 20 years ago as an endoplasmic reticulum protein
that facilitates the formation of correct disulfide bonds in nascent proteins [57]. There are more than
20 members of the PDI, seven containing a CGHC-active site [57]. Among CGHC-active site members,
four are associated with platelet function and thrombosis (PDI, ERp57, ERp72, and ERp5) [57].
PDI was the first from this protein family identified in integrin-mediated platelet aggregation,
adhesion, and thrombosis [58,59]. Here, in our LC-MS/MS results, we identified PDIA 1, 3, 5, and 6
as Parkin-interacting proteins (Tables 1–3). Parkin-associated integrin-mediated platelet function,
homeostasis, and thrombosis are dependent on PDIs to form appropriate disulfide bonds.
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Integrin Linked Kinase

Integrin-linked kinase was reported to interact with the cytoplasmic tail of β-integrin subunits
and its serine/threonine kinase activity is upregulated through platelet stimulation [60–62]. ILKs have
functions as adaptor proteins, interacting and regulatingβ1 andβ3 integrin subunits [63]. ILK-deficient
mice exhibit reduced platelet activation and aggregation and increased bleeding [60,62]. ILK regulates
the rate of platelet activation rates and is essential for the formation of stable thrombi by controlling
platelet response rates to collagen via GPVI [62]. From this, Parkin may regulate platelet functioning
by binding with integrin and its related proteins like ILK (49.1% coverage, Table 1).

2.3. New Functions of Parkin and Parkin-Interacting Proteins in Platelets

Through GO and KEGG analysis in conjunction with literature reviews, we present and support
additional Parkin functions through confirmed Parkin-interacting proteins. Key platelet functions
including activation, aggregation, and mitochondrial functions appear to be regulated, at least
partially, by Parkin. We previously verified Parkin-dependent mitophagy activation in a T2DM
mouse model [9,14]. To confirm the importance of Parkin in platelets, we incorporated Parkin KO
mice platelets. In Parkin KO mice platelets, there was increased cytochrome C and active caspase3
indicative of increased platelet apoptosis (Figure 5A). The platelet activation maker, CD62P (pSelectin),
was slightly decreased but not significantly. The LC-MS/MS analysis verified the functional relationship
between platelet activation-associated proteins and Parkin (Tables 1–3), suggesting that Parkin regulates
platelet activation. We then used a 14-3-3 inhibitor to interrupt the interaction with Parkin (Figure 5B)
which decreased platelet aggregation induced by collagen through 14-3-3 inhibitor treatment.

3. Discussion

We previously verified that Parkin expression levels were high in HC platelets, even more so in
DM [9,14] and underwent post-translational modification (MetO) under oxidative stress [14]. Cysteine
oxidation is significantly increased in PD and includes methionine oxidation [64]. We confirmed that
the ubiquitylation and methionine oxidation that occurs in Parkin lead to mitophagy. In this study,
we aimed to uncover and verify other key platelet functions regulated by Parkin through
the identification of Parkin-interacting proteins using IP and LC-MS/MS. Through this proteomic
approach, we provided experimental and literature evidence that Parkin may regulate various processes
beyond mitophagy, including integrin-dependent signaling, mitochondrial energy metabolism, platelet
activation/aggregation, and ER-mitochondrial cross-talk (Figure 6). Furthermore, surface membrane
receptor interactions with Parkin provide a possible link between external signaling and internal
cellular processes.
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Parkin transfers the changes in the external environment, like diabetes, to the internal environment
by interacting with membrane receptor proteins, like integrin, inducing mitophagy. Parkin also
indirectly interacts with cytosolic proteins, F-actin functional ARP4/5, and directly with VCP/p97
associated with mitophagy activation. PINK1 is well-known to interact with Parkin and VCP/p97,
after which this complex regulates dendritic arborization [65]. Based on these results, we hypothesize
that Parkin regulates organelle cross-talk potentially transferring external signals to internal platelet
environments and cell–cell cross-talk among other cells. Proteomic analyses also suggest that Parkin
participates in diverse processes and mitophagy induction in DM platelets, like phagophore recruitment
to damaged mitochondria through interactions with MsrB2 [14] and regulation of autolysosome
formation through interactions with LAMP1. Parkin-deficient mice exhibit increased apoptotic
platelets compared with healthy control mice (Figure 5A) [9]. Parkin interacts with 14-3-3, PDIA,
FREMT3, ILK, and F-actin-related proteins (well-known proteins associated with platelet activation
and aggregation), and so we suggest that Parkin is also involved with platelet aggregation and activation
(Figure 6). In DM platelets, mitochondrial outer membrane is disrupted with mitochondrial protein
release and exposed inner membrane proteins [14]. Consequently, the interaction between Parkin
and HADHA and prohibitin may occur in human and murine DM platelets (Table 2), suggesting that
Parkin is likely to participate in platelet energy metabolism in DM (Figure 6).

In conclusion, our results suggest that Parkin with its many actions on platelet mitochondria,
activation, and aggregation may be a therapeutic target for antiplatelet treatment. However, further
detailed molecular studies are required that focus on the individual binding partners of Parkin in
DM platelets.
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4. Material and Methods

4.1. Preparation of Human Platelet

Venous blood was drawn from healthy and patients at Yale University School of Medicine
(HIC#1005006865) from multiple outpatient clinics including the cardiovascular, diabetes, and neurology
clinics. Informed consent was obtained from all subjects, and the experiments conformed to
the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human
Services Belmont Report (IRB#1006006865, 5/11/2017). All healthy subjects were free from medication
or diseases known to interfere with platelet function [5,6,9]. Upon informed consent, a venous blood
sample (approximately 20 cc) was drawn by standard venipuncture and collected into tubes containing
3.8% trisodium citrate (w/v). Blood samples were prepared as previously described [66]. Platelet-rich
plasma (PRP) was obtained by differential centrifugation. Purity of platelet preparation was determined
by Western blot analysis using platelet markers (CD41), monocyte markers (CD14), and red blood cell
markers (CD235a) [9].

4.2. Preparation of Mice Platelets

Blood (0.7–1 mL) was directly aspirated from the right cardiac ventricle into 1.8% sodium citrate
(pH 7.4) in WT (C57Bl/6) and diabetic mice (mice were 8 weeks of age; STZ injected for 5 days followed
by high-fat diet for 12 weeks). Citrated blood from several mice with identical genotype was pooled
and diluted with equal volume of HEPES/Tyrode’s buffer. PRP was prepared by centrifugation at
100 g for 10 min and then used for Immunoprecipitation and Western blotting. All mice were of
C57Bl/6 background (WT and Parkin whole-body knockout). The experiment of Parkin KO mice
experiment was performed at the Yale Animal Facility and 300 George St. New Haven, CT, USA,
under the supervision of YARC (Yale Animal Resources Center) and Rita Weber (Animal facility
manager, YARC). All experiments were performed in accordance with guidelines and regulations
as outlined by IACUC (the Yale Institutional Animal Care and Use Committee) under the approved
protocol (IACUC# 2017-11413 (3/31/2017)). Diabetic mice were generated in a Korea CDC animal facility.
All experiments were performed in accordance with guidelines and regulations under the approved
protocol (#KCDC-109-18-2A (2019), #KCDC-116-19-2A (2020), and #KCDC-115-19-2A (2020)).

4.3. Western Blotting

Standard Western blot analysis protocols were used. A 10% Input of IP lysates was loaded in each
well as loading control. We used specific individual antibodies and dilutions (Parkin: abcam #ab15954
(1:1000), VCP: Invitrogen #MA3-004 (1:1000), FREMT3: abcam #ab68040 (1:1000), PDIA: abcam #ab2792
(1:1000), ILK: abcam #ab52480 (1:1000), 14-3-3: Thermo Fisher scientific #51-0700 (1:1000), prohibitin:
abcam #ab28172 (1:1000), LAMP1: cell signaling #9091 (1:1000), HADHA: abcam #ab203114 (1:1000),
PKM: abcam #ab137791 (1:1000), cofillin-1: GeneTex #GTX102156 (1:1000), Rac1: Sigma–Aldrich
#SAB4502560 (1:1000), GAPDH: cell signaling #3683 (1:1000), Cytochrome C: abcam #ab90529 (1:2000),
CD62P: abcam #182135 (1:1000), Actin: Santa Cruz #SC47778 (1:1000)).

4.4. Immunoprecipitation

The 500 µg pulled healthy/DM platelet lysates and cell lysates (after transient transfection) were
mixed with 1 µg specific target antibodies and the same species IgG control with HC) and incubated
overnight at 4 ◦C. Then 50% slurry protein A sepharose beads and 50% slurry protein G sepharose
beads were mixed 1:1. Next, 30 µL of the 50% slurry washed A/G beads with lysates/antibodies
mixture was incubated for 1 h at 4 ◦C. After 3 more washes with lysis buffer, we used 1–10% lysates
were used for the input. We pooled 4 healthy subjects and 11 human DM platelets (5 pooled in DM1
and 6 pooled in DM2) for Parkin immunoprecipitation (Figure 3A) and pooled 3 WT and 5 DM mice
platelets (Figure 3B).
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4.5. Silver Staining and LC-Mass Analysis

Mass spectrometry was performed according to the manufacturer’s protocols by Pierce silver stain,
and individual bands were excised for LC-MS/MS after silver staining. In-gel digestion, LC-MS/MS,
and peptide identification were performed by Yale MS & Proteomics Resource.

In-Gel Digestion: Silver-stained gel bands were treated with 5% acetic acid for 10 min with
rocking. The acid was removed, and the bands were covered with freshly prepared destaining
solution (made fresh by mixing in a 1:1 ratio stock solutions of 30 mM potassium ferricyanide in water
and 100 mM sodium thiosulfate in water) until the brownish color disappeared. The bands were
then rinsed three times with 0.5 mL of water for 5 min to remove the acid and chemical reducing
agents. The gel bands were cut into small pieces and washed for 30 min on a tilt-table with 450 µL
50% acetonitrile/100 mM NH4HCO3 (ammonium bicarbonate) followed by a 30 min wash with 50%
acetonitrile/12.5 mM NH4HCO3. The gel bands were shrunk by the brief addition then removal of
acetonitrile, and then dried by speed vacuum. Each sample was resuspended in 100 µL of 25 mM
NH4HCO3 containing 0.5 µg of digestion grade trypsin (Promega, V5111) and incubated at 37 ◦C for
16 h. Supernatants containing tryptic peptides were transferred to new Eppendorf tubes and the gel
bands were extracted with 300 µL of 80% acetonitrile/0.1% trifluoroacetic acid for 15 min. Supernatants
were combined and dried by speed vacuum. Peptides were dissolved in 24 µL MS loading buffer
(2% acetonitrile, 0.2% trifluoroacetic acid) with 5 µL injected for LC-MS/MS analysis.

LC-MS/MS on the Thermo Scientific Q Exactive Plus: LC-MS/MS analysis was performed on a
Thermo Scientific Q Exactive Plus equipped with a Waters nanoAcquity UPLC system utilizing a binary
solvent system (A: 100% water, 0.1% formic acid; B: 100% acetonitrile, 0.1% formic acid). Trapping was
performed at 5 µL/min, 97% Buffer A for 3 min using a Waters Symmetry® C18 180 µm and 20 mm trap
column (Waters, USA). Peptides were separated using an ACQUITY UPLC PST [67] C18 nanoACQUITY
Column 1.7 µm, 75 µm × 250 mm (37 ◦C) and eluted at 300 nL/min with the following gradient: 3%
buffer B at initial conditions; 5% B at 1 min; 35% B at 50 min; 50% B at 60 min; 90% B at 65 min; 90% B at
70 min; return to initial conditions at 71 min. MS was acquired in profile mode over the 300–1700 m/z
range using 1 microscan, 70,000 resolution, AGC target of 3E6, and a maximum injection time of 45 ms.
Data dependent MS/MS were acquired in centroid mode on the top 20 precursors per MS scan using 1
microscan, 17,500 resolution, AGC target of 1E5, maximum injection time of 100 ms, and an isolation
window of 1.7 m/z. Precursors were fragmented by HCD activation with collision energy of 28%.
MS/MS were collected on species with an intensity threshold of 2E4, charge states 2–6, and peptide
match preferred. Dynamic exclusion was set to 20 s.

Peptide Identification: Tandem mass spectra were extracted by Proteome Discoverer software
(version 1.3, Thermo Scientific) and searched in-house using the Mascot algorithm (version 2.6.0,
Matrix Science). The data were searched against the SwissProt database (version 2017_01) with
taxonomy restricted to Homo sapiens (20,172 sequences). Search parameters included trypsin digestion
up to 2 missed cleavages, peptide mass tolerance of 10 ppm, MS/MS fragment tolerance of 0.02 Da,
and methionine oxidation and propionamide adduct to cysteine as variable modifications. Normal
and decoy database searches were run with the confidence level set to 95% (p < 0.05).

4.6. Platelet Aggregation Test

Platelet suspensions were incubated with BV02 (2-(2,3-Dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-
pyrazol-4-yl)-2,3-dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acid, 14-3-3 inhibitor, 10 nM) for 1 h.
Platelet aggregation was monitored at 37 ◦C with constant stirring (1200 rpm) in a dual-channel
lumi-aggregometer (model 700; Chrono-Log). Platelet aggregation was measured as the increase in
light transmission for 10 min, starting with the addition of 2 µL of 1 mg/mL collagen (Chrono-Log) to a
500 µL reaction as a pro-aggregatory stimulus; the final concentration was 4 µg/mL. The maximum
aggregation was expressed as a percentage of maximum light transmission with non-stimulated PRP
of 0% and PPP of 100%.
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