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ABSTRACT

RNA binding proteins (RBPs) have been implicated in cancer development. An 
integrated bioinformatics analysis of RBPs (n = 1756) in various datasets (n = 11) 
revealed several genetic and epigenetically altered events among RBPs in glioblastoma 
(GBM). We identified 13 mutated and 472 differentially regulated RBPs in GBM 
samples. Mutations in AHNAK predicted poor prognosis. Copy number variation (CNV), 
DNA methylation and miRNA targeting contributed to RBP differential regulation. 
Two sets of differentially regulated RBPs that may be implicated in initial astrocytic 
transformation and glioma progression were identified. We have also identified a four 
RBP (NOL3, SUCLG1, HERC5 and AFF3) signature, having a unique expression pattern 
in glioma stem-like cells (GSCs), to be an independent poor prognostic indicator in 
GBM. RBP risk score derived from the signature also stratified GBM into low-risk and 
high-risk groups with significant survival difference. Silencing NOL3, SUCLG1 and 
HERC5 inhibited GSC maintenance. Gene set enrichment analysis of differentially 
regulated genes between high-risk and low-risk underscored the importance of 
inflammation, EMT and hypoxia in high-risk GBM. Thus, we provide a comprehensive 
overview of genetic and epigenetic regulation of RBPs in glioma development and 
progression.

INTRODUCTION

Glioblastoma (GBM) is one of the most lethal 
primary brain tumors. In spite of several improvements in 
therapeutic modalities, the median survival remains low at 
14-16 months [1]. Currently, the field of glioma research is 
focussed on developing tools for early detection, reliable 
prognostic and predictive biomarkers and novel therapies 
that can overcome the resistance.

Gene regulation in eukaryotes is a multi-step 
process. Nascent RNA formed after transcription 
generally undergoes modification, transport, localization 
and translation [2–4]. Extensive efforts in the past decade 
have gone in understanding few of these steps including 
transcription, splicing, and translation. With the advent 
of high throughput techniques in genomics, the focus 
of the research had been on changes in transcript levels 
due to genetic and epigenetic mechanisms. Numerous 

studies often indicate a lack of significant correlation 
between the transcript and protein levels in cells [5]. These 
observations led to the belief that additional processes may 
also play important role in affecting the cellular pool of 
proteins translated from their respective transcripts. This 
paradox can be further explained by the identification 
of post transcriptional regulatory check points which 
contribute immensely to the protein level regulation. 
These check points mainly consist of regulation mediated 
by non-coding RNAs (miRNAs and lncRNAs) and the 
RNA binding proteins [6].

RNA binding proteins (RBPs) partner the nascent 
RNA throughout its journey in the cell. The multi-
functionality and the vast repertoire of targets regulated by 
RBPs make them important post transcriptional regulators. 
Thus, understanding of structure and function of this 
class of molecules becomes imperative to appreciate 
the multitude of processes altered by the mis-regulation 
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of these proteins. Increasing volume of evidence prove 
that the RBPs are mis-regulated in diseased conditions 
including cancer. Many of these mis-regulated RBPs have 
also been shown to contribute to pathogenesis of cancer 
[3, 4, 7].

In the present study, we sought to understand the 
various aspects of RBP biology in glioblastoma (GBM). 
For this purpose, a catalogue of RBPs (till date known) 
was made using the datasets from existing literature. 
These RBPs were analysed for expression and sequence 
alterations in GBM by analysing the various publically 
available datasets. Further, we went on the quest to 
enlist the possible mechanisms which could contribute to 
the altered expression of these RBPs in GBM. We also 
analysed the expression of RBPs in lower grade tumor 
and high grade tumor to get an insight into the biology 
of astrocytoma development and progression. We have 
further identified a set of GSC (glioma stem-like cell) 
specific RBPs, from which an RBP prognostic signature 
was derived.

RESULTS
Integrated genome analysis reveals genetic and 
epigenetic alterations in RBPs in glioblastoma

To elucidate the various aspects of RBP biology 
in GBM, we derived a comprehensive list of 1756 RBPs 
(Supplementary Table 1) from Castello et al., 2012 and 
Gerstberger et al, 2014 [8, 9] for further investigation. 
These proteins are either having RNA binding domains or 
are identified in the interactome of RNA and proteins in 
human cells. We carried out an integrated bioinformatics 
analysis to identify the RBPs that are altered in glioma 
due to genetic and epigenetic mechanisms. The 
strategy employed is depicted in Figure 1. Using these 
approaches we identified deleterious mutations and their 
association with prognosis, RBPs that are relevant to glia 
transformation and progression and that are uniquely 
expressed in glioma stem-like cells (GSC). We also 
developed an RBP signature from four prognostic RBPs 
and found it to be an independent predictor of survival in 
glioblastoma.

Genetic alterations of RNA binding proteins in 
GBM

To identify genetic alterations, we investigated the 
occurrence of mutations in RBPs using whole exome 
sequencing (WES) data of GBM samples derived from 
TCGA. We hypothesized that deleterious mutations in 
RNA binding domains, regulatory domains or other 
domains needed for protein-protein interaction may render 
oncogenic or tumor suppressive functions for the RBPs. 
We searched for RBPs harbouring genetic alterations 
including mutations and InDels (insertions or deletions) 
in their coding region. Analysis of TCGA WES data of 

291 GBM samples revealed that there were 651 RBPs 
harbouring non-synonymous alterations in at least one 
GBM sample, while 13 of them were altered in more than 
2% of samples (Figure 2A; Supplementary Table 2A and 
2B). Additional investigation of WES data generated from 
our laboratory of six established glioma cell lines [10], we 
identified 53 RBPs that are mutated at least in one of the 
cell lines (Supplementary Table 2C). Among the 13 most 
mutated RBPs in GBM, 5 of them were also found to be 
mutated in these cell lines (Supplementary Figure 1). One 
of these five RBPs, AHNAK also harboured an insertion in 
one of the cell lines (Supplementary Figure 1).

Unlike genes like TP53, EGFR and PTEN which 
carry mutations in high proportion of GBM tumor 
samples (34%, 33% and 39% respectively) [11], RBPs 
are mutated in lesser proportion of tumor samples. The 
top most mutated RBP SYNE1 carried the mutation in 
4.8% of the tumor samples analysed. The occurrence 
of mutations in SYNE1 in GBM has also effects on 
gene expression of other genes [12]. PolyPhen-2, SIFT, 
MutationAssessor and PROVEAN web server, which 
predict effects of mutations on the protein functions 
were used [13–16] to identify the potentially deleterious 
mutation in these mutated RBPs (Supplementary Table 
2D). Out of top 13 RBPs, which had mutations, 11 
of them were predicted to have potential deleterious 
mutation. The top five mutated RBPs and the predicted 
deleterious mutations (predicted minimum by two tools) 
are shown (Figure 2B). Moreover, we checked for 
the reported role of wild type and mutated proteins in 
literature (Supplementary Table 2E). Further, survival 
correlation between wild type and mutant patient 
samples for these 13 RBPs identified AHNAK alone as 
a survival predictor with mutants having poor prognosis 
(Supplementary Table 2F). Patients with mutations in 
AHNAK had a poor prognosis compared to those with 
wild type AHNAK gene (median survival of patients 
with AHNAK mutation = 4.16 months, median survival 
of patients with wild type AHNAK = 13.53 months) 
(Figure 2C). Although the AHNAK transcript levels 
was found to be similar in GBM compared to control 
brain samples (Figure 2D), we found a significantly 
lower level in GSCs when compared to the differentiated 
glioma cells (DGCs) (Figure 2D). It is interesting to 
note that all of the G-CIMP-negative and IDH1 wild 
type patients harboured AHNAK mutations. Moreover, 
majority of the AHNAK mutated samples also exhibited 
unmethylated MGMT promoter status (Figure 2E). We 
also found a higher occurrence of mesenchymal type of 
GBM in AHNAK mutant samples (Figure 2F). Further, 
both two-factor multivariate and multifactor multivariate 
with age, G-CIMP, MGMT or (and) IDH1, identified 
AHNAK mutation as an independent poor prognosticator 
(Table 1). Collectively, we were able to identify the RBPs 
that were carrying non-synonymous mutations in their 
coding region, and further categorize the subset of these 
mutations that may render the proteins non-functional.
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Transcriptional regulation of RBPs in GBM

Out of the 1756 RBPs catalogued, the transcriptome 
information was available only for 1462 RBPs in TCGA. 
(Agilent platform) We found that 472 RBPs of this subset 
was differentially regulated between the control and GBM 
samples (Figure 3A); of which 321 were upregulated 
and 151 were found to be downregulated (Figure 3B, 
Supplementary Table 3). We thus observed a significant 
proportion (68%) of the differentially regulated RBPs 
to be upregulated in GBM samples versus control tissues 
(p < 0.0001). This was interesting because the analysis 
of the whole transcriptome revealed approximately equal 
proportion of upregulated (n = 3500) and downregulated 
(n = 3704) genes in GBM compared to control brain 
samples (p = 0.688) (Supplementary Figure 2A). The 
differential transcriptome analysis of RBPs is also 
validated in REMBRANDT, GSE22866 and GSE7696 
data sets. We found 95-97 % of 472 RBPs to be similarly 
differentially regulated in these data sets (Supplementary 
Figure 2B, 2C, 2D and Supplementary Table 3). Hence, 

using multiple datasets we were able to conclude that 
major proportion of RBPs is upregulated in GBM when 
compared to control tissue samples. We also validated 
the expression pattern of two upregulated (METTL1 
and OAS1) (Figure 3C) and three downregulated genes 
(KHDRBS2, RANBP17 and ELAVL3) in glioma cell lines 
using qRT-PCR (Figure 3D). While we found variation in 
their expression pattern in different glioma cell lines, there 
was in principle a similar expression pattern in some cell 
lines (Figure 3C and 3D).

We next investigated the possible mechanisms 
behind differential regulation of RBPs. Analysis of copy 
number variation data from TCGA revealed that out of 
the 321 upregulated RBPs, 37 were amplified, while from 
151 downregulated RBPs, 5 were deleted in more than 
1% of tumors (Figure 4A, Supplementary Table 4A). 
At a 10% cut off, three genes METTL1, MRPS17 and 
CCT6A were found to be amplified while ELAVL2 was 
found to be deleted (Figure 4A). Interestingly, the segment 
containing METTL1 (12q14) has previously been reported 
to be amplified in GBM [17]. Further, we found that most 

Figure 1: Flow chart showing the strategy employed to perform various analyses in this study. 1756 RBPs used in this 
study were catalogued from two papers, Castello et. al., 2012 and Gerstberger et. al., 2014 [8, 9]. The three main branches indicate the 
three main foci of the study, including identification of transformation and aggressiveness related RBPs, genetic and transcriptional changes 
observed for RBPs in GBM including their causes, and GSC specific RBPs. The numbers in brackets indicate the samples examined to 
perform the specific analysis. GSC: glioma-like stem cells, NSC: normal neural stem cells, DGC: Differentiated glioma stem cells.
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of the amplified RBPs were present on chromosome 7, 
which is known to carry amplification of many genes 
(especially EGFR and MET) in GBM (Supplementary 
Table 4A) [18]. From our analysis we conclude that 
11.5% of upregulated RBPs were found to be amplified, 
while 3% of downregulated RBPs were deleted at their 
chromosomal location.

Next, we investigated the epigenetic mechanisms 
behind differential regulation of RBP transcripts. 
Differential methylation analysis using TCGA 450K array, 
revealed that out of the 472 differentially regulated RBPs, 
45 RBPs had differential methylation in GBM samples as 

compared to control brain samples. We found that there 
were 30 genes, corresponding to 40 CpGs which were 
hypomethylated, while 15 genes, corresponding to 31 
CpGs, were hypermethylated (Figure 4B, Supplementary 
Table 4B). These results were further strengthened 
by validation in our patient cohort (GSE79122) and 
GSE60274. We found all the genes to be similarly 
methylated in GSE79122 data set, while approximately 
85% genes were similarly methylated in GSE60274 
(Supplementary Figure 3A and 3B, Supplementary Table 
4B). We then validated the methylation status of three 
selected hypermethylated genes by using methylation 

Figure 2: Genetic alterations in RBPs in GBM. (A) Graphical representation of RBPs that are harboring non-synonymous alterations 
in more than 2% of the tumor samples. Each grey bar represents one GBM sample. Green bar represents the samples where a particular 
RBP has missense mutation, whereas black bar represents the sample where truncating mutations are identified in an RBP in GBM sample. 
(B) Graphical representation of coding region of top 5 mutated genes. The mutations are shown by green or red circles. Mutations shown 
in green circles represent the missense mutations (as per cBioPortal data), while those in red circles represent deleterious mutations as 
predicted by minimum of two tools from PolyPhen-2, SIFT, MutationAssessor and PROVEAN web server. Figures for SYNE1, DSP, LRP1 
and RBM47 were obtained from cBioPortal and modified. Graphical representation of AHNAK was adapted from Davis et. al., 2014 [79]. 
The figures are not drawn to scale. (C) Kaplan Meier graph showing difference in survival between patients having wild type and mutant 
AHNAK protein. (D) Transcript levels of AHNAK in control and GBM samples (left); and in GSC and DGC using GSE54791 (right). 
(E) Bar diagram showing the percentage of mutated AHNAK samples with distinct characteristics, namely G-CIMP positivity or negativity, 
IDH1 wild type or mutant samples and MGMT methylated or unmethylated samples. (F) Bar diagram showing the percentage of samples 
with AHNAK mutations in different subtypes of GBM. CL : Classical, MES: Mesenchymal, PN : Proneural, N Neural.
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inhibitor 5-aza-2-deoxycytidine (DAC). We found that 
KHDRBS2 and RANBP17, which are downregulated in 
LN229 and U373 cell lines (Figure 3D) were re-expressed 
to varying levels upon DAC treatment in both cell lines 
(Supplementary Figure 3C and 3D). On the contrary, DAC 
treatment induced re-expression of ELAVL3 in LN229 
cells wherein the expression of this is downregulated 
(Supplementary Figure 3D and Figure 3D). However, the 
re-expression of ELAVL3 was not observed in U373 cells 
wherein this gene was not downregulated (Supplementary 
Figure 3C and Figure 3D). Collectively, these results 
conclude that downregulation of KHDRBS2, RANBP17 
and ELAVL3 in glioma is indeed due to DNA methylation.

To study the role of miRNAs in regulation of RBP 
transcript levels, we used miRwalk [19] to identify miRNA 
that can target differentially regulated RBPs. As miRNAs 
are also shown to regulate the transcript levels of their 
target genes, we focused on the miRNAs that are down 
regulated in GBM, but predicted to target upregulated 
RBPs and vice versa. Using TCGA expression database 
for mRNA and miRNA, we found that 9 downregulated 
miRNAs can putatively target 81 upregulated RBPs 

in GBM (Figure 4C-left panel; Supplementary Table 
4C). Conversely, 6 upregulated miRNAs can putatively 
target 45 downregulated RBPs (Figure 4C-right panel; 
Supplementary Table 4C). This reflects a large proportion 
of differentially regulated RBPs that may be regulated 
by miRNAs during GBM development. We also report 
28 validated miRNA-RBPs pairs wherein the mentioned 
miRNAs have been shown to target the stated RBPs in 
literature (Supplementary Table 4C). Altogether, in our 
analysis we found that of all the three factors analysed, 
miRNAs play a major role in regulation of differentially 
expressed RBPs (Supplementary Figure 4A and 4B).

RBPs as a cause of astrocyte transformation and 
glioma progression

The formation of secondary GBM involves 
malignant progression from grade II and III astrocytoma 
[20]. Retrospective analysis of molecules in different stages 
of tumors in its development can give important insights 
into the key players of immortalization, transformation and 
aggressiveness. We hypothesized that comparison of RBP 

Table 1: Multivariate cox regression analysis for AHNAK mutated samples and other prognostic markers using 
TCGA cohort

Factor No. of patients HR B (coefficient) P value

I. Univariate analysis TCGA dataset 

Age 254 1.037 0.036 <0.0001

G-CIMP 253 0.220 -1.512 0.003

MGMT 192 0.552 -0.594 0.002

IDH 254 0.240 -1.426 0.005

AHNAK 254 2.646 0.973 0.020

II. Multivariate analysis with TCGA dataset

Age
254

1.037 0.037 <0.0001

AHNAK 2.667 0.981 0.020

G-CIMP
253

0.224 -1.496 0.003

AHNAK 2.467 0.903 0.032

MGMT
192

0.550 -0.598 0.002

AHNAK 2.605 0.957 0.039

IDH
254

0.244 -1.409 0.005

AHNAK 2.502 0.917 0.029

III. Multivariate analysis of all the markers in TCGA dataset

Age 192 1.041 0.041 <0.0001

G-CIMP 0.000 -10.182 0.954

MGMT 0.713 -0.339 0.081

IDH 10004.361 9.211 0.959

AHNAK 2.562 0.941 0.043
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transcripts in control brain samples, grade II and GBM 
tumors may give a glimpse of RBPs that may be required 
for events leading to initial astrocyte transformation. 
We assumed that these will be differentially regulated in 
control samples and grade II glioma and their expression 
pattern will be retained in GBM samples as in grade II 
tumors. Further, the RBPs which may be responsible for 
aggressive behavior (malignant progression) of GBMs 
may be differentially regulated uniquely in GBM, but 
not in grade II. We only incorporated grade II and GBM 
samples in our analysis while grade III samples were not 
considered because of its mixed molecular nature. This 
study revealed that 231 RBPs are differentially regulated 
between control brain and grade II samples and their 
expression pattern is retained in GBM samples. These may 
be implicated in early events of transformation of normal 
astrocyte (Figure 5A, Supplementary Table 5A). This 
analysis also revealed that 176 RBPs were differentially 
regulated specifically in GBM and were not altered in 

grade II compared to control brain samples (Figure 5B, 
Supplementary Table 5B). These RBPs may be implicated 
in phenotypes like migration, invasion, angiogenesis and 
chemoresistance which contribute to aggressiveness of 
GBM. Taken together, we identified RBPs which may 
be playing a role in initial events like transformation of 
normal cells and are essential even in the later stages of the 
tumor. We also identified another class of RBPs which may 
be required only during the aggressive stages of tumor, but 
their expression may not be required at the initial stages of 
tumor formation.

Further, to experimentally validate the contribution 
of RBPs in aggressiveness of GBM tumors, we 
selected Methyltransferase-like 1 (METLL1) and 
2’-5’-Oligoadenylate Synthetase 1 (OAS1) which identified 
as aggressiveness related RBPs and were specifically 
upregulated in GBM tumors as compared to control samples. 
We performed lentiviral shRNA mediated knockdown of 
METTL1 and OAS1 in LN229 glioma cells. Knockdown 

Figure 3: Transcriptional aberrations observed in RBPs in GBM. (A) Volcano plot representing upregulated (red dots), 
downregulated (green dots) and unregulated (black dots) RBPs in GBM samples (n = 572) as compared to control samples (n = 10) using 
TCGA data. The horizontal dotted line demarcates the genes having significant expression difference (p-value < 0.05). Vertical dotted 
lines represent the applied cut off (absolute fold 1.5) for identifying differentially regulated genes. (B) Heat map of the 472 differentially 
expressed RBPs in GBM samples when compared to control brain samples. A dual-color code was used, with red and green indicating 
upregulated and downregulated RBPs, respectively. 321 RBPs were found to be upregulated and 151 RBPs were found to downregulated in 
GBM compared to control samples. The yellow line separates control samples from GBM samples. (C, D) Transcript levels (in Log2 ratio) of 
selected upregulated (C) and downregulated genes (D) in the mentioned glioma cell lines relative to Immortalized Human Astrocytes (IHA).
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of these genes in LN229 glioma cells was confirmed by the 
reduced transcript levels using qRT-PCR (Figure 5C). In 
chemosensitivity assays performed using MTT; we found 
that knockdown of these genes imparted chemosensitivity 
to Temozolomide in LN229 cells (Figure 5D).

Role of RBPs in glioma stem-like cell (GSC) 
maintenance and GBM prognosis

GSCs are related to many of the aggressive 
properties of cancers like migration, invasion, angiogenesis 
and chemoresistance [21–25]. Thus, an important area of 
research is on the genes that are essential for GSC survival 
and maintenance. In order to delineate the expression of 

RBPs specifically in GSC, we investigated two data sets 
GSE46016 and GSE54791, which carried the transcriptome 
profile of neuronal stem cells (NSC), three GSCs and their 
differentiated glioma cells (DGCs). We were specifically 
interested in RBPs that are differentially regulated in GSCs 
over DGCs and NSC. Analysis revealed that 24 RBPs are 
upregulated and 8 RBPs are downregulated specifically 
in GSCs when compared to NSCs and DGCs (Figure 6A, 
Supplementary Table 6). These RBPs may be implicated in 
pathways indispensible for GSC maintenance.

As the GSCs contribute to the aggressiveness of the 
tumor, and are implicated in its resistance and relapse, it 
is reasonable to think that a signature of genes uniquely 
regulated in GSCs may be able to predict patient survival 

Figure 4: Probable causes for aberrant expression of RBPs in GBM. (A) Graphical representation of RBPs with copy number 
variation in GBM samples compared to control samples. The samples in red and blue indicate the RBPs that are amplified and deleted 
respectively. The numbers in brackets indicate the percentage of samples in which a particular RBP had CNVs. The chromosomal location 
of a particular CNV is also indicated. (B) Heat maps representing the selected differentially expressed RBPs which are also differentially 
methylated. A dual-color code was used for methylation related heat map (top), wherein blue and yellow indicate hypomethylated CpGs and 
hypermethylated CpGs respectively corresponding to the upregulated and downregulated genes shown in dual color (red-green) expression 
related heat map (bottom). A dual-color code was used for expression related heat map, wherein red and green indicate upregulated and 
downregulated RBPs respectively. Their expression pattern in GBM versus control samples is shown in the heat map in the (bottom panel), 
while their corresponding differentially methylated CpGs are represented in the heat map in the (top panel ). (C) Tabular representation of 
RBPs and the putative targeting miRNAs. Differentially regulated miRNAs predicted to target both upregulated and downregulated RBPs 
were identified using miRwalk. Only those miRNAs which were predicted to target the input differentially regulated RBP in seven or more 
than seven algorithms in miRwalk and having reciprocal regulation as compared to targeted RBPs are represented here. The blue boxes 
indicate the predicted miRNA-RBP targeting pair, while white boxes correspond to non-targeting miRNA-RBP pairs. Left: Upregulated 
RBPs predicted to be targeted by downregulated miRNAs; right: downregulated RBPs predicted to be targeted by upregulated miRNAs.
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in GBM. Univariate cox regression analysis of GSC 
specific RBPs (n = 32) using TCGA expression data set 
(Agilent platform) revealed that four genes- HERC5, 
NOL3, SUCLG1 and AFF3 predicted survival (Figure 6B; 
Supplementary Table 6). An RBP risk score calculated 
for each patient by combining the effect of each of 
these 4 RBPs using a risk score formula (mentioned in 
Materials and Methods section) was found to be a poor 
prognostic indicator (Figure 6B). RBP risk score was 
also able to divide the GBM patients into two groups, 
high-risk (median survival of 12.87 months) and low-
risk (median survival of 19.77 months), with a median 

survival difference of 6.9 months in TCGA dataset (p= 
<0.0001, HR= 1.648, B= 0.499) (Figure 6C). RBP risk 
score generated from REMBRANDT dataset also divided 
GBM patients into low-risk and high-risk with significant 
difference in their survival (Figure 6C).

Multivariate cox regression analysis using TCGA 
expression data (Agilent platform) was carried out 
to test the strength of the RBP risk score in its ability 
to predict survival (Table 2). A two way multivariate 
analysis involving RBP risk score against age, G-CIMP, 
MGMT promoter methylation, IDH1 mutation identified 
RBP risk score as an independent predictor of patient 

Figure 5: Transformation and aggressiveness related RBPs in GBM. (A) Heat maps representing the differentially regulated 
genes in Grade II versus control samples (left panel) which retain similar pattern of expression in GBM (right panel). (B) Heat maps 
depicting the genes which are uniquely differentially regulated in GBM samples versus control samples (right panel), but not showing any 
significant difference in Grade II and control samples (left panel). A dual color-code was used with red and green indicating upregulated 
and downregulated RBPs respectively. A yellow line separates control samples from grade II or GBM samples in the given heat maps. (C) 
Transcript levels of METTL1 and OAS1 were quantified using qRT-PCR in LN299 cells where shRNA mediated knockdown of METTL1 and 
OAS1 has been performed respectively and represented. (D) Bar graph representing relative number of viable cells in control and indicated 
knockdown LN229 cells at the mentioned Temozolomide concentrations. The number of viable cells in shControl, shMETTL1 and shOAS1 
conditions in the presence of temozolomide was plotted relative to the number of viable cells in the respective DMSO treated condition.
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survival (Table 2). Additionally, in a multivariate analysis 
involving all five markers against 299 GBM patients (who 
received any type of chemotherapy), RBP risk score was 
able to independently predict patient survival with nearing 
significance (Table 2). However, a similar analysis of 
209 GBM patients, who only received Temozolomide as 
chemotherapy revealed that RBP risk score is indeed an 
independent predictor of GBM patient’s survival (Table 2). 
Collectively, we made a 4-gene RBP signature, which is 
not only an independent predictor of survival in GBM but 
was also able to stratify the GBM patients into low- and 
high-risk groups with significant difference in survival.

We carried out additional investigations to gain 
further insights into biological meaning of patient 

survival prediction by RBP risk score. We compared 
some of known predictors of GBM survival with our 
RBP risk score using TCGA GBM data. While the high-
risk group as defined by RBP risk score is enriched for 
classical and mesenchymal gene expression subtype, the 
low-risk group is enriched with neural and proneural gene 
expression subtype of GBM (Figure 6D). Further we 
also found that the low-risk group is enriched with GBM 
patients that belong to G-CIMP-positive group, harboured 
IDH1 mutation and had methylated MGMT promoter 
(Figure 6D). Additionally, we also checked the importance 
of the three upregulated RBP signature genes (HERC5, 
SUCLG1 and NOL3) in GSC maintenance. We performed 
shRNA mediated knockdown of these genes in MGG4 

Figure 6: GSC specific RBPs compared to NSCs and DGCs. (A) Heat map representing differentially regulated RBPs in NSC 
versus GSC (left) and DGC versus GSC (right). Datasets used were GSE46016 (NSC versus GSC) and GSE54791 (GSC versus DGC). Out 
of 1756 RBPs, the expression of 1621 and 1614 were available in GSE46016 and GSE54791 respectively. The experiment was performed 
in replicates and the expression value of each replicate is represented. A dual-color code was used, with red and green indicating upregulated 
and downregulated RBPs, respectively (B) Table showing genes which are having significant univariate values in GBM samples, along 
with their hazard ratios and p-value. (C) Kaplan Meier curve showing stratification of GBM samples into low-risk and high-risk patients 
using the four RBPsignature. (D) Bar graph showing the percentage of GBM tumor samples containing IDH1 mutant (mut), G-CIMP 
(+):G-CIMP-positive, methylated MGMT (promoter) and different subtypes of GBM tumor samples features in high-risk and low-risk 
groups (as stratified in c). CL : Classical, MES: Mesenchymal, PN : Proneural, N Neural. (E) Representative micrographs of neurospheres 
formed upon knockdown of mentioned genes. (F) Quantification of the number of spheres formed in the indicated conditions. The number 
of spheres in shHERC5, shSUCLG1 and shNOL3 are plotted relative to shControl condition.
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patient derived GSCs. We observed that knockdown 
of each of the three genes significantly impaired the 
neurosphere formation (Figure 6E and 6F).

Next, we carried out Gene set enrichment analysis 
(GSEA) using the differentially regulated genes (using 
TCGA expression data-Agilent platform) between the low-
risk and high-risk GBM patients (Supplementary Table 7) 
on an available dataset from MSigDB (mentioned in 
Materials and Methods). There were 13 pathways that were 
positively enriched in high-risk group (Figure 7A). At a 
higher cut-off using FWER p-value, we got seven pathways 
enriched in high-risk group and these pathways included 
NFκB, inflammatory response, epithelial-mesenchymal 
transition, and hypoxia (Figure 7B–7E). Thus, our analysis 

revealed RBPs that may be important for GSCs, and also 
as indicators of survival in GBM patients. Moreover, we 
developed a 4 RBP prognostic signature which effectively 
stratifies GBM patients into high-risk and low-risk groups.

DISCUSSION

The three major steps at which the gene expression 
can be modulated would include transcription, RNA 
processing and post-translational modification of proteins. 
At RNA processing levels, some of the steps like 5’ capping, 
addition of poly-A at the 3’ end, splicing and subsequent 
translation have been extensively studied [26–31]. With 
the advent of high throughput techniques like mass 

Table 2: Multivariate cox regression analysis for RBP signature and other prognostic markers using TCGA cohort

Factor No. of patients HR B(coefficient) P value

I. Univariate analysis TCGA dataset 

Age 535 1.04 0.04 <0.0001

G-CIMP 525 0.32 -1.15 <0.0001

MGMT 344 0.67 -0.40 0.0021

IDH 416 0.37 -0.99 0.0001

RBP risk score 535 2.19 0.78 <0.0001

II. Multivariate analysis with TCGA dataset

Age
535

1.03 0.03 <0.0001

RBP risk score 1.61 0.48 0.0032

G-CIMP
525

0.39 -0.95 <0.0001

RBP risk score 1.45 0.37 0.0421

MGMT
344

0.73 -0.32 0.0162

RBP risk score 2.69 0.99 <0.0001

IDH
416

0.50 -0.69 0.0109

RBP risk score 1.87 0.63 0.0014

III. Multivariate analysis of all the markers in TCGA dataset

Age 299 1.04 0.04 <0.0001

G-CIMP 0.35 -1.04 0.3134

MGMT 0.80 -0.23 0.1109

IDH 2.19 0.78 0.4516

RBP risk score 1.64 0.49 0.0552

IV. Multivariate analysis of all the markers in TCGA dataset (patients treated with Temozolomide)

Age 209 1.03 0.03 <0.0001

G-CIMP 0.0004 -7.78 0.922

MGMT 0.653 -0.427 0.017

IDH 2541.01 7.840 0.922

RBP risk score 2.54 0.934 0.007
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spectrometry and sequencing, about 1756 RBPs have been 
identified [8, 9]. While few reports have been published 
underscoring the importance of RBPs as global regulators 
and their role in cancers [3, 7, 32–34], the function of vast 
majority of these RBPs is yet to be explored. This study 
gives a comprehensive landscape of RBP regulation and 
their importance in glioma development and progression.

Our study emphasizes that the RBPs are deregulated 
in GBM. With the prior knowledge that genetic alterations 
(including mutations) in RBP may lead to various diseases 
like cancer, we analysed for the RBPs that are mutated 
in GBM in their coding region. Our study also identifies 
mutations in RNA binding domains of RBPs which may 
prove to be deleterious for their functions. In our study, we 
found mutations in the RNA binding domains of RBM47 
and RPL5, which are suggested to be tumor suppressors 
in a few cancers [35, 36]. Thus, the loss of the function of 
these proteins may be imperative for tumor progression 
[36]. Another interesting mutated protein found in our 

analysis was AHNAK. AHNAK is a large protein of 
700 kDa in size and it binds to R-smad in response to 
TGF-β mediated down regulation of c-Myc expression 
and cell growth retardation [37]. AHNAK has also been 
shown to inhibit induced pluripotent stem cells (iPSC) 
formation [38]. Moreover, it was reported by Sheppard et.
al, that mutations in AHNAK were common in metastatic 
melanoma patients and also correlated with poor outcome 
[39]. We found that GBM patients having mutated 
AHNAK survived lesser. The expression of AHNAK was 
found to be lesser in GSC compared to DGC suggestive 
of a cancer stem cell inhibitory function in glioma. It was 
also interesting to note that AHNAK mutated GBMs, 
who have poor survival, were enriched in poor prognostic 
groups as identified by G-CIMP, IDH1, MGMT promoter 
methylation and also in mesenchymal subtype of GBM.

In our analysis, we found that major proportion of 
RBPs were upregulated in GBM samples. This agrees 
with the previously published literature, which shows that 

Figure 7: Significant pathways enriched in high-risk patients. (A) Significant pathways enriched in high-risk patients using 
GSEA of differentially regulated genes in high-risk and low-risk patients. (B, C, D, E) GSEA representation of selected significant 
enriched pathways in high risk group, namely TNFa signalling via NFκB (B), inflammatory response (C), Epithelial mesenchymal 
transition (D) and hypoxia (E).
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majority of the RBPs are upregulated in various cancers as 
compared to their normal counterparts [40]. This suggests 
that majority of them may have a pro-tumorigenic role. 
Interestingly, we found members of RBPs that belong 
to distinct gene families to be differentially regulated. 
Some notable families included nucleic acid editing 
enzymes (ADAR and APOBEC members), ELAVL family 
members and IGF2BP family members. ADARB1 and 
ADARB2 enzymes edit adenosines to inosines on their 
RNA substrates. These enzymes had significantly lower 
expression in GBM when compared to control samples in 
our analysis. Indeed, literature suggests that they possess 
tumor suppressor activity [41–43]. On the other hand, 
DNA editing enzymes like APOBEC3C, APOBEC3F, 
APOBEC3G and APOBEC3H were upregulated in 
GBM in this study. APOBEC3 have been implicated 
in enhancing survival of cancer cells, by efficiently 
repairing DSB repair, thus preventing cell death, and 
also by contributing to accumulation of mutations that 
may drive tumor progression [44]. Another fascinating 
observation was made regarding the expression status of 
ELAVL family members in GBM. Our study found that 
the expression of ELAVL1 was significantly high in tumor 
samples, while that of other three members (ELAVL2, 
ELAVL3 and ELAVL4) was significantly low in tumors. 
This confounding result motivated us to check the potential 
role of these proteins in cancers. Though ELAVL1 (HuR) 
is a well-studied protein, limited reports exist for roles of 
the other three family members in cancers [45–48]. The 
downregulated members are established to have neuronal 
restricted expression and some of them have been reported 
to have a putative tumor suppressor role. Mansfield 
et. al., in 2012, had demonstrated that during neuronal 
differentiation, ELAVL2, ELAVL3 and ELAVL4 cause 
alternative polyadenylation of HuR and hence suppress 
its translation, leading to a non-proliferative state [49]. 
In GBM scenario, we hypothesize that downregulation 
of ELAVL2, ELAVL3 and ELAVL4 may be preferred to 
further enhance the translation of HuR, leading to a less 
differentiated and highly proliferative state of cancer cells.

From our analysis, it was evident that RBPs have 
aberrant expression in GBM patients. Causal mechanisms 
include genetic, epigenetic, post transcriptional and post 
translational regulations. We investigated into few of the 
causes which might lead to alteration in expression pattern 
of RBPs in GBM, including copy number variation, 
differential methylation and miRNA mediated regulation. 
Our analysis gives a concise list of these factors that may 
be responsible for differential expression of these RBPs 
either alone, or in combination. The results of our analysis 
also included some of the known RBPs regulated by 
these factors. In case of copy number variation, we found 
METTL1 to be amplified and over-expressed in other 
cancers including lung cancer [50]. The amplification 
of the segment in which the gene resides harbours other 
genes like CYP27B1, FAM119B, TSFM and AVIL which 

are co-amplified in several tumors due to amplification of 
this region. This protein is known to methylate tRNAs. 
Moreover, its expression may impart chemo-resistance 
in HeLa cells [51]. ELAVL2 is the gene found to be 
deleted in maximum percentage of cases in our analysis. 
ELAVL2 is located at the chromosome band 9p21.3, 
where CDKN2A (a well-known tumor suppressor) is also 
located. Further, it is shown to act as a tumor suppressor 
in GBMs and glioma initiating cells [48].

One of the epigenetic factors that we studied here 
was methylation of RBPs. Methylation changes in the 
gene may have severe effects on the gene expression. As 
an established fact, in most cases, hypermethylation of 
promoters of the genes leads to repression of transcription 
and vice versa. In our study, we found a significant 
contribution of methylation in regulation of expression 
of the RBPs examined in GBM. KHDRBS2 was found 
to be the most downregulated and hypermethylated RBP. 
Hypermethylation of CpG sites in this gene was reported 
as a hallmark of CIMP phenotype in renal cell carcinoma. 
It was one of the genes conferring the CIMP phenotype 
in GBM too. On the other hand, IGF2BP3 was found 
to be the most hypomethylated and upregulated gene in 
TCGA and also in our cohort. This gene has been used as 
a biomarker for advanced malignancies including GBM. 
It is also shown to be an oncogene in many cancers, 
contributing to various hallmarks of cancer [34, 52–55].

In our analysis, we found miRNAs to have 
maximum impact on the aberrant RBP expression in 
GBMs. We revealed that 15 miRNAs may be responsible 
for the differential expression of 126 RBPs. Some of the 
miRNA-RBP pairs found in our analysis were already 
reported in the literature. It was demonstrated using 
luciferase assays that miR133-b represses CPNE3 in 
prostate cancer [56]. In downregulated miRNA and 
upregulated RBP pairs, miR142-5p was reported to target 
ATXN [57], while miR-142-3p targets BCLAF1 and 
PUM1 [58]. These reports further strengthen the reliability 
of our findings. We were intrigued to notice two IGF2BPs, 
IGF2BP3 and IGF2BP2 that were found to be upregulated 
in GBM, and may be regulated by all the three factors, 
namely copy number alterations, DNA methylation and 
miRNA mediated regulation. This may underscore the 
importance of upregulation of these RBPs in GBM, 
such that regulation by one or multiple mechanisms was 
imposed to ensure that the expression of these RBPs was 
high in GBM tumor samples.

RBPs are implicated in global level changes, and 
may hence play a role in initial transformation events or 
later malignant progression to advanced stages. Initial 
multiple genetic changes required to convert a normal 
cell to a transformed cell, is followed by a process of 
Darwinian selection where cells carrying beneficial genetic 
or epigenetic changes are selected progressively, as the 
tumor advances. The events that aid in immortalization, 
transformation and proliferation may be the ones that are 
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differentially regulated at the early stages of the tumor and 
are retained at the later stages too. On the contrary, some 
of the genes are required for later stages of tumor. These 
will be the genes that are only expressed in aggressive 
stages of tumor. We identified 231 RBPs that may be 
implicated in initial transformation events, while 176 
RBPs that are differentially expressed only in high grade 
tumors, which may be important for their aggressive 
phenotype. Certainly, in our analysis, we found RBPs that 
were already reported to contribute to the aggressiveness 
of the high grade cancers. These included IGF2BP3 [34, 
54], S100A4 [59, 60], METTL1 [51], NPM1 [61, 62], 
BST2 [63], and EIF4E2 [64]. We also validated the role 
of two upregulated and aggressiveness related RBPs 
(METTL1 and OAS1) in chemoresistance of LN229 
glioma cells to temozolomide.

GSCs comprise a small proportion of the tumor 
cells, but are known to contribute to the aggressiveness 
of the tumors. We investigated and identified RBPs that 
are differentially and selectively present in GSCs rather 
than in normal neural stem cells and differentiated tumor 
cells. Further, we identified four RBPs that had prognostic 
significance in GBM tumor patients. Moreover, further 
analysis revealed that these four together had a better 
prognostic value as compared to any of them individually. 
This signature comprising of HERC5, NOL3, SUCLG1 
and AFF3 was able to stratify patients into low and 
high-risk GBM patients. In depth understanding of these 
two groups at molecular level showed that number of 
G-CIMP-positive and IDH1 mutant patients were more in 
low-risk group. This corroborated with the earlier findings 
that patients with IDH1 mutation had better survival [65]. 
As IDH1 mutation alone is sufficient to create G-CIMP 
related methylome [66], it is easy to comprehend that 
G-CIMP-positive patients will be surviving better as 
also seen in our analysis. We also observed a significant 
reduction in neurosphere forming ability by patient 
derived GSCs when each of these genes (HERC5, NOL3 
and SUCLG1) was silenced individually in these cells. 
NOL3 has been previously shown to increase apoptosis in 
the presence of imatinib treatment [67].

We performed pathway enrichment analysis to 
recognize pathways deregulated in identified high-
risk patients. Hypoxia came as one of the deregulated 
pathways in high-risk patients. Hypoxia is known to 
contribute to GBM progression, therapy resistance and 
recurrence by providing a niche for maintenance of GSCs 
in tumors. Another process that was found to be active in 
high-risk tumors was EMT or Epithelial to mesenchymal 
transition. EMT is closely associated with migration and 
invasion of GBM cells, from the area of tumor formation. 
To our key interest was NFκB signalling pathway, which 
was enriched most significantly in the high-risk tumors. 
The pathway has already been established in the literature 
to regulate genes participating in the other aforementioned 
pathways and hence contribute to the aggressiveness of the 

disease [68, 69]. The key players included some crucial 
targets of this signalling pathway namely SOD2, VEGFA, 
IL6, IL8, TNC, CD44, CCL20 and ICAM1 [70]. Taken 
together, the enhanced activity of these pathways in high-
risk patients gives an insight into the accuracy of the 
stratification of patients using our RBP signature and thus 
underscores its importance in the same.

To our knowledge, this study provides the first 
comprehensive view of aberrantly regulated RBPs in 
GBM and mechanisms which may lead to this aberrant 
regulation. It also gives insights into transformation 
and aggressiveness related RBPs, and those which may 
contribute to GSC related pathways. We believe that 
this meta-analysis encompassing various aspects of RBP 
biology in GBM may prove to be highly useful for future 
studies in this field. We also developed an RBP signature, 
which proved to be a reliable independent prognosticator 
in GBM. This could be helpful in clinics, while making 
decisions related to therapies that have to be administered 
to GBM patients.

MATERIALS AND METHODS

Cataloguing of RBP

A comprehensive list of 1756 RBPs used in this 
study was collated from data reported in Castello et. al., 
2012 and Gerstberger et. al., 2014 [8, 9] (Supplementary 
Table 1). These RBPs were either reported to have known 
or predicted RNA binding domains or had been identified 
by their ability to bind to RNAs. This list is used for 
conducting all the analyses in this study.

Mutational and InDels analysis for RBPs

TCGA level 2 somatic mutation data was 
downloaded and analysed (https://tcga-data.nci.nih.
gov). Tools like PolyPhen-2, SIFT, MutationAssessor 
and PROVEAN web server, [13–16] were used to find 
the deleterious effects of the non-synonymous mutations 
found in RBPs in our analysis. cBioPortal (http://www.
cbioportal.org/) [71] was used to graphically represent the 
RBPs genetically altered in more than 2% of the samples.

Differential expression analysis

We obtained expression data for GBM samples 
at the TCGA web site (https://tcga-data.nci.nih.gov), 
REMBRANDT, GSE22866 [72] and GSE7696 [73, 
74]. In case of TCGA, Level 3 data for Agilent platform 
(Agilent 244K Custom Gene Expression G4502A) was 
downloaded and subsequently used for analysis. For 
differential expression analysis, average of the values 
of all control samples was taken and this was subtracted 
from each of GBM sample value. Fold change of genes 
was calculated by subtracting average of control samples 
from average of GBM values. Statistical significance 
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was calculated using Wilcox Mann-Whitney Test. Only 
the genes having more than or equal to 1.5 absolute fold 
change and significant p-value (p-value < 0.05; t-test: 
Mann-Whitney and additional Benjamini/Hochberg 
FDR correction was applied) were considered to be 
differentially expressed.

For GSC and DGC expression analysis for 
RBPs, GSE54791 [75] was used, while for GSC and 
NSC expression analysis, GSE46016 [76] was used. 
All GEO datasets were retrieved from NCBI GEO 
database. Expression data for 1614 RBPs was available 
in GSE54791 while that of 1621 RBPs was present in 
GSE46016. To calculate GSC specific differentially 
regulated RBPs, we first identified differentially regulated 
genes in GSC versus NSC (p-value <0.05; t-test: Mann-
Whitney) and in GSC versus DGC (p-value <0.05; t-test: 
Mann-Whitney and additional Benjamini/Hochberg FDR 
correction was applied). The common upregulated and 
downregulated genes in both conditions in GSCs were 
then termed as GSC specific differentially regulated RBPs 
over the other two conditions. Only the genes having more 
than or equal to 1.5 absolute fold change and significant 
(p-value < 0.05) were considered to be differentially 
expressed.

Methylation data analysis

Corresponding probes for differentially expressed 
genes (472 genes from TCGA analysis) were taken from 
TCGA-Illumina Infinium Human DNA Methylation 
450K platform (https://tcga-data.nci.nih.gov). Data for 
control samples was used from GSE79122. Probes having 
differential beta values (a measure of methylation) were 
calculated by subtracting average beta value of each 
probe in control samples from average beta value of 
the same in GBM samples. Statistical significance was 
calculated using Wilcox Mann-Whitney Test. Only the 
probes having more than or equal to 0.3 absolute beta 
value difference and significant (p-value < 0.05) were 
considered to be differentially methylated. Similar 
analysis was performed on GSE79122 and GSE60274 
[77] datasets. All GEO datasets were retrieved from 
NCBI GEO database.

miRNA

Differentially expressed RBPs (from TCGA 
analysis) were taken as an input for miRwalk prediction 
[19]. A list of miRNAs targeting these RBPs in seven 
or more than seven algorithms was acquired. Further, 
using the expression data available for miRNA in 
TCGA (https://tcga-data.nci.nih.gov), we calculated 
the fold change of each miRNA as explained above for 
differentially regulated RBPs. Only the miRNAs that were 
reciprocally regulated with respect to their target RBPs 
were represented.

Copy number variation

The data was obtained from cBioPortal (http://www.
cbioportal.org/) and percentage of samples in which a 
particular RBP was amplified or deleted was calculated.

Survival analysis

The uniquely differentially expressed RBPs in GSCs 
were used as an input for univariate analysis (using TCGA 
data). SPSS version 19.0 was used for univariate and 
multivariate analysis. Kaplan Meier survival analysis was 
performed using GraphPad Prism 5.0 version for Windows 
(GraphPad Software, San Diego, California USA, www.
graphpad.com). The risk score for the signature was 
calculated using the following formula:

Risk score of a sample = ∑(cox regression 
coefficient of a particular RBP X log2 ratio value of 
expression of RBP).

Gene set enrichment analysis (GSEA)

Differentially expressed genes in low-risk and 
high-risk patients as stratified by RBP signature were 
identified. This list was pre-ranked on the basis of fold 
change and used as an input to perform GSEA (GSEA 
2.2.1) on “H: Hallmark gene set” encompassing 50 
gene sets available in Molecular Signature Database 
(MSigDB). We acknowledge our use of the gene set 
enrichment analysis, GSEA software, and Molecular 
Signature Database (MSigDB) [78] (http://www.broad.
mit.edu/gsea/).

Cell lines, glioma stem-like cells and plasmids

Glioma cells (U87, U138, U251, U343, U373, 
LN229 and A172) and immortalized human astrocytes 
(IHA) were grown in DMEM supplemented with 10% 
FBS, Penicillin and Streptomycin. 293T, U87, U251 
and U373 were procured from ECACC, while U138, 
U343, LN229 and IHA were procured from late Dr. 
Abhijit Guha. Priimary patient derived GSCs (MGG4) 
was a kind gift from Dr. Wakimoto H. (Massachusetts 
General Hospital, Boston). These cells were grown as 
neurospheres in Ultra-low attachment plates (Corning, 
U.S.A) in Neurobasal medium (Invitrogen, U.S.A.) 
supplemented with 3 mmol/L L-Glutamine (Invitrogen, 
U.S.A.), basic fibroblast growth factor (bFGF; 20 ng/
ml, Promega), epidermal growth factor (EGF; 20 ng/
ml; Promega), 1X B27 supplement (Invitrogen, U.S.A.), 
0.5X N-2 (Invitrogen, U.S.A.), 2 μg/mL Heparin (Sigma, 
U.S.A.), penicillin, gentamicin and streptomycin in ultra-
low attachment plates (Corning, U.S.A.). Neurospheres 
were passaged every 7 days using chemical dissociation 
kit (Catalog# 05707, STEMCELL technologies, U.S.A.). 
Fresh medium was added every 2-3 days.
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shRNA plasmids against METTL1 (TRCN 
0000035955-TRCN0000035958), OAS1 (TRCN 000000 
5007-TRCN0000005011), HERC5 (TRCN 000000 
4168- TRCN0000004171), SUCLG1(TRCN 0000048508- 
TRCN0000048512) and NOL3 (TRCN 0000118447-
TRCN0000118451) were obtained as kind gift from Dr. 
Subba Rao and Dr. Saini from MISSION® shRNA Library 
(Sigma-Aldrich, U.S.A.).

Lentivirus preparation

Pooled shRNAs for a specific gene (2μg) was co-
transfected with psPAX and pMD2.G plasmids (3:1) in 
50% confluent 293T cells using Lipofectamine 2000 
(Invitrogen, U.S.A.). Media was changed after 6 h of 
transfection. Media containing viral particles was collected 
after 60 h of transfection. This supernatant was used to 
infect LN229 cells or MGG4 in presence of polybrene 
(Sigma-Aldrich, U.S.A.).

5-Aza-2’-deoxycytidine treatment

Glioma cell lines (U373 and LN229) were seeded 
at a density to reach 70% confluency at 24 hours. The 
cells were treated with 10, 20 and 50 μM of 5-aza-2′-
deoxycytidine for 3 days and 5 days after 24 hours. The 
media was replaced with fresh media supplemented with 
5-aza-2′-deoxycytidine every 24 hours. Total RNA was 
isolated at the indicated time points and the transcript 
levels of KHDRBS2, RANBP17 and ELAVL3 were 
assessed by qRT-PCR.

RNA isolation and qRT-PCT

RNA was isolated using TRI-reagent (Sigma-
Aldrich, U.S.A.) as per manufacturer’s instructions. 2μg 
of RNA was converted into cDNA using High capacity 
cDNA reverse transcription kit (Life technologies, USA) 
according to the manufacturer’s protocol. qRT-PCR 
was performed to quantitate the levels of transcripts in 
various conditions. ATP5G1 was used as an internal 
control and expression of genes were calculated using 
ΔΔ Ct method. Primers used in the study are KHDRBS2 
(forward): GCTTGGACCAAGAGGAAACTCC, 
KHDRBS2 (reverse): CAAGTGGGCATATTTGGCTT 
CCC, RANBP17 (forward): TGTTGATCGGGCTGGC 
AAGAGA, RANBP17 (reverse): TGTTGGCTCTCCATA 
CCACCGT, ELAVL3 (forward): TGCAGACAAAGCCAT 
CAACACCC, ELAVL3 (reverse): GCTGACGTACAGGTT 
AGCATCC, METTL1 (forward): TGGCTTCCAGAACAT 
CGCCTGT, METTL1 (reverse): TGTCCGCTTGAAATG 
TGGGTCG, OAS1 (forward): AGGAAAGGTGCTTCCG 
AGGTAG, OAS1 (reverse): GGACTGAGGAAGAC 
AACCAGGT.

Chemosensitivity assays

Lentiviral shRNA infected LN229 cells were 
harvested and plated at 70-80% confluency in triplicates in 
a 96-well cluster plate. Temozolomide (Schering-Plough) 
at the indicated concentrations was added after 24 hours of 
plating. MTT (Sigma-Aldrich, U.S.A.) was used to assess 
the viability of cells under investigation after 72 hours of 
treatment. For MTT assays, 1.5 hours after MTT addition, 
the formazan crystals were dissolved in DMSO (200 µl) 
and measured as absorbance at 570 nm. The absorbance 
of the DMSO treated cells (under both conditions) was 
considered to be 100% and all samples were normalized 
to the DMSO treated cells. The statistical significance was 
calculated by Student’s t-test.
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