
Research Article
Diagnosis of Asthma Based on Routine Blood Biomarkers Using
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Intelligent medical diagnosis has become common in the era of big data, although this technique has been applied to asthma only
in limited contexts. Using routine blood biomarkers to identify asthma patients wouldmake clinical diagnosis easier to implement
and would enhance research of key asthma variables through data mining techniques. We used routine blood data from healthy
individuals to construct a Mahalanobis space (MS). .en, we calculated Mahalanobis distances of the training routine blood data
from 355 asthma patients and 1,480 healthy individuals to ensure the efficiency of MS. Orthogonal arrays and signal-to-noise
ratios were used to optimize blood biomarker variables. Receiver operating characteristic (ROC) curve was used to determine the
threshold value. Ultimately, we validated the system on 182 individuals based on the threshold value. Out of 35 patients with
asthma, MTS correctly classified 94.15% of patients. In addition, 97.20% of 147 healthy individuals were correctly classified. .e
system isolated 7 routine blood biomarkers. Among these biomarkers, platelet distribution width, mean platelet volume, white
blood cell count, eosinophil count, and lymphocyte ratio performed well in asthma diagnosis. In brief, MTS shows promise as an
accurate method to identify asthma patients based on 7 vital blood biomarker variables and threshold determined by the ROC
curve, thus offering the potential to simplify diagnostic complexity and optimize clinical efficiency.

1. Introduction

Asthma is a common chronic condition of the airways
characterized by reversible airflow obstruction, airway hy-
per-responsiveness, and clinical symptoms that include
wheezing, breathlessness, and chest tightness. Best estimates
report that approximately 300 million people worldwide
suffer from asthma, representing 4.3% of the global pop-
ulation [1]. In 2011, more than 26 million US adults reported
asthma exacerbations, and $56 billion in economic burden
was estimated to result from asthma [2]. According to data
from the US Centers for Disease Control and Prevention,
3,615 people died in 2015 due to complications from asthma
or about 1.1 in 100,000 individuals. .rough 2015, 358
million people worldwide have had asthma, up from 183
million by 1990 [3]. .us, asthma is a common global
medical issue that remains challenging to address.

Intelligent asthma diagnosis is a trending topic in
medical intelligent diagnosis, which is the use of artificial
intelligence to diagnose medical conditions. Several studies
have reported the diagnosis of asthma using data mining
algorithms and methods applied to intelligent diagnosis,
such as support vector machine (SVM) [4, 5] and neural
networks [5–8]. Finkelstein and Wood used naı̈ve Bayesian
and SVM methods to successfully predict asthma acceler-
ations on day eight with 80% accuracy in a population of 26
patients through home telemedicine [4]. Methods of deep
neural networks deployed to classify morbid conditions as
well as collect lung performance values indicate the possi-
bility of training a deep neural network to predict asthma
severity or the imminence of an asthma attack [6].

Similarly, Badnjevic and Cifrek applied a trained neural
network and fuzzy rules to assist physicians in the analysis
and interpretation of pulmonary function test results,
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successfully improving asthma detection, diagnosis, and
treatment [7]. Using data mining in the diagnosis of asthma,
Safdari et al. evaluated the sensitivity, specificity, and ac-
curacy of the K-nearest neighbor, SVM, naive Bayes, arti-
ficial neural network, classification tree, CN2 algorithms,
and similar techniques, all of which are based on 24 attri-
butes [5]. SVM algorithms achieved the highest accuracy at
98.59%, with 98.6% sensitivity and specificity. In another
study of asthma control in children, algorithms based on
artificial neural networks and principal component analysis
of lung function parameters and fractional exhaled nitric
oxide correctly identified 99.0% of children with totally
controlled asthma [8].

Currently, there is no gold standard for asthma diag-
nosis. Cell types involved in pathogenesis of bronchial
asthma include T lymphocytes, eosinophils, basophils, mast
cells, and bronchial epithelial cells. An association between
peripheral blood eosinophilia and moderate-to-severe
asthma has been well defined, and an elevated eosinophil
level of at least 400 cells/μL has been associated with greater
use of healthcare resources via increased hospital admissions
and costs [9]. Furthermore, high blood eosinophil count is a
risk factor for future asthma exacerbations and excessive
short-acting β-agonist use after adjustment for potential
confounders in adults with persistent asthma [10]. In the
course of multiple exacerbations of the disease, an increased
number of neutrophils can be detected in peripheral blood.
However, the role of neutrophils in the pathogenesis of
bronchial asthma remains unclear. In addition, platelet
counts and mean platelet volume (MPV) are higher in
asthmatic children than control children with no evidence of
allergic disease (i.e., asthma, allergic rhinitis, or eczema), and
mean MPV during an asymptomatic period is higher in
individuals with exacerbated asthma than in healthy controls
[11].

Standardized criteria involving both assessment of risk
factors and measurement of blood biomarkers that predict
the risk of asthma exacerbation could provide more optimal
treatment guidance and reduce healthcare costs. However,
although complete blood counts are routinely ordered for
asthma patients, they do not yet provide a clear indication of
such biomarkers.

.e Mahalanobis–Taguchi system (MTS) is a decision-
making and pattern recognition system frequently used as a
multidimensional system to integrate information to con-
struct reference scales by creating individual measurement
scales. .is system is an organic combination of Mahala-
nobis distance (MD) and the Taguchi method. MD is a
generalized distance that helps discriminate similarities
between unknown and known sample datasets. .e Taguchi
method optimizes the system and evaluates the contribution
of each variable [12]. .e system focuses on orthogonal
arrays (OAs) and signal-to-noise (SN) ratios to identify
variables of importance, which form a basis to construct a
reduced model of measurement scale. Selecting an optimal
subset of the most important variables from the original
variable set is essential to MTS [13, 14], which differs from
other classification methods such as SVM and neural net-
works. MTS uses a single category sample to form a

continuous measurement scale. Rather than direct experi-
mentation, all training data sets are used to construct a
classification model.

Recently, several researchers have used MTS for intel-
ligent disease recognition with high accuracy [15, 16].
However, no research has usedMTS for intelligent diagnosis
of asthma. .e purpose of this study was to apply MTS to
asthma diagnosis based on assessment of routine blood data
from healthy individuals and asthma patients. We sought to
identify routine blood biomarkers that could indicate
asthma and a reduced model construction of measurement
scale. We also compared MTS results with other algorithms
to determine which had best accuracy, sensitivity, and
specificity. .ese results can be applied to asthma diagnosis
decision systems.

2. Methods

2.1. Data Acquisition. We analyzed routine blood data from
355 asthma patients and 1,480 healthy individuals collected
at Wuxi People’s Hospital affiliated with Nanjing Medical
University by laboratory personnel with medical and
technical training. Samples included data from diagnosis of
asthma patients and from physical examinations of healthy
individuals. Asthma was diagnosed and classified according
to the Global Initiative for Asthma 2015 Global Strategy for
Asthma Management and Prevention [17]. Basic informa-
tion about the study population is presented in Table 1. .is
study has been approved by the hospital ethics committee
(KYLLH2018034), and all patients signed informed consent.

2.2. Preprocessing. Routine blood data were assessed to
predict whether a blood sample was from an asthma patient
or healthy control. Data preprocessing included the fol-
lowing steps.

2.2.1. Handling Missing Data. A missing at random pattern
was observed for the sample, with few incomplete data (with
respect to the 22 variables examined). .ree instances of a
single missing variable value were removed from the
analysis.

2.2.2. Reducing Highly Correlated Variables. MTS is a
quantitative analysis method. We found 22 initial routine
blood variables (X1 ∼ X22) that were highly correlated. It
was necessary to use variable selection to avoid multi-
collinearity. Pearson correlation analysis was used with SPSS
software to reduce model complexity using routine variables
from healthy individuals. Nine groups of variables showed
significant correlation >80% (Table 2). .e final selected 14
variables for MTS were basophil count (BA#), eosinophil
count (EO#), lymphocyte ratio (LY), lymphocyte count
(LY#), mean corpuscular hemoglobin (MCH), mean cor-
puscular hemoglobin concentration (MCHC), monocyte
ratio (MO), monocyte count (MO#), mean platelet volume
(MPV), platelet distribution width (PDW), platelet count
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(PLT), red blood cell count (RBC), red blood cell distri-
bution width (RDW), and white blood cell count (WBC).

2.3. Improved MTS Algorithm. We used MTS for data
classification [18–25]. In MTS, Mahalanobis space (MS;
reference group) is obtained using standardized variables of
healthy or normal data. MS can be used to differentiate
normal and abnormal. Once MS is established, the number
of attributes is reduced using orthogonal arrays (OAs) and
signal-to-noise (SN) ratios by evaluating the contribution of
each attribute. Finally, unknown samples are identified by
threshold value. More details of the MTS algorithm can be
found in [14].

For the diagnosis of unknown samples, a precise
threshold value is important. In the traditional MTS, quality
loss function was proposed to determine threshold value by
Dr. Taguchi. However, because it is too subjective to cal-
culate, few scholars use it since it was proposed. Su et al. used
Chebyshev’s theorem to build a possibility threshold model
called the “probabilistic thresholding method” (PTM) to
determine the threshold value [26]. However, PTM ignored
the number of false negative observations according to the
rules.

In this article, receiver operating characteristic (ROC)
curve was chosen to decide the threshold value. It has been
widely applied to do medical diagnosis. We use MD of the
normal and abnormal data in the training set to draw the
ROC curve. On the basis of ROC curve rules, the point which
makes sensitivity (Se) plus specificity (Sp) maximum is the
best threshold value. Sensitivity is the probability that a test
result will be positive when the disease is present (true
positive rate). A sensitivity of 100% indicates correct de-
tection of all disease patients. Specificity is a measure to
identify negative cases of test data. A specificity of 100%
indicates correct detection of all healthy individuals.
Moreover, the area under the curve (AUC) was often used
when estimating the classifier availability. Compared with
the quality loss function, PTM, and exhaustive search
method, ROC curve is more objective and visible.

.e algorithm flowchart is shown in Figure 1.

3. Results

3.1. Improved MTS with Routine Blood Data. We used 10-
fold cross-validation to research the dataset. For each loop,
nine folds were used for training, and the remaining were
used for testing data mining algorithms. .us, there were
1,331 healthy individuals for normal training samples and
147 healthy individuals for testing samples. Also, there were
319 asthmatic patients for abnormal training samples and 35
asthmatic patients for testing samples. Implementation of
the improved MTS is as follows.

In the first stage, MD of healthy samples was constructed
using 14 variables. We find MDs of 106 datasets from 1,331
healthy datasets which were beyond the threshold
(T � μ + 2.66R [27]). .en, we used 1,225 datasets to con-
struct the MS. In the second MTS stage, calculation of
abnormal (asthmatic) MD after constructing MS for the
normal group was done. .ey were larger than normal,
illustrating the classification ability of MD. Figure 2 rep-
resents the MD of normal and abnormal data.

In the third stage of analysis, useful variables were se-
lected by OAs and SN ratios. We used a L16 (215) OA, a
fractional factorial design that can accommodate up to 15
factors with 16 runs. We assigned the 14 variables to the first
14 OA columns, and the remaining columns were ignored.
MD values were calculated for all asthma patients for the 14
variable combinations above indicated by OA rows. To
obtain SN ratios, working averages were used as the values of
SNRj, with j� 1, 2, ..., 16. Table 3 presents L16 (214) OAs and
SN ratios. Gain in average value of the SN ratio was cal-
culated for each variable.

Figure 3 shows optimization results. Descending lines
indicate S/Nratiolevel1 − S/Nratiolevel2 > 0 and positive gains.
Features X4 (EO#), X7 (LY), X8 (LY#), X10 (MCHC), X14
(MPV), X18 (PDW), and X22 (WBC) had positive gains and
thus were selected to construct MS and calculate MD. SN
ratio scores of 5.11 for PDWand 0.70 forMPV indicated that
these variables were important for diagnosis. Rising lines
indicate S/Nratiolevel1 − S/Nratiolevel2 < 0 and negative gains.
Because variables with negative gains did not significantly
affect the system, they were neglected. After all insignificant

Table 1: Basic characteristics of the study population.

Category N Age, years (X ± S D)
Sex (n (%))

M F
Asthma 355 39.14± 22.60 175 (49.3%) 180 (50.7%)
Healthy 1,480 40.77± 12.71 763 (51.55%) 717 (48.45%)

Table 2: Pearson correlation of selected variables.

Variable A Variable B Pearson correlation Reserved variable Variable A Variable B Pearson correlation (%) Reserved variable
BA BA# 80.5 BA# LY NE 94.9 LY
EO EO# 94.3 EO# MCH MCV 96.4 MCH
HCT HGB 98.8 HGB NE# WBC 90.5 WBC
HCT RBC 85.8 RBC PCT PLT 86.5 PCT
HGB RBC 81.3 RBC
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variables were removed, MS and MD were recalculated for
only 7 variables, reducing the number of variables to half.

With the model described above, selected useful vari-
ables were able to classify healthy and asthma cases. After
that, the threshold value was calculated to distinguish be-
tween healthy and asthma samples. Draw up ROC curve
(Figure 4) by software SPSS, the threshold value which
maximize Se (0.937) plus Sp (0.974) is 1.911. If MD of one
observation is large than 3.3673, the compound should be

recognized as the asthma patient; otherwise, it is recognized
as healthy people. .e AUC 0.983 manifests this classifier is
good and acceptable.

.e correlation coefficient matrix, mean, and SD of
healthy sample data with only 7 variables were used for the
182-sample testing set (containing healthy and asthma
groups). .e average Se was 94.15%, and the average Sp was
97.20%, indicating the method identified patients and
healthy people with high accuracy.

3.2. MTS versus SVM. SVM has high accuracy in classifi-
cation, so we compared the performance of MTS with SVM.
.e SVM algorithm was calculated with Clementine soft-
ware. Figure 5 shows variable importance scores in SVM
classification, with top scores for PDW (0.648) and MPV
(0.143). Variable performance results based on SVM were
consistent with MTS results. In addition, LY, EO#, MO#,
and WBC also affected classification results. .e accumu-
lating contribution rate of these six variables was 97.1%.
With reference to MTS, PDW, MPV, WBC, LY, and EO#
performed well in asthma diagnosis.

Analysis of sensitivity and specificity of testing datasets
under MTS with 7 variables, SVM with 14 variables, and
SVM with 7 variables indicates that MTS performed better
than SVM (Table 4). In addition, SVM with 14 variables had
worse classification results than SVM with 7 variables. Both
methods with 7 variables had good performance in speci-
ficity metrics.

MTS
method

Mahalanobis
space (MS) construction

Future diagnosis

Identify the useful
variables

Validation of MS

Define variables of the
problem

Collect normal data for
constructing Mahalanobis space

Calculate the Mahalanobis
distance of standardized data

Collect abnormal data

Calculate the MDs of
standardized abnormal data

Decide the threshold value
based on ROC curve

Diagnose unknown sample

Orthogonal arrays (OAs) and SN
ratios

Figure 1: .e flowchart of rolling bearing fault diagnosis.
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Figure 2: Mahalanobis distance (MD) for normal (healthy) and
abnormal (asthma) samples.
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4. Discussion

Our assessment of MTS to determine useful variables for
predicting asthma diagnosis shows that MTS is a useful
diagnostic and forecasting technique. It not only executes
classification tasks but it also identifies important variables
in a multivariate system. Compared to similar studies, the
advantages of our approach can be summarized as follows:

(1) MTS provides easier access to asthmatic diagnosis
for patients by using routine blood test data. .e
algorithm can distinguish between asthmatics and
healthy people.

(2) MTS establishes a MS with data training as the
reference space. Doctors only need to calculate the
MD of unknown patients from the reference space to
use software to diagnose if patients have asthma.
Compared with other algorithms, such as SVM
hyperplanes and neural network structures, MTS is
easier to understand.

(3) MTS provides a methodical way to identify asthma,
reducing dimensionality of the diagnosis problem. It
optimizes the reference space, removes redundant
variables, and greatly reduces time complexity of the
algorithm by OAs and SN ratios. .is study shows

Table 3: Orthogonal arrays (OAs) and signal-to-noise (SN) ratios for 14 variables.

No. BA# EO# LY LY# MCH MCHC MO MO# MPV PDW PLT RBC RDW WBC SN ratio
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8.29
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3.36
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 8.38
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 3.10
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2.94
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 7.87
7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 2.98
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 7.16
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 8.40
10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 3.54
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 7.34
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 3.70
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2.10
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 9.36
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2.72
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 8.50
S/Nratiolevel1 5.51 5.76 5.73 5.74 5.59 5.61 5.54 5.40 5.96 8.16 5.48 5.53 5.56 5.80
S/Nratiolevel2 5.71 5.45 5.48 5.49 5.62 5.60 5.68 5.83 5.26 3.05 5.75 5.70 5.66 5.41
Gain −0.20 0.31 0.25 0.25 −0.03 0.01 −0.14 −0.43 0.70 5.11 −0.27 −0.17 −0.10 0.39
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Figure 3: Mahalanobis space optimization results for selected variables using signal-to-noise ratio (SNR).
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good performance with PDW, MPV, WBC, EO#,
LY#, LY, and MCHC variables. .ese key variables
can provide clear guidance to doctors for asthma
diagnosis. Doctors can use these 7 variables to di-
agnose patients by calculating MDs, thus simplifying
diagnostic complexity and optimizing clinical
efficiency.

(4) MTS performed better than SVM in asthma diag-
nosis. Furthermore, with the onset of big data, MS
can be built more completely, and thresholds will

become more accurate. .erefore, MTS represents a
new way to approach asthma diagnosis.

Some important works must be done to improve our
findings. First, building a blood database of asthma patients
and healthy controls would establish a complete reference
space to more accurately identify asthma patients. Second,
software should be developed and updated to facilitate
asthma diagnosis using MTS. .ird, the diagnostic process
described here should be confirmed with patient samples of
increasing asthma severity to construct another MTS that
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Figure 4: ROC curve.
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Table 4: Sensitivity, specificity, and accuracy of algorithms.

MTS with 7 variables (%) SVM with 14 variables (%) SVM with 7 variables (%)
Se 94.15 92.20 93.55
Sp 97.20 96.32 96.80
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can identify asthma severity. In line with MTS theory, if a
sample’s MD is more distant from the reference space, the
patient’s asthma may be more severe. However, this study
does not provide a specific scale or scope of reference MDs
for asthma severity, although those could be determined
with asthma patient data or by using multiclass MTS to
identify diagnosis.

5. Conclusion

.is study provides a clinical asthma diagnosis algorithm
based on routine blood data that performs well in disease
recognition. .e algorithm discovered 7 variables of routine
blood biomarker data that are vital to asthma diagnosis:
PDW, MPV, WBC, EO#, LY#, LY, and MCHC. Further
studies are required to extend this diagnostic to disease
severity.
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