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Abstract: Ticks are obligate hematophagous parasites and are important vectors of a wide variety
of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease,
rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged
feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in
order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large
number of pharmacologically active molecules that are secreted in their saliva, which inhibits or
modulates host immune defenses and wound healing responses upon injection into the bite site.
These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that
tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted
pathogens manipulate tick saliva composition to enhance their own survival, transmission, and
evasion of host defenses. We review what is known about specific and functionally characterized tick
saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen
Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies
analyzing sialome-level responses to pathogen challenge.

Keywords: saliva-assisted transmission; Anaplasma phagocytophilum; tick-borne encephalitis; Borre-
lia burgdorferi; ticks; tick saliva; tick-borne diseases

1. Introduction

Ticks are capable of transmitting a wide variety of pathogens including viruses,
bacteria, protozoans, fungi, and nematodes of medical and veterinary importance [1]. They
are obligatory blood-feeding arthropods that are divided into three families: Argasidae
(soft ticks), Ixodidae (hard ticks), and Nuttallielidae [2,3]. Soft ticks feed repeatedly for a
short period (minutes to hours), while hard ticks feed for several days to weeks, depending
on the life stage [4]. Ixodid larvae and nymphs take up to eight days to complete the
bloodmeal, whereas adult females can feed for up to 12 days or longer [5]. Furthermore,
unlike mosquitoes that pierce through the skin to reach blood vessels, ticks produce a
feeding pool by cutting through the host skin with their chelicerae. The chelicerae extend
and lacerate the epidermis, which is then followed by the insertion of the hypostome into
the dermis [6], producing significant damage. The relatively long period of feeding and
the type of lesion require the inhibition of host immunity and localized hemostasis.

Vertebrate skin represents a key environmental interface acting as a physical and
immune barrier that is composed of two layers: Epidermis and dermis. These layers contain
immune cells and effectors that together comprise a complex network of inflammatory,
innate, and acquired immune defense mechanisms [7,8]. Keratinocytes act as sentinels
detecting a pathogen associated molecules and toxins [9,10]. These cells interact with T cells
to maintain tissue homeostasis and coordinate immune responses [11]. The wound healing
response (including hemostatic plug formation, vasoconstriction, inflammation, and tissue
remodeling) as well as pain and itch sensations occur in response to injury. Platelets also
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act as immune sentinels of damaged vessels. They guide neutrophils and other leukocytes
to the site of extravasation and direct innate and adaptive immune responses [12,13].
Other immune cells residing in the skin such as Langerhans and dermal dendritic cells
(DC) migrate to the lymph nodes and activate inflammatory and immune responses upon
encountering antigens [14,15]. To counteract these challenges, ticks have evolved and
acquired several effectors that diminish these immune and hemostatic responses.

Specifically, tick saliva delays wound healing and blood clotting as well as inflam-
matory responses with secreted molecules that interact with cytokines, chemokines, and
growth factors [16,17]. Additionally, tick salivary glands release a wide number of im-
munomodulatory and anti-hemostatic molecules. These components maintain blood
flow and reduce itching, inflammation, and immune rejection at the skin interface with
the attached tick, allowing blood feeding to succeed. For example, tick saliva contains
inhibitors (thought to include Angiotensin-converting enzyme (ACE) metalloproteases, en-
docannabinoids, adenosine, and others) that reduce pain and itching, preventing physical
tick removal by the host [18–20]. Tick saliva also inhibits the migration of neutrophils [21]
and macrophages [22] and can alter dendritic cell activation and function [23,24]. Through
these bioactive components, tick saliva creates an immune-privileged local environment
at the bite site that facilitates pathogen transmission. Therefore, it is not surprising that
tick-borne pathogens take advantage of tick salivary secretions to enhance their establish-
ment and infection. Herein, we review how tick-borne pathogens exploit and augment
the immunomodulatory and regulatory properties of tick saliva, focusing specifically on
B. burgdorferi, Anaplasma phagocytophilum, and tick-borne encephalitis virus (TBEV).

2. Effect of Saliva on Pathogen Transmission
Saliva Assisted Transmission (SAT)

Saliva-assisted transmission (SAT) has been observed with several tick-borne pathogens [3,25].
Several studies have reported enhanced vertebrate infection by tick-borne pathogens
after needle injection along with salivary gland extracts (SGE) as compared to pathogens
alone. Nevertheless, the mechanisms and molecules involved in this process have not
been completely characterized. Only a relatively small number of salivary components
associated with tick-borne pathogen transmission have been described, some of which
are listed in Tables 1 and 2. Herein, we will discuss how sialostatin L and L2 enhance the
transmission of A. phagocytophilum, TBEV, and B. burgdorferi. Additionally, salivation has
also been associated with pathogen transmission in non-vertebrate vector-host systems
such as Varroa destructor and Apis mellifera, where salivation alters hemocyte behavior as
well as in plant diseases caused by whiteflies, aphids, mites, and psyllids, where vector
salivation plays a role in altering host plant defenses [26–33].

Tick saliva is likely to influence pathogen acquisition. Reppert et al. [34] showed that
tick feeding results in an increased number of neutrophils at the bite site of A. phagocytophilum
infected and uninfected sheep. Interestingly, infection also appears to augment the number of
neutrophils even in the absence of feeding ticks. Immunohistochemistry (IHC) experiments
demonstrated the presence of infected neutrophils at the bite site. Infected neutrophils at
the bite site have been previously reported in naturally infected lambs [35]. It is highly
possible that components in tick saliva and the inflammation at the bite site results in the
chemoattraction of these infected neutrophils. Chemoattraction of tick SGE has been shown
for B. burgdorferi. This mechanism may explain the phenomenon of B. burgdorferi acquisition
between co-feeding infected and uninfected ticks [36]. However, the exact molecules that
facilitate this chemoattraction are not known.

Sialostatins are C1-type cysteine protease inhibitors (cystatins) that suppress the action
of mammalian cathepsins [37,38]. Cathepsins L and S play important roles in major histo-
compatibility complex (MHC) II antigen processing and presentation by cells in the cortical
epithelium of the thymus and professional antigen presenting cells (APCs), respectively [39].
These proteins also play a role in the suppression of chemokines, such as IP-10 (CXCL10),
MIP-2 (CXCL2), MCP-1 (CCL2), RANTES (CCL5), LIX (CXCL5), CXCL16, MIP-1β (CCL4),
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and MIP-1α (CCL3), and cytokines including TNFa, IL-9, IL-1β, and IL-12 [40–43]. Sialo-
statin L decreases the activation of interferon regulatory factor 4 (IRF4) signaling in mast
cells [40] and JAK/STAT signaling in DCs by diminishing phosphorylation of STAT-1 and
STAT-2 [42]. Additionally, Sialostatin L dampens antigen mediated CD4+ proliferation [43].
Thus, these proteins affect both innate and adaptative immune responses, which in turn im-
pacts pathogen colonization in the host. For example, sialostatin L2 reduces inflammasome
activation by targeting caspase 1, affecting cytokine secretion and inflammatory responses
during A. phagocytophilum infection [44]. Tick-borne encephalitis virus (TBEV) replication
in DCs is enhanced in the presence of sialostatin L2, by diminishing the antiviral effect of
IL-1β [42]. Likewise, these cystatins decrease DC activation after B. burgdorferi infection by
interfering with Erk1/2 signaling [41]. These examples demonstrate the particular impact
of these two salivary proteins on pathogen establishment. Other proteins have also been
shown to positively impact pathogen transmission, with evidence to show that vector
saliva can increase pathogen recruitment to the feeding site, explaining the evolutionary
advantage that SAT represents for tick-borne pathogens [34].

3. Role of Tick Salivary Components during Tick Feeding and Pathogen Transmission
3.1. Effects on Hemostasis and Angiogenesis

Hemostasis is described as the balance of physiological processes that maintain blood
flow and fluidity while preventing excessive blood loss at the site of a vascular injury [45]
and is thus part of the wound healing responses. As the first step in wound healing,
hemostasis includes vasoconstriction, followed by two linked processes: Primary hemosta-
sis, which involves platelet aggregation, and secondary hemostasis, which induces the
coagulation cascade. The activation of either the extrinsic or intrinsic coagulation path-
ways leads to the activation of Factor X. Activated Factor X (Factor Xa) eventually drives
the conversion of prothrombin to thrombin. Crosslinked fibrin binds to the aggregated
platelet plug, forming the thrombus, which stops bleeding. Wound restoration starts by
the formation of new connective and granular tissue by a process of re-epithelization and
neovascularization during angiogenesis [46].

Tick saliva promotes continuous blood flow with molecules that counteract the dif-
ferent hemostatic steps and processes involved in angiogenesis (Table 1). Some of these
effectors include Salp14 and Iris identified in I. scapularis and I. ricinus, respectively [47,48]
(Figure 1). Salp14, a 28 kDa protein, delays blood coagulation by specifically inhibiting
Factor Xa [47]. Iris, on the other hand, is a serpin (serine protease inhibitor) with anti-
coagulant, anti-hemostatic, and immunomodulatory properties [48]. It inhibits human
leukocyte elastase (by ~70%), thrombin tissue plasminogen activator (tPA), and Factor Xa
(by around 30%). This serpin significantly delays the intrinsic coagulation pathway and
fibrinolysis, affecting blood clot formation [48] and dampening wound healing responses
(Figure 1).

The effects of these molecules on pathogen transmission have not been investigated,
with the exception of the tick histamine release factor (tHRF) and B. burgdorferi (Table 1) [49].
Although there are few known examples of tick-borne pathogens directly exploiting tick
proteins involved in delaying hemostasis and angiogenesis, it is likely that constant blood
flow and delay in wound closure benefit tick-borne pathogen transmission. A list of pro-
teins, their targets, effect, and whether they facilitate pathogen transmission experimentally
is described in Table 1 [47,49–80].

3.2. Immunomodulatory Components: Effects on Host Defenses
3.2.1. Host Defense

Part of the wound healing response is the activation of inflammation, which re-
cruits immune cells into the site of tissue damage. Damage associated molecular patterns
(DAMPs), increases in intracellular Ca++, chemokines, and lipid mediators lead to the
recruitment of immune cells, such as neutrophils, macrophages, mast cells, T cells, and
other cells. These cells prevent infection and assist generating growth factors that lead
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to tissue repair [46]. Ticks have evolved several strategies to evade these host immune
responses in order to ensure feeding to repletion and further development [7,16,82–84].
The capability of ticks to attach for a prolonged time has stimulated strong interest in in-
vestigating tick feeding. A necessary step in understanding tick feeding includes defining
the molecular composition of tick saliva, which is also important for understanding the
role of saliva in pathogen transmission. The use of global transcript and protein profiling,
as well as comparative analyses, has led to the discovery of several molecules required for
the induction and modulation of immune defenses [25]. However, while the general effects
of tick-directed immunomodulation are known, the characterization of tick salivary gland
molecules with regulatory functions is still relatively limited. Some of these molecules and
the tick species that secrete them are identified in Table 2 [16,21–24,38,42,49,68,72,85–105].
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Figure 1. Secretion of anti-hemostatic (Salp14 and Iris) and immunomodulatory components (Salp15 and Iris) within tick 
saliva. Salp14 inhibits Factor Xa and the conversion of prothrombin to thrombin. Iris, an elastase inhibitor, hinders the 
intrinsic or contact-dependent coagulation pathway and platelet aggregation. The immunomodulatory protein, Salp15 
prevents dendritic cell function by binding to the DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin), a lectin receptor. This binding alters dendritic cell cytokine secretion. Additionally, Salp15 binds 
the CD4 glycoprotein on CD4+ T-helper cells, inhibiting the T-cell receptor signaling. Iris decreases the production and 
secretion of pro-inflammatory IL-6 and TNF-α by macrophages and affects T cell proliferation. Created with 
Biorender.com 
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Figure 1. Secretion of anti-hemostatic (Salp14 and Iris) and immunomodulatory components (Salp15 and Iris) within tick
saliva. Salp14 inhibits Factor Xa and the conversion of prothrombin to thrombin. Iris, an elastase inhibitor, hinders the
intrinsic or contact-dependent coagulation pathway and platelet aggregation. The immunomodulatory protein, Salp15
prevents dendritic cell function by binding to the DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin), a lectin receptor. This binding alters dendritic cell cytokine secretion. Additionally, Salp15 binds
the CD4 glycoprotein on CD4+ T-helper cells, inhibiting the T-cell receptor signaling. Iris decreases the production and
secretion of pro-inflammatory IL-6 and TNF-α by macrophages and affects T cell proliferation. Created with Biorender.com

Table 1. Characterized anti-hemostatic components secreted in tick saliva *.

Component Function/Activity Target Effector/Protein Pathogen SAT Tick Species References

Apyrase Inhibitor of platelet
aggregation

Adenosine triphospahte
(ATP), Adenosine

diphosphate (ADP)

Ixodes scapularis,
Ornithodoros savignyi [73,75]

Tick histamine
release factor

(tHRF) †

Binding to basophils,
stimulates Histamine
release, vasodilation

- B. burgdorferi Dermacentor andersoni, I.
scapularis [49,69]
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Table 1. Cont.

Component Function/Activity Target Effector/Protein Pathogen SAT Tick Species References

Metalloproteases Wound
healing/angiogenesis Fibrin Ixodes ricinus [56]

Haemangin Wound
healing/angiogenesis

Trypsin, chymotrypsin,
plasmin Haemaphysalis longicornis [62]

HLTnl Wound
healing/angiogenesis

Competitive inhibitor of
Vascular endothelial growth

factor (VEGF) for VEGF
receptor

H. longicornis [60]

PGE2 † Wound
healing/angiogenesis

PGE2 receptor, cyclic
Adenosine monophosphate

(AMP)-proteins kinase A
(cAMP-PKA)

D. variabilis [72]

TAP Blood coagulation Factor Xa Ornithodoros moubata [79]

Moubatin Platelet activation and
vasoconstriction inhibitor

Collagen-stimulated
aggregation activator O. moubata [68,78]

Disaggregin Platelet aggregation Platelet fibrinogen receptor O. moubata [63]

Enolase Blood coagulation Fibrin, plasminogen receptor O. moubata [58]

Savignygrin Platelet Aggregation Thrombin Ornithodoros savignyi [67]

Longicornin Platelet aggregation Collagen H. longicornis [54]

Ornithodorin Blood coagulation Thrombin O. moubata [76]

Salp14 Blood coagulation Factor Xa I. scapularis [47]

Variabilin Platelet aggregation Glycoprotein IIb-IIIa D. variabilis [77]

Serpin19 Blood coagulation Factor Xa, factor XIa, trypsin,
plasmin Amblyomma americanum [64]

RmS-15 Blood coagulation Thrombin Rhipicephalus (Boophilus)
microplus [80]

Longistatin Blood coagulation Fibrin H. longicornis [50]

IxscS-1E1 Blood coagulation Thrombin, trypsin I. scapularis [61]

IRS-2 † Blood coagulation Inhibits Cathepsin G and
chymase proteases I. ricinus [55]

Ir-CP1 Blood coagulation Inhibitor of contact system
proteins I. ricinus [57]

Variegin Blood coagulation Direct competitive inhibitor
of Thrombin Amblyomma variegatum [65,66]

Amblyomin-X Blood coagulation Noncompetitive inhibitor of
coagulation factor, Factor Xa A. variegatum [51,52]

Ixolaris Blood coagulation Inhibitor of contact system
proteins, binds to Factor Xa I. scapularis [53,59,70]

Iris † Blood coagulation
Thrombin, Factor Xa, tissue

plasminogen activation
inhibitor

I. ricinus [48]

Savignin Blood coagulation Thrombin O. savignyi [71]

TSGP3 Platelet aggreagation and
vasoconstriction inhibitor

Inhibition Collagen-platelet
binding and interaction with

thromboxane A2
O. savignyi [68]

TIX-5 Blood coagulation Factor Xa, factor V I. scapularis [74]

†: Denotes as having immunomodulatory function as well. * adapted and updated from [3,19,25,81].

3.2.2. Complement

The complement system is a series of protein cascades that function as part of the
innate immune response, recognizing damaged tissue and microbial invaders. Three
complement pathways have been characterized: The classical, lectin, and alternative path-
way. Complement is always active at low levels, with regulators active to control the
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response [106]. When pattern recognition molecules, such as C1q, antibodies, and pentrax-
ins, bind to foreign molecules, microbes, apoptotic, or damaged cells, other proteins in
the complex are activated leading to the amplification of the cascade. This cascade results
in lysis of the cell through the creation of pores in the cell’s membrane by the membrane
attack complex. Other outcomes from the activation of the complement pathways include
opsonization, phagocytosis, B cell activation, T cell regulation, and the activation of inflam-
matory signaling [106–109]. The complement pathways act as a sentinel and control during
tissue damage and pathogen invasion. Thus, it is not surprising that ticks have evolved
several effector proteins that target components in the complement cascade, specifically C3
and C5 (Table 2), which benefit pathogen transmission.

Table 2. Described immunomodulatory components in tick saliva *.

Component Function/Activity Target Effector/Protein Cells Affected Pathogen Tick Species References

† Iris Th 2 response
modulation

Reduction in TNFα, INFγ,
IL-8, IL-6, and IL-1β

expression

Macrophages,
T-lymphocyte I. ricinus [97]

Salp15

IL-2 inhibitor, T-cell
proliferation (I.

scapularis), IL-10
secretion inhibitor

(I. ricinus)

OspC

T cells and
peripheral blood
mononuclear cells

(PBMCs)

B. burgdorferi I. scapularis, I.
ricinus

[86,91,94,
99,100]

IL-2
Binding
Protein

T cell proliferation IL-2 T cells and
PBMCs I. scapularis [16]

IR-LBP Neutrophil
migration Leukotriene B4 Neutrophils I. ricinus [86]

Irac I & II Complement
inhibitor C3 convertase I. ricinus [88]

Isac Complement
inhibitor C3 convertase I. scapularis [104]

Salp16
Iper1

Neutrophil
migration and

reactive oxygen
species (ROS)

inhibitor

Neutrophils A. phagocytophilum I. persuculatus [21]

Salp16
Iper2

Neutrophil
migration and ROS

inhibitor
Neutrophils A. phagocytophilum I. persculutaus [21]

† IRS-2 Immune inhibitor
IL-6, IL-9, and IL-17

secretion STAT-3
phosphorylation

Dendritic cells,
Neutrophils, and

Th17 cells
B. burgdorferi I. ricinus [23]

Sialostatin
L and L2 Immune inhibitor Cathepsin L and S inhibitor,

inflammasome formation

B. burgderfori,
L2-TBEV and A.
phagocytophilum

I. scapularis [38,41,42]

Japanin Modulates DC
maturation

Inhibits IL-1β, IL-6, IL-12,
IFN-γ, and TNFα secretion,
CD86 and CD83 expression.

Enhances IL-10 secretion
and CD274 expression

Dendritic cells R.
appendiculatus [24]

IrSPI T cell proliferation

CXCL10, CCL7, CCL4,
CCL5, Eotaxin, IFN-γ,

IL-1β, IL-18, IL-13, IL-6,
TNFα, IL-9, and

Granulocyte
macrophage-colony
stimulating factor

(GM-CSF) inhibition and
IL-2

CD4++ T cells I. ricinus [87]
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Table 2. Cont.

Component Function/Activity Target Effector/Protein Cells Affected Pathogen Tick Species References

† PGE2 Immune inhibitor

Inhibition of IL-12, TNFα,
and CD40 and

upregulation of IL-10 (I.
scapularis), increased

macrophage PGE2, CCL5,
TNFα, and sTNFRI

secretion (D. variabilis), and
TNFα inhibition (A.

sculptum)

Bovine
mononuclear

cells, DCs, and
macrophages

Rickettsia rickettsii

R. (Boophilus)
microplus, I.

scapularis, D.
variabilis, and
Amblyomma

sculptum

[72,90,95,
101]

Macrophage
Migration
Inhibitory

Factor
(MIF)

homolog

Macrophage
migration Macrophages A. americanum [22]

BIP (B-cell
inhibitory
protein)

B cell proliferation B cells B. burgdorferi I. ricinus [91]

B-cell
inhibitory

factor (BIF)
B cell proliferation B cells Hyalomma

asiaticum [105]

Amregulin Immune inhibitor
and antioxidant

TNFα, IFN-γ, IL-1, IL-8,
and Nitric Monoxide

(NMO) inhibitor
A. variegatum [102]

tHRF Histamine release Histamine release
stimulation Basophils B. burgdorferi [49]

TSGP2/3

Neutrophil
migration and
complement

inhibition

Leukotriene B4 and C5
binding O. savignyi [68]

Salp20 Complement
inhibition

C3 convertase (from
properdin displacement) B. burgdorferi I. scapularis [93,96,104]

Iristatin
T cell proliferation

and immune
inhibition

IFN-γ, IL-2, IL-4, IL-6, and
IL-9 secretion, CD4+ T cell
proliferation, neutrophil

migration, and nitric oxide
production

Neutrophils,
macrophages, T
and mast cells

I. ricinus [96]

DsCystatin Immunomodulation

Cathepsin L and B
inhibitor, TNFα, IL-6, IL1β,
and IFNγ inhibition, and

promotes TRAF6
degradation

Macrophages B. burgdorferi Dermacenter
silvarum [101]

†: Denotes as having anti-hemostatic function as well. * adapted and updated from [3,19,25,81].

Members of the B. burgdorferi s.s. and s.l. complexes are the causative agents of Lyme
disease in the US and Europe. They are gram-negative spirochete bacteria, transmitted by
Ixodid ticks. Borrelia spp. pathogens are some of the tick-borne pathogens that specially
benefit from the dampening of the complement pathway. Borrelia spp. pathogens activate all
complement pathways, even in the absence of Borrelia specific antibodies [110]. Therefore, they
have acquired several mechanisms by which they can escape complement killing, including
the exploitation of tick salivary components. For example, Salp20 and Isac both inhibit
complement activity, enhancing B. burgdorferi transmission [96,104,105]. TSLPI (tick salivary
lectin pathway inhibitor), interferes with complement activation by binding to the active sites
of mannose binding lectin, a C-type lectin that detects oligosaccharides. This protein also
hinders the phagocytosis of the bacteria by neutrophils and the rest of the cascade that finalizes
with the membrane attack complex [111]. Furthermore, B. burgdorferi increases transcription
of this protein in the salivary glands of nymphs [111], possibly to increase its survival. A
homolog to this protein was identified in I. ricinus, and it protects both B. burgdorferi s.s. and
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B. garinii from complement killing during in vitro tests [112]. Other tick-borne pathogens may
also take advantage of these effector to survive the mammalian complement cascade.

3.2.3. Immune Cells

Mechanical abrasion of the skin leads to the activation of skin immune cells that pre-
vent the entry and establishment of pathogenic invaders into the body [113]. The immune
response is mediated by specialized and non-specialized cells that have evolved to recog-
nize non-self-antigens. Non-specialized cells, such as endothelial cells, keratinocytes, fibrob-
lasts, and platelets communicate with specialized innate immune cells, like macrophages,
DCs, neutrophils, Langerhans cells, mast cells, basophils, γδ T cells, and innate lymphoid
cells (ILCs) [113,114]. These cells are largely responsible for the great majority of the im-
mune response, from phagocytizing microbes and damaged cells as well as producing the
effectors necessary for a coordinated immune response. For example, DCs with bound
antigens migrate from the skin to the lymph nodes to present them to B and T cells, which
in turn undergo maturation and clonal replication. In mice, and possibly humans, DCs
and macrophages can interact with T cells in the skin during inflammation, providing a
site where antigen presentation can occur. This site is termed inducible skin-associated
lymphoid tissue (iSALT) and is key in the generation of adaptive immunity [114]. Phago-
cytes at the bite site will begin to engulf damaged tissue and invaders they may encounter
in the area. Granular cells release a cocktail of compounds into the extracellular space,
prepping the somatic cells for the inflammatory response, and activating other immune
cells [7,115,116]. This complex of immune reactions and cells profoundly influences tick
feeding efficiency and the outcome of pathogen transmission.

The tick encounters these defense systems during feeding, and some animal species
may acquire resistance to tick feeding after infestation by generating systemic immu-
nity [117]. This immunity has been reported in animals such as cattle, guinea pigs, and
rabbits. [117–119]. This immunity has also been shown to have some effect between tick
species on a single host [120]. Several immune cells, particularly basophils and resident
memory T cells, have been linked with the development of this resistance. Acquired tick
immunity (AIT) can disrupt the ability of ticks to complete a blood meal, reproduce, and
even transmit pathogens. The effects of cellular immunity on tick physiology has resulted
in evolutionary pressures for ticks to develop several molecules that can counter immune
cell activation, migration, and proliferation (Table 2). One example of such immunomod-
ulatory proteins is the serpin Iris (Figure 1). Iris is an immunosuppressant that affects
T cell proliferation and cytokine secretion by macrophages, promoting a Th2 response
with the generation of high antibody titers that by themselves are ineffective in controlling
infections with tick-borne pathogens [97,121,122].

Tick-borne pathogens take advantage of these molecules by increasing their expression
and may use them as a protective coat. B. burgdorferi selectively enhances Salp15 expression
in SGs and directly binds Salp15 through OspC, a spirochete surface protein [99]. Salp15
and its orthologs have also been shown to inhibit the activation of CD4+ T-lymphocytes
and keratinocytes [123–125] (Figure 1). BIP (B-cell inhibitory protein), identified from I. rici-
nus SGs, inhibits OspC-induced B lymphocyte proliferation [91]. Therefore, facilitating
B. burgdorferi infection. Similarly, A. phagocytophilum, a gram-negative obligate intracellular
tick-borne bacterium that colonizes polymorphonuclear neutrophils, increases the expression
of Salp16, where it is required for the initial infection of the salivary gland [125]. This protein
is involved in the inhibition of neutrophils and decreased reactive oxygen species (ROS)
production [21]. However, whether A. phagocytophilum uses this protein for its transmission
has not been defined.

3.2.4. Cytokine and Chemokine Secretion

Cytokines are a collection of effector molecules, modulating innate and adaptive im-
mune responses through a network of complex and at times, contradictory interactions. These
proteins interact with immune cells and neurons to coordinate immune responses, including
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the inflammation of tissues, aggregation of immune cells and somatic cells, proliferation of
immune cells, cell recruitment, T cell differentiation, maturation of B-cells, and itch [126–128].
Itch sensations if left unchecked, would lead to injury awareness and to the host scratching
or grooming, leading to tick dislodgement. Ticks dampen itch sensations through secreted
salivary components such as lipocalins that bind histamine and degrade bradykinin, media-
tors of pain and itch [20,25]. Chemokines are 8–12 kD molecules that induce a chemotaxis
of various immune cell types, including neutrophils, monocytes, lymphocytes, eosinophils,
T and B cells fibroblasts, and keratinocytes [126,127]. Keratinocytes and other cells in the skin
secrete cytokines upon infection or damage [129]. Platelets also express several chemokine
receptors that activate their migration, aggregation, and granule release [130]. Thus, cytokines
and chemokines play a crucial role in the response against ticks and tick-borne pathogens.
However, ticks secrete several effectors that affect the expression and regulation of cytokines
and chemokines at the bite site (Table 2). IRS-2, for example, diminishes the secretion of IL-6
and IL-17 and the development of Th17 helper T cells [23], which are an important subset
of T cells found in the skin. IL-17 has been associated with the production of antibodies
against B. burgdorferi during early Lyme disease [128]. Therefore, the dampened Th17 T cell
development and IL-17 secretion likely benefits B. burgdorferi early infection and establishment
in the skin.

3.2.5. Histamine Secretion

Immune cells secrete other immune effectors, including histamine. Histamine influ-
ences the polarization of immune responses and the maturation of immune cells [131].
Furthermore, histamine is an important effector secreted by basophils and mast cells in
response to tick bites and has been associated with anti-tick immunity [117]. However,
although ticks secrete several histamine binding proteins that may block the effect of
some of the histamine at the bite site, it appears certain levels of it benefit tick feeding
and pathogen transmission. tHRF is a protein that has been found in I. scapularis and
D. andersoni saliva [49,69]. This protein binds to basophils, inducing histamine release and
promoting vasodilation. Interestingly, this protein is upregulated by B. burgdorferi infection
and is required for the efficient transmission of this pathogen. While seemingly detrimental
to the tick, and potentially the pathogen, by increasing the blood flow into the bite site,
pathogens may facilitate their own dissemination in the host [49].

4. Global Manipulation of Tick Sialome by Pathogens

The sialome of the tick consists of mRNAs and proteins expressed in the salivary
glands [132]. Global studies on tick salivary gland gene expression have identified over
287,000 transcripts from which over 45,000 putative secretory proteins have been identi-
fied [133]. However, only a small proportion (~5%) of salivary gland proteins have had
their predicted functions verified [8]. In order to be transmitted to the vertebrate host,
tick-borne pathogens must first invade the tick salivary glands where they manipulate the
sialome. Several studies have demonstrated the ability of tick-borne pathogens to change
the gene expression in tick salivary glands. We will focus on three pathogens: A. phago-
cytophilum, B. burgdorferi complex, and TBEV, and the processes that they manipulate to
facilitate their transmission.

A proteomic screening revealed that A. phagocytophilum increases the expression of
anticlotting proteins, immune inhibitor proteins, and prolyl 4-hydroxylase subunits in
I. scapularis salivary glands [134] (Figure 2A). The anticlotting factors include Salp9 [47]
and Salp11 [135] and thrombin inhibitors. Another anticlotting factor, Metis-1, is upregu-
lated during Anaplasma infection. Metis-1 is a salivary gland specific to metalloprotease
thought to stimulate fibrinolysis [56]. Immune inhibitors, Sialostatin L and Sialostatin L2,
also have increased protein levels [134]. Multiple subunits of the proline 4-hydroylase
enzyme are upregulated in salivary glands with A. phagocytophilum infection. While this
enzyme is canonically known to modify and stabilize collagen [8], it has an uncharac-
terized function in tick saliva and tick salivary glands [133]. However, there is a high



Int. J. Environ. Res. Public Health 2021, 18, 1806 10 of 19

abundance of tick cement proteins with proline hydroxylation motifs [133], suggesting
that A. phagocytophilum may be enriching for a subtype of cement proteins. Additionally,
proyly hydroxylase-mediated upregulation of a putative ACE I in salivary glands may
function to degrade bradykinin, which is involved in pain sensation and edema [20,134].
The overall effect of A. phagocytophilum manipulation of the tick sialome seems to enhance
tick feeding success by increasing anticlotting activity as well as reducing pain sensation
and edema. Additionally, A. phagocytophilum may selectively enhance a subpopulation of
cement proteins with uncharacterized functional significance (Figure 2A).
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Figure 2. Tick-borne pathogens manipulate the expression of tick salivary effectors to enhance their
transmission. (A) A. phagocytophiluminfected neutrophils are taken up by the tick during its bloodmeal.
Once in the tick, A. phagocytophilum infects salivary glands as early as 24 to 48 h. In the salivary glands,
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A. phagocytophilum leads to increased protein levels of the anticoagulants Salp9 and Salp11, the
immune inhibitors Sialostatin L and L2, and a prolyl 4-hydroxylase. Sialostatin L and L2 are cystatins
that bind and inhibit cathepsins L and S, leading to decreased and altered immune responses at the
bite site. Prolyl 4-hydroxlases are enzymes that hydroxylate prolines and are necessary for collagen
stability. Furthermore, the presence of proline hydroxylation motifs in several cement proteins
suggests that A. phagocytophilum may influence the composition of the cement cone. (B) Borrelia
pathogens selectively increases Salp15 expression in salivary glands. Salp15 directly binds OspC in
the surface of Borrelia burgdorferi. The Salp15 coating blocks OspC specific antibodies from binding
the bacteria, inhibiting both direct antibody mediated killing and activation of complement pathways.
Salp11 and prolyl 4-hydroxylase proteins levels are increased during Borrelia infection, delaying clot
formation and potentially affecting collagen stability. Similarly to A. phagocytophilum, the effect of B.
burgdorferi infection on prolyl 4-hydroxylase expression may indicate that bacterial infection leads
to modifications in the composition of the cement cone. (C) TBEV infection alters the expression of
genes encoding several cement proteins, mucins, and glycine-rich proteins. The increased expression
of glycine-rich proteins may represent an overall increase in tick cement proteins or a compositional
shift of cement proteins being deposited to form the cement cone. This compositional change may be
necessary for TBEV transmission as vaccination with a glycine rich protein resulting in protection
against virus infection.

B. burgdorferi, like A. phagocytophilum, increases the expression of several common
anticlotting factors and cement proteins [136]. Anticlotting factors Salp11 and Metis-1 levels
are increased during Borrelia infection compared to uninfected controls. Other proteins
include a prolyl hydroxylase, also affected during A. phagocytophilum infection, suggesting
that the exploitation of anticoagulants, and potentially collagen integrity (Figure 2B),
benefits infection. Manipulation of the expression of salivary proteins appears to be a
conserved mechanism used by Borrelia spp. bacteria. Borrelia afzelii, the main causative
agent of Lyme disease in Europe, also alters the gene expression in the salivary glands of
I. ricinus [137]. Using two different sequencing approaches to determine gene expression
levels, Trentelman et al. [137] determined that B. afzelii had the biggest effect on salivary
protein gene expression at 24 h of feeding, affecting 465 genes. These include genes
encoding statins, immunity relate genes, signal transduction, ixodegrin family, Salp15
family, protein export, metalloproteases, lipocalins, and serine proteases. Lipocalins are a
family of conserved proteins that bind to diverse targets, including histamine, Leukotriene
B4 (LTB4), and others. B. azfelii infection increases the expression of a lipocalin, JAA67401,
a putative serotonin binding protein [138]. Serotonin and the metabolites generated in the
serotonin pathway are important in coordination between the neuroendocrine and immune
systems. Serotonin, melatonin, and other neurometabolites are produced by immune cells
and are substrates for enzymes that synthesize immunomodulators and anti-inflammatory
molecules [139]. Whether other Borrelia species also manipulate these genes has not been
tested. However, both B. afzelii and B. burgdorferi enhance the expression of Salp15 [123],
indicating potentially conserved mechanisms to evade antibody recognition (Figure 2B).

RNA-seq analysis of the salivary glands of TBEV-infected I. ricinus females attached for
1 or 3 h shows that TBEV infection increases the expression of anticlotting/immunomodulatory
genes (lipocalins, metalloproteases, protease inhibitors, and lectins), and genes encoding
cement proteins (four mucin genes and 11 genes for glycine rich proteins) [140]. In this
study, the authors speculated that since most of the mucins and glycine rich proteins were
upregulated within 1 hour of attachment, a potential shift in the composition of the cement
cone that may occur compared to uninfected ticks. The importance of these proteins is
highlighted by the protective effect that vaccination using a glycine rich protein, 64TRP,
has against TBEV transmission to mice [141] (Figure 2C).

Interestingly, A. phagocytophilum, B. burgdorferi, and TBEV, all manipulate gene expres-
sion in tick salivary glands, in particular those coding for anticlotting factors, immune
inhibitors, and proteins involved in cement protein production. A. phagocytophilum and
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B. burgdorferi both upregulate levels of Salp11, Metis-1, and prolyl 4-hydroxylase. All three
also increase the expression of genes encoding immunomodulatory proteins. While there
are some data showing that cement protein expression changes during infection with all
three pathogens, only the increase in glycine rich proteins in TBEV-infected salivary glands
has some documented benefit for pathogen transmission. Together, these studies suggest
that these pathogens may target similar effectors and pathways to enhance tick feeding
success and vertebrate host immune evasion to facilitate their transmission.

5. Conclusions

To support the uptake of large volumes of blood over a long duration of time, ticks
have evolved a large repertoire of salivary molecules to counteract host defense mech-
anisms. Tick saliva contains components that interfere with normal hemostasis and im-
munological mechanisms at the bite site. The immunomodulatory components in tick
saliva create a privileged environment that can enhance the survival and transmission of
tick-borne pathogens. In this context, it is not surprising that tick-borne pathogens direct
changes in tick salivary glands and saliva to further their survival and transmission, by
modifying gene expression and directly binding to salivary products. This review focused
mainly on proteinaceous effectors. Nevertheless, tick-borne pathogens may enhance their
transmission by exploiting other molecules. A recent study has shown that Powassan virus,
a TBEV complex member, is able to alter the expression of miRNAs in the salivary glands of
I. scapularis ticks [142], several of which represent novel miRNAs not previously reported,
while others match previously identified sequences. These findings are corroborated by
the in vitro transfection of monkey kidney (Vero) epithelial cells with inhibitors of some of
these miRNAs before infection with the Powassan virus which resulted in either higher or
lower viral loads. These results suggested that the secretion of these miRNAs in tick saliva
may serve to limit infection at certain time points, while aiding at others. miRNAs have
been detected in the saliva of other tick species [143,144]. Thus, other pathogens may also
target miRNAs expression to facilitate their transmission.

Another yet unexplored mechanism by which tick-borne pathogens may hijack the
secretion of salivary effectors is the manipulation of extracellular vesicles. Extracellular
vesicles are small lipid blebs that secrete for cell-to-cell communication. Extracellular
vesicles have been detected in the saliva of I. scapularis, Amblyomma maculatum, and H. longi-
cornis [145–147]. Vesicles from H. longicornis contain known protein effectors, like lipocalins,
cement-like proteins, and serpins as well as novel miRNAs suspected to influence host
immune responses [145,146]. Furthermore, in vitro experiments indicate that vesicles from
I. scapularis and A. maculatum diminish chemokine and cytokine secretion and delay wound
healing responses [147]. Several studies have shown their immunomodulating effects and
influence on infection by several vector-borne pathogens [148], including the transmission
of Langat virus (LGTV) from tick cells to mammalian cells [149]. Interestingly, LGTV was
not only able to change the proteomic and genomic cargo of the vesicles by adding its own
material, but also increased the number of extracellular vesicles secreted. It is possible that
other tick-borne pathogens similarly influence the cargo and secretion of these vesicles to
facilitate their transmission.

A major goal of studying the tick-host-pathogen interface is the discovery of the
genetic components and molecular pathways that contribute towards the transmission
of tick-borne pathogens. While so far only a few factors and mechanisms have been
identified, it is evident that tick-borne pathogens manipulate salivary gland components
to enhance tick feeding success and their transmission to the host. Distinguishing and
characterizing these immunomodulatory molecules could serve to identify potential targets
for the development of future tick control measures and vaccine targets that could positively
block tick-borne pathogen transmission.

Author Contributions: Conceptualization, A.S.O.C.; preparation of figures, M.P. and A.S.O.C.;
writing manuscript, M.P., J.U., and A.S.O.C.; Edited manuscript, M.P. and A.S.O.C. All authors have
read and agreed to the published version of the manuscript.



Int. J. Environ. Res. Public Health 2021, 18, 1806 13 of 19

Funding: This work was funded with the startup funds provided by Texas A&M AgriLife Research
to A.S.O.C.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We thank Ulrike Munderloh at the University of Minnesota and Cross Chambers
for his assistance in proofreading the drafts.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [CrossRef] [PubMed]
2. Barker, S.C.; Murrell, A. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 2004,

129, S15–S36. [CrossRef] [PubMed]
3. Wikel, S.K. Tick-Host Interactions. In Biology of Ticks, 2nd ed.; Sonenshine, D., Roe, R.M., Eds.; Oxford University Press: New York,

NY, USA, 2014; Volume 2, p. 88.
4. Alarcon-Chaidez, F. Salivary glands. In Biology of Ticks, 2nd ed.; Sonenshine, D., Roe, R.M., Eds.; Oxford University Press:

New York, NY, USA, 2014; Volume 1.
5. Anderson, J.F.; Magnarelli, L.A. Biology of ticks. Infect. Dis. Clin. N. Am. 2008, 22, 195–215. [CrossRef]
6. Richter, D.; Matuschka, F.-R.; Spielman, A.; Mahadevan, L. How Ticks Get Under your Skin: Insertion Mechanics of the Feeding

Apparatus of Ixodes ricinus Ticks. Proc. Biol. Sci. 2013, 280, 20131758. [CrossRef]
7. Brossard, M.; Wikel, S.K. Tick Immunobiology. Parasitology 2004, 129, S161–S176. [CrossRef] [PubMed]
8. Francischetti, I.M.B.; Sa-Nunes, A.; Mans, B.J.; Santos, I.M.; Ribeiro, J.M.C. The Role of Saliva in Tick Feeding. Front. Biosci. 2009,

14, 2051–2088. [CrossRef]
9. Lebre, M.C.; Am van, d.A.; van, B.L.; van, C.T.M.; Schuitemaker, J.H.; Kapsenberg, M.L.; de, J.E.C. Human Keratinocytes Express

Functional Toll-like Receptor 3, 4, 5, and 9. J. Investig. Dermatol. 2007, 127. [CrossRef]
10. Nestle, F.O.; Di Meglio, P.; Qin, J.-Z.; Nickoloff, B.J. Skin Immune Sentinels in Health and Disease. Nat. Rev. Immunol. 2009,

9, 679–691. [CrossRef]
11. Klicznik, M.M.; Szenes-Nagy, A.B.; Campbell, D.J.; Gratz, I.K. Taking the Lead-How Keratinocytes Orchestrate Skin T cell

Immunity. Immunol. Lett. 2018, 200, 43–51. [CrossRef]
12. Maouia, A.; Rebetz, J.; Kapur, R.; Semple, J.W. The Immune Nature of Platelets Revisited. Transfus. Med. Rev. 2020, 34, 209–220.

[CrossRef] [PubMed]
13. Zuchtriegel, G.; Uhl, B.; Puhr-Westerheide, D.; Pörnbacher, M.; Lauber, K.; Krombach, F.; Reichel, C.A. Platelets Guide Leukocytes

to Their Sites of Extravasation. PLoS Biol. 2016, 14, e1002459. [CrossRef] [PubMed]
14. Kissenpfennig, A.; Henri, S.; Dubois, B.; Laplace-Builhé, C.; Perrin, P.; Romani, N.; Tripp, C.H.; Douillard, P.; Leserman, L.;

Kaiserlian, D.; et al. Dynamics and Function of Langerhans Cells in vivo: Dermal Dendritic cells Colonize Lymph Node Areas
Distinct from Slower Migrating Langerhans cells. Immunity 2005, 22. [CrossRef] [PubMed]

15. Nithiuthai, S.; Allen, J.R. Langerhans cells Present Tick Antigens to Lymph Node cells from Tick-sensitized Guinea-pigs.
Immunology 1985, 55, 157.

16. Gillespie, R.D.; Dolan, M.C.; Piesman, J.; Titus, R.G. Identification of an IL-2 Binding Protein in the Saliva of the Lyme Disease
Vector Tick, Ixodes scapularis. J. Immunol. 2001, 166, 4319–4326. [CrossRef]
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