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Purpose: Glaucoma is an optic neuropathy characterized by a high intraocular pressure (IOP), alterations in optic nerve
head, and loss of visual field that could lead to bilateral blindness. Serotonin (5-HT) is a biogenic monoamine that is
synthesized from hydroxylation of tryptophan and acts by three ways, dissemination, metabolism, and reuptake in synaptic
cleft through specific systems of the membrane. The purpose of this study is to evaluate the 5-HT and 5-HIAA (5-
hydroxiindolacetic acid) levels in the aqueous humor of patients with primary open-angle glaucoma (POAG).
Methods: We performed a case-control study, and the patients recruited were classified into two groups, 1) 30 patients
with POAG (GG) and 2) 30 patients with cataracts (CG), who acted as the controls. Aqueous humor samples of each
patient were obtained by paracentesis at the beginning of the surgical procedures. 5-HT and 5-HIAA levels were
determined by high performance liquid chromatography (HPLC) with electrochemical detection.
Results: There were no statistical differences between age (71.3±7.2 years in GG, 73.5±9.0 years in CG; p=0.2581) or
gender (sex ratio 0.765 in GG and 0.667 in CG). 5-HT levels were lower in GG, but this difference was not significant
(p=0.820). We observed a statistically significant higher level of 5-HIAA in GG (p=0.001). The 5-HT turnover (5-HIAA/
5-HT) were higher in GG than in CG (p<0.05), but the difference was not significant (p=0.598).
Conclusions: The level of 5-HT was lower in GG patients, and the level of 5-HIAA was higher in GG patients than in
CG patients.

Glaucoma is one of the main causes of blindness, only
behind cataracts. Its prevalence in the world is 2.4%, and there
are approximately 105 million people with glaucoma
worldwide [1,2]. This disease is characterized by a
progressive loss of ganglion fibers, which involve the
occurrence of the peripheral visual field loss [3].

There are many risk factors for glaucoma, and intraocular
pressure (IOP) is the most important. That is why the
treatment for this optic neuropathy always was led to lowering
IOP [4]. Researchers have also been studying the mechanisms
of cell death in glaucoma, and presently it is known that the
treatment against ocular hypertension (OHT) alone is not
sufficient to prevent glaucoma [5]. Protection against optic
nerve damage is also an important factor [6].

Apoptosis has been proven to occur to retinal ganglion
cells [7-9]. This mechanism of programmed cell death or cell
suicide is initiated when a cell is not necessary or is damaged.
It is a physiologic mechanism that allows the organisms to
eliminate these cells [10]. Abnormal increases of apoptosis
can lead to different disorders.
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An increased level of oxidative stress has been reported
in glaucomatous optic neuropathy [11,12]. Oxidative stress is
a result of imbalance between prooxidants and antioxidants.
So in these conditions there are high levels of free radicals that
act by damaging cells and can induce the retinal ganglion cell
death by apoptosis [13,14]. Glutamate toxicity has also been
involved in retinal ganglion cells (RGC) death, so even though
IOP is efficient controlled, RGC death will continue if toxic
effects of glutamate are not prevented [15,16].

Serotonin is another molecule that is involved in the
pathogenesis of glaucoma [17]. It is an indolamine, which is
a precursor of melatonin. The potential antioxidant capacity
of melatonin is well known [18,19], and there is evidence to
suggest that melatonin could decrease the intraocular
pressure. Therefore, melatonin could be used in glaucomatous
therapy [20]. It is also known that melatonin also has an
inhibitor effect on nitric oxide levels, so this molecule could
protect cells from nitrosative stress [21].

The study of serotonin, its metabolites, and their role in
glaucomatous optic neuropathy could be very important for
developing new strategies against this disease. For that reason,
we have studied the serotonin (5-HT) and 5-
hydroxiindolacetic acid (5-HIAA, a product of serotonin
degradation) levels in aqueous humor (AH) of patients with
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primary open-angle glaucoma (POAG) and patients with
cataracts (used as the comparative control group).

METHODS
A case-control study was performed in 60 eyes of 60 patients
who were selected from the Department of Ophthalmology of
Dr. Peset University Hospital (Valencia, Spain) and Punta de
Europa Hospital (Algeciras, Cadiz, Spain) according to the
inclusion/exclusion criteria (Table 1) and were classified into
two groups, 1) the glaucoma group, which consisted of
patients with POAG (GG, n=30) and 2) the cataract group,
which consisted of patients with cataracts (CG, n=30).

The Clinical Research Ethics Committee and the
Research Committee of the Dr. Peset University Hospital
approved this study, which followed the Helsinki guidelines
for human research. In all glaucoma patients, the surgical
technique used was Watson’s trabeculectomy. The
demographic characteristics of participants of both glaucoma
and cataract groups are shown in Table 2.

A sample of AH was obtained from each patient through
an anterior chamber paracentesis at the onset of the surgery
using a 27 gauge needle under an operating microscope with
special care to avoid contamination and was immediately
frozen at −85 °C until processing at IBMC-Instituto de
Biologia Molecular e Celular (Porto, Portugal).

Tissue preparation: Human AH samples were diluted 1:3
v/v in 0.2N perchloric acid, filtered through a 0.2 μm Nylon
microfilter (Costar, Cambridge, MA) by centrifugation
(10,000 rpm for 5 min at 4 °C), and immediately analyzed by
high performance liquid chromatography (HPLC).

High performance liquid chromatography-
electrochemical detection equipment and conditions: The
high performance liquid chromatography with
electrochemical detection (ECD) was applied according to a
modified method of Ali [22]. Analyses were performed using

a Gilson Medical Electronics HPLC system (Middleton, WI)
with a LC-234 auto-injector equipped with a LC307 delivery
pump and with a LC142 electrochemical detector under
reversed phase conditions with a Supelcosil LC 7.5 cm×4.6
cm, 3 mm column (Supelco; Sigma-Aldrich, Bellefonte, PA).
The software used was a 712 HPLC system controller data
version 1.30 management (Gilson Medical Electronics).
Compounds were eluted isocratically over an 18 min runtime
at a flow rate of 1 ml/min. The mobile phase consisted of 70
mM potassium dihydrogen phosphate buffer (pH adjusted to
3.0 with phosphoric acid), 1 mM 1-hepatosulfonic acid, 107.5
mM sodium EDTA, and 10% methanol. Sample injection was
20 ml, and the electrochemical detector was recorded with a
glassy carbon working electrode set at +0.75 V.

Qualitative and quantitative analysis: Identification was
performed by comparison with standard retention times
determined by injections of standard mixture run at given
intervals between sample analyses. Capacity factor was not
considered a chromatographic parameter since it was not
possible to determine the dead volume under the given HPLC
conditions. Quantification was made using the calibration
curve standards with 5-HT (r=0.0004) and 5-HIAA
(r=0.0003). Samples were injected in duplicate, and the
amount of each compound was expressed in ng/ml of AH.

Statistical analysis: Data were analyzed using SPSS
program version 14.0 (SPSS Inc., Chicago, IL). Kolmogorov–
Smirnov test was used for checking the normality. Then,
Student’s t-test for independent samples was used when
comparing results. Pearson’s correlation was used to check
the correlation between variables. The statistic level of
significance was considered at p<0.05.

RESULTS
No significant age differences were found between both
studied groups (71.3±7.2 years in GG, 73.5±9.0 years in CG;
p=0.2581) nor any significant gender differences (sex ratio

TABLE 1. EXCLUSION CRITERIA.

Glaucoma Cataracts
Glaucoma different of POAG Ocular pathology different of cataracts
Age under 41 or over 90 years Family history of glaucoma

Age under 41 or over 90 years
POAG=primary open-angle glaucoma.

TABLE 2. FEATURES OF THE STUDIED GROUPS.

Groups N
     Age
(mean±SD) Male Female SR

GG 30 71.267±7.182 13 (43%) 17 (57%) 0.765
CG 30 73.533±8.989 12 (40%) 18 (60%) 0.667

GG=glaucoma group; CG=cataract group; SD=standard deviation; SR=sex ratio (number of male/number of female).
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0.765 in GG and 0.667 in CG; Table 2). We observed higher
levels of serotonin in the cataract group than in the glaucoma
group (Figure 1), but the difference was not significant (2.838
ng/ml in GG and 3.076 ng/ml in CG; p=0.820). Figure 2 shows
that 5-HIAA levels were statistically higher in GG than in CG
(22.317 ng/ml in GG and 18.816 ng/ml in CG; p=0.001). The
5-HT turnover (5-HIAA/5-HT) was higher in GG, but the
difference was not significant (14.050 ng/ml in GG and 12.684
ng/ml in CG; p=0.598; Figure 3). The correlation between 5-
HT and 5-HIAA was assessed by means of Pearson’s
correlation (Figure 4 and Figure 5), and the levels of 5-HT and
5-HIAA were associated (glaucoma 5-HT/5-HIAA: Pearson=
−0.756; p=0.021; cataracts 5-HT/5-HIAA: Pearson=−0.613;
p=0.028).

DISCUSSION
Glaucoma is an optic neuropathy. Therefore, the study of
neurotransmitters and their role in this neurodegenerative
disorder is very important for preventing glaucomatous
blindness [23]. In this study, we have studied the levels of
serotonin in aqueous humor of patients with POAG.

Serotonin is a neurotransmitter that is synthesized in
neurons and stored into vesicles. It is present in the
mammalian eye, and its levels are higher in the iris-ciliary
body complex (ICBC) [24]. After a nervous impulse, 5-HT is
released in the synaptic cleft where it interacts with post-
synaptic receptors. There is evidence that serotonin plays a
role in the regulation of AH dynamics [25]. Seven types of
serotonin receptors have been identified (5-HT1 to 5-HT7).
The stimulation of 5-HT7 receptor causes an increase in IOP,
and the stimulation of 5-HT1A receptor causes a decrease in
IOP [26,27]. On the other hand, 5-HT is a precursor of

Figure 1. Serotonin levels. The chart shows lower levels of serotonin
in aqueous humor of glaucoma patients than in aqueous humor of
cataracts patients (2.838 ng/ml in GG and 3.076 ng/ml in CG;
p=0.820).

melatonin, a hormone where its concentration varies
cyclically and plays a role in a variety of cellular processes
such as oxidative stress [28,29].

Oxidative stress is an imbalance between prooxidant and
antioxidant molecules and causes toxic effects that damage
proteins, lipids, and DNA [30]. It has been related to some
ocular diseases like cataracts, age macular degeneration, and
glaucoma [31-34].

Figure 2. 5-HIAA levels. The chart shows statistically significant
higher levels of hydroxiindolacetic acid in aqueous humor of
glaucoma patients than in aqueous humor of cataracts patients
(22.317 ng/ml in GG and 18.816 ng/ml in CG; p=0.001).

Figure 3. Serotonin turnover. The chart shows the 5-HIAA/5-HT
ratio in the aqueous humor of both glaucoma and cataract groups. 5-
HT turnover was higher in glaucoma patients than in cataracts
patients (14.050 in GG and 12.684 in CG; p=0.598).
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Serotonin is a precursor of melatonin. The potential
antioxidant capacity of melatonin is well known, and there is
also evidence that melatonin could decrease IOP [35]. This
evidence implies that melatonin may be useful in
glaucomatous optic neuropathy [36]. For that reason, we think
that 5-HT in POAG patients does not lead to the synthesis of
melatonin, but it is degraded by means of monoamine oxidase
enzyme (MAO) and the 5-HIAA levels would increase.

The present study results agree with this hypothesis
because we have observed higher levels of 5-HIAA in

Figure 4. Pearson’s correlation between 5-HT and 5-HIAA in the
glaucoma group. The chart shows a statistically significant negative
correlation between serotonin and hydroxiindolacetic acid in
glaucoma group (p=0.000).

Figure 5. Pearson’s correlation between 5-HT and 5-HIAA in
cataract group. The chart shows a statistically significant negative
correlation between serotonin and hydroxiindolacetic acid in
cataracts group (p=0.002).

association with lower 5-HT levels in patients with POAG. In
addition, some authors have suggested that melatonin has
inhibitor effects on nitric oxide levels [37,38]. Therefore,
melatonin levels in these patients should be low. We have
evaluated in another study the nitric oxide levels in patients
with POAG, and the results have shown an increase of nitric
oxide with respect to the comparative group [37]. All these
findings showed the relation of 5-HT to the ethiopathogenic
mechanisms of primary open-angle glaucoma and could be
used in the design of new therapies for the early diagnosis and
prevention of glaucomatous blindness.
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