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MicroRNA-155 enhances T cell trafficking
and antiviral effector function in a model of
coronavirus-induced neurologic disease
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Abstract

Background: MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the
post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced
neuroinflammation.

Methods: Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection
with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155+/+ wildtype (WT) mice or
miR-155−/− mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord
demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to
examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the
impact of miR-155 on trafficking, T cells from infected WT or miR-155−/− mice were adoptively transferred into RAG1
−/− mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was
determined using the Mantel-Cox log-rank test or Student’s T tests.

Results: Compared to WT mice, JHMV-infected miR-155−/− mice developed exacerbated disease concomitant with
increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with
increased susceptibility to disease, miR-155−/− mice had diminished CD8+ T cell responses in terms of numbers,
cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the
chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155−/−, virus-specific CD4+ T
cells; however, expression of the chemokine homing receptors analyzed on CD4+ cells was not affected. Except for
very early during infection, there were not significant differences in macrophage infiltration into the CNS between
WT and miR-155−/− JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT
and miR-155−/− JHMV-infected mice.

Conclusions: These findings support a novel role for miR-155 in host defense in a model of viral-induced
encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic
activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or
host-damaging role during neuroinflammation depending on the disease trigger.
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Background
MicroRNAs (miRNAs) are a new class of evolutionarily
conserved gene-regulatory molecules that function to re-
press key target genes, primarily at the post-transcriptional
level through specific mRNA 3′ untranslated region (3′
UTR) interactions [1]. Because miRNAs commonly target
critical signaling proteins and transcription factors with
potent regulatory impacts on the immune system [2, 3], it
is accepted that miRNAs have an important effect on
immune system activation and cellular differentiation.
Recent work by our group and others has determined that
miR-155 is an important regulator of immune cell develop-
ment and function. Following its original identification as
an oncogene in chicken lymphomas [4], miR-155 was dis-
covered to be overexpressed in mammalian hematopoietic
cancers and shortly thereafter established as an immuno-
modulatory noncoding RNA in macrophages and B lym-
phocytes [5–9]. It is now clear that miR-155 is expressed
by and functions within a variety of activated immune cell
types that include various T cell populations, NK cells, and
dendritic cells [6, 7, 10–12]. In addition, miR-155 represses
a variety of immunoregulatory proteins that include signal-
ing molecules such as Ship1 [13] and Socs1 [14], as well as
transcriptional regulators such as Jarid2 [15], Ets1 [16, 17],
PU.1 [18], and Fosl2 [19].
Consistent with its known roles in regulating immune

factors, multiple studies have demonstrated that miR-
155 is important in shaping the immune responses that
govern viral pathogenesis [20]. Genetic silencing of miR-
155 results in increased sensitivity to experimental infec-
tion with lymphocytic choriomeningitis virus (LCMV)
[21, 22], influenza virus [23], and herpes simplex virus
(HSV) [24, 25]. While miR-155 had previously been
shown to help tailor CD4+ T cell responses in models of
autoimmunity, viral studies have since illustrated the
importance of miR-155 in strengthening CD8+ T cell re-
sponses. Recent reports showed that miR-155 is required
for optimal CD8+ T cell function following experimental
infection with LCMV in terms of CTL activity, cytokine
secretion, and proliferation [21, 22]. With regard to
viral-induced encephalitis, miR-155 is important in con-
trolling neuroinflammation, presumably by regulating T
cell responses [24, 26]. These reports have emphasized
the importance of miR-155 in augmenting host defense
following viral infection; however, there have been few
rigorous studies examining how miR-155 influences
immune cell responses in a model of viral-induced
encephalomyelitis.
Inoculation of the neurotropic JHM strain of mouse

hepatitis virus (JHMV) into the CNS of susceptible strains
of mice provides an excellent model for examining host
response mechanisms responsible for controlling viral
replication and modulating neuroinflammation within dis-
tinct cell lineages present in the brain [27, 28]. During

acute disease, control of viral replication is mediated by
infiltrating CD4+ and CD8+ T cells [29–31]; however,
clearance of virus is not complete, and animals that
survive the acute disease develop an immune-mediated
demyelinating disease with both T cells and macrophages
amplifying disease severity by contributing to myelin
damage [32–38]. Our findings demonstrated that miR-155
was necessary for optimal T cell accumulation, cytolytic
activity, cytokine secretion, and trafficking to the CNS
after JHMV infection. Macrophage migration and accu-
mulation within the CNS was not impaired in the absence
of miR-155 during the time period studied, and there were
no differences in the severity of demyelination at 14 days
pi, when peak disease severity generally occurs. These
results demonstrate that miR-155 has an important role in
regulating antiviral T cell responses following viral-
induced neuroinflammation.

Methods
Virus and mice
For intracranial (i.c.) injections, age-matched (5–7 weeks)
C57BL/6 miR-155+/+ mice (wildtype (WT)) or miR-155−/−

mice were anesthetized with an intraperitoneal (i.p.) injec-
tion of 200 μl of a mixture of ketamine (Hospira, Lake
Forest, IL, USA) and xylazine (Phoenix Pharmaceutical,
Saint Joseph, MO, USA) in Hank’s balanced salt solution
(HBSS). Mice were injected intracranially (i.c.) with 200
plaque-forming units (PFU) of JHMV (strain V34) sus-
pended in 30 μl HBSS [39]. Clinical severity was assessed
using a previously described four-point scoring scale [40].
For analysis of viral titers, mice were sacrificed at indi-
cated time points. One half of each brain was homoge-
nized and used in a plaque assay performed using the
DBT mouse astrocytoma cell line [41]. The DM-JHMV
(2.5 × 105 PFU) strain [31, 42] was used to immunize ex-
perimental mice via i.p. injection to generate virus-specific
T cells. This is an established and reliable method to
accurately measure T cell responses following JHMV
infection [42, 43]. RAG1−/− mice were purchased from
Jackson Laboratories. All animal studies were reviewed
and approved by the University of Utah Animal Care and
Use Committee.

Cell isolation and flow cytometry
Immunophenotyping of immune cells present within
brains and spinal cords of JHMV-infected mice at
defined times post-infection (p.i.) was accomplished by
homogenizing isolated tissue and generating single-cell
suspensions for analysis by flow cytometry using previ-
ously described procedures [44–46]. In brief, isolated
cells were stained with the following antibodies: APC-
conjugated rat anti-mouse CD4 and a PE-conjugated
tetramer specific for the CD4 immunodominant epitope
present within the JHMV matrix (M) glycoprotein
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spanning amino acids 133-147 (M133-147 tetramer) to
determine total and virus-specific CD4+ cells, respect-
ively [47]; APC-conjugated rat anti-mouse CD8a and a
PE-conjugated tetramer specific for the CD8 immunodo-
minant epitope present in the spike (S) glycoprotein
spanning amino acids 510-518 (S510-518) to identify
total and virus-specific CD8+ cells, respectively; and
APC-conjugated rat anti-mouse CD45 and FITC-
conjugated anti-F4/80 to identify macrophages. Samples
were analyzed using a BD LSR Fortessa X-20 flow cyt-
ometer and FloJo software.

CD8+ T cell cytotoxicity assay
WT and miR-155−/− mice were infected i.p. with the DM
strain of JHMV (DM-JHMV, 2.5 × 105 PFU), and a cyto-
lytic T cell (CTL) assay was performed as previously
described [31]. In brief, RMA-S target cells were seeded
at a density of 10,000 cells/well in a flat-bottom 96-well
tissue culture plate (Corning Life Sciences) and pulsed
overnight with 50 μM OVA peptide or the immunodo-
minant CD8 peptide specific for MHV spike (S)
glycoprotein spanning amino acids 510-518 (S510-518,
Bio-Synthesis). CD8+ T cells were isolated from spleno-
cytes of infected mice at day 8 p.i. using MACS® Separ-
ation Columns and CD8+ T cell Isolation kit (Miltenyi).
Equivalent numbers of virus-specific CD8+ T cells from
WT and miR-155−/− mice were then incubated with
RMA-S cells at different effector-to-target (E:T) ratios.
Co-cultures were incubated for 4 h at 37 °C in 5 % CO2

at a final volume of 200 μL/well. The levels of lactate de-
hydrogenase released from lysed cells were determined
using a LDH Cytotoxicity Assay Kit (Pierce). The per-
centage of CTL-mediated lysis was determined as speci-
fied by the manufacturer’s specifications as previously
described [31].

IFN-γ production
CD4+ and CD8+ T cells were isolated from the spleens
of WT and miR-155−/− mice infected i.p. with DM-
JHMV (2.5 × 105 PFU) and used to assess cytokine secre-
tion in response to defined viral epitopes [39]. CD4+ and
CD8+ T cells were isolated as described above using an
isolation kit according to the manufacturer’s instructions
(Miltenyi Biotec, Auburn, CA, USA). Enriched T cell
subsets (1 × 106 cells) were incubated with antigen-
presenting cells in flat-bottom 96-well plates and incu-
bated for 24 h at 37 °C in 5 % CO2 in the presence of
5 μM of either OVA, M133, or S510 peptides. Superna-
tants were collected and IFN-γ levels were measured
using ELISA (R & D Systems, Minneapolis, MN, USA).

Histology
Spinal cords were isolated at defined time points and
fixed overnight with 4 % paraformaldehyde at 4 °C.

Sections were subsequently cryoprotected in 30 %
sucrose for 5–7 days, separated into 12 coronal sections,
and embedded in optimum cutting temperature (OCT)
formulation (VWR, Radnor, PA, USA) [48]. Coronal
sections (8 μm thick) were cut, and sections were
stained with luxol fast blue (LFB) in combination with
hematoxylin and eosin (H & E). Areas of total white
matter and demyelinated white matter were determined
with Image J Software. The percent demyelination was
calculated by dividing the area of demyelinated white
matter by the total white matter area using established
methods previously described [47, 49].

Adoptive transfer
Adoptive transfer experiments were performed using
previously described protocols [42]. In brief, WT and
miR-155−/− mice were injected i.p. with JHMV-DM
(2.5 × 105 PFU) and spleens removed at day 7 p.i.. CD4+

and CD8+ T cells were enriched via magnetic separation
(Miltenyi) and equal numbers of virus-specific T cells (de-
termined by tetramer staining) were adoptively transferred
via intravenous (i.v.) injection into the retro-orbital sinus
of RAG1−/− mice 3 days following i.c. infection with 200
PFU of JHMV. Mice were sacrificed 9 days post-transfer
(12 days p.i.), and brains and spinal cords were removed.
One half of the brains were used for flow cytometry ana-
lysis, and the remaining halves were used to determine
viral titers. Control animals included JHMV-infected
RAG-1−/− mice.

Results
Increased disease severity in JHMV-infected miR-155−/− mice
Age-matched WT or miR-155−/− mice were i.c. inoculated
with JHMV (200 PFU), and the severity of clinical disease
and survival were monitored. JHMV-infected miR-155−/−

mice demonstrated delayed onset of disease compared to
WT mice, yet clinical disease was sustained in miR-155−/−

animals compared to WT mice (Fig. 1a). By day 30 p.i.,
85 % of WT and 54 % of miR-155−/− mice had survived
(Fig. 1b). Assessment of viral titers within the brains of in-
fected mice revealed similar titers 5 days p.i.; however, by
day 7 p.i., WT mice had dramatically reduced viral titers,
and by day 14 p.i., titers were below the level of detection
(~100 PFU/g) (Fig. 1c). In contrast, JHMV-infected miR-
155−/− mice were unable to control viral replication and
demonstrated high viral titers out to 21 p.i. (Fig. 1c).
Collectively, these data indicate that miR-155 expression
enhances immune-mediated control of viral replication
within the CNS.

Impaired T cell response in JHMV-infected miR-155−/− mice
T cell responses are critical for controlling JHMV replica-
tion within the CNS [27, 29, 50–57]. Therefore, we next
wished to determine whether increased morbidity/
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mortality and inability to control viral replication corre-
lated with impaired T cell accumulation within the brains
of JHMV-infected miR-155−/− mice. Brains were harvested
from JHMV-infected WT or miR-155−/− mice at 5, 7, 14,
and 21 days p.i., and immune cells were isolated and
immunophenotyped using flow cytometry [47, 58, 59].
Both total CD4+ and virus-specific CD4+ cells were de-
creased in brains from miR-155−/− mice compared to WT

mice at 5, 7, and 14 days p.i. (Fig. 2a, b); however, by
21 days p.i., no differences were detected. In addition,
levels of total and virus-specific CD8+ cells were dramatic-
ally decreased in brains from miR-155−/− mice compared
to WT mice at 5, 7, and 14 days p.i. yet not at day 21 p.i.
(Fig. 2c, d). There were decreased levels of macrophages
at 5 days p.i. in brains of miR-155−/− mice compared to
WT mice; however, there were no significant differences

Fig. 1 Increased morbidity/mortality in JHMV-infected miR-155−/− mice was associated with elevated viral titers within the brain. WT (n = 12) and
miR-155−/− mice (n = 12) were infected via i.c. injection with 200 PFU of JHMV. Clinical scores (a) and survival (b) were assessed throughout infection.
The increase in both clinical disease and mortality correlated with an impaired ability to control viral replication within the brains at the indicated times
p.i. c Statistical significance was determined using Mantel-Cox log-rank test or one-tailed, unpaired, Student’s T tests. Data are representative of at least
two independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 2 JHMV-infected miR-155−/− mice demonstrated reduced CNS T cell infiltration. WT and miR-155−/− mice were infected i.c. with JHMV (200 PFU).
Mice from each group were sacrificed 5, 7, 14, and 21 days p.i., and brains were collected. Flow analysis indicated reduced infiltration of total CD4+ T
cells (a) and CD8+ T cells (c), as well as reduced virus-specific CD4+ T cells (b) and CD8+ T cells (d), as determined by tetramer staining [95, 96]. In
contrast, while macrophage (CD45 + F4/80hi) infiltration into the CNS was lower in miR-155−/− mice at 5 days p.i. (e), the levels were similar at later time
points. Representative spinal cords from JHMV-infected and sham-infected mice stained with LFB at day 14 p.i. showed similar levels of demyelination
between infected WT mice (35.1 + 4.9 %, n = 4) and miR-155−/− mice (36.7 + 4.3, n = 4) whereas no demyelination is observed in sham-infected animals
(f, g). Data presented are derived from two independent experiments with a minimum of four mice/experimental group. Data are presented as
average ± SEM. Statistical significance was measured using unpaired, one-tailed Student’s T tests; *p < 0.05; **p < 0.01; ***p < 0.001
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in CNS macrophage accumulation at later times
(Fig. 2e). The degree of demyelination at day 14 p.i.
was similar between JHMV-infected WT (35.1 ± 4.9 %,
n = 4) and miR-155−/− mice (36.7 % ± 4.3 %, n = 4)
(Fig. 2f, g). These results demonstrate that miR-155 is
necessary for optimal T cell accumulation in the CNS
in the context of JHMV infection, and is consistent
with previous studies.
These findings suggest that the absence of miR-155

during acute viral-induced encephalomyelitis affects
either the ability of virus-specific T cells to expand
and/or traffic to the CNS [45, 46]. To test whether
miR-155 affects expansion in the context of JHMV
infection, we immunized WT and miR-155−/− mice by
intraperitoneal (i.p.) injection with 2.5 × 105 PFU of
DM-JHMV [31, 42] and isolated splenocytes at day 8
p.i. to determine the frequency and number of virus-
specific T cells by tetramer staining. Similar numbers
of M133-147 virus-specific CD4+ T cells were present
in miR-155−/− mice compared to WT (Fig. 3a). In
contrast, there was a significant (p < 0.001) decrease
in S510-518-specific CD8+ T cells in splenocytes from
miR-155−/− mice compared to those from WT mice
(Fig. 3b), indicating that miR-155 is necessary for
optimal CD8+ T cell expansion.

Antiviral T cell activity is muted in miR-155−/− mice
We next examined whether T cell antiviral effector re-
sponses were altered in the absence of miR-155 expression.
Both cytolytic activity by CD8+ T cells [27, 50, 57, 60], as
well as secretion of IFN-γ by virus-specific CD4+ and CD8+

T cells are important for controlling JHMV replication
within the CNS [31, 53, 54, 61, 62]. WT and miR-155−/−

mice were infected i.p. with DM-JHMV. Splenocytes were
removed 8 days p.i., and the antiviral activity of
virus-specific T cells was determined. As shown in
Fig. 4a, virus-specific, miR-155−/− CD8+ T cells showed re-
duced (p < 0.05) cytolytic activity compared to WT CD8+

T cells. In addition, secretion of IFN-γ by CD4+ and CD8+

T cells from immunized miR-155−/− mice was reduced
(p < 0.001) compared to WT mice (Fig. 4b, c). These
findings argue that in the absence of miR-155, virus-
specific T cell functions are blunted, consistent with
previous reports [21, 22, 24, 25].

miR-155 ablation impairs T cell migration to the CNS of
JHMV-infected RAG-1−/− mice
Our findings indicate that in the absence of miR-155,
antiviral T cell responses are dampened following JHMV
infection of the CNS. In addition, the inability to control
viral replication within the CNS was associated with

Fig. 3 miR-155enhanced expansion of virus-specific CD8+ T cells. WT and miR-155−/− mice were i.p. infected with DM-JHMV. Spleens were removed at
day 8 p.i., and virus-specific T cells were identified by tetramer staining. Representative dot blots indicated that while similar frequencies and numbers of
virus-specific CD4+ T cells (a) were present in WT and miR-155−/− mice, there was a significant (**p< 0.001) decrease in both the frequency and numbers
of virus-specific CD8+ T cells (b) in miR-155−/− mice compared to WT mice. Histograms are presented as average ± SEM; statistical significance was
measured using unpaired, one-tailed Student’s T tests. Data presented are derived from two independent experiments with a minimum of four mice/
experimental group. *p < 0.05; **p < 0.01; ***p< 0.001
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fewer numbers of T cells within the CNS of JHMV-
infected miR-155−/− mice compared to infected WT
mice, raising the possibility of a deficiency in T cell hom-
ing in the absence of miR-155. We have previously
shown that T cell expression of the chemokine receptor
CXCR3, the signaling receptor for the chemokine
CXCL10, is important in enhancing the ability of these
cells to migrate and accumulate within the CNS of
JHMV-infected mice [44, 45, 63–65]. We therefore
tested whether expression of CXCR3 was decreased on
T cells from JHMV-infected miR-155−/− mice. There
were no differences in expression of CXCR3 on M133-
147-specific CD4+ T cells (Fig. 5a, b). In contrast, there
was an overall reduction (p < 0.05) in the frequency of
CXCR3-positive S510-518-positive CD8+ T cells (Fig. 5c),
as well as a reduction (p < 0.01) of CXCR3 on a per-cell
level (Fig. 5d). These findings indicate that miR-155
regulates expression of CXCR3 on CD8+ T cells, and this
corresponds with impaired trafficking of these cells to
the CNS following JHMV infection. The paucity in CD4
+ T cell trafficking to the CNS of JHMV-infected miR-
155−/− mice suggests the possibility that other T cell
homing receptors such as CCR5 may be affected by
miR-155 deficiency and account for impaired CNS mi-
gration [66]; however, analysis of CCR5 on virus-specific
CD4+ (Fig. 5e, f ) and CD8+ T cells (Fig. 5g, h) indicated
no differences in surface expression of this homing re-
ceptor between WT and miR-155−/− T cells.
As an additional test to determine if the absence of miR-

155 affected T cell migration into the CNS, we performed
adoptive transfer experiments. WT and miR-155−/− mice
were injected i.p. with DM-MHV. Eight days p.i., spleens
were isolated and equal numbers of virus-specific CD4+ or
CD8+ T cells from WT or miR-155−/− mice were injected
i.v. into RAG-1−/− mice (deficient in functional T and B
lymphocytes) that had been infected i.c. with JHMV 3 days

prior. As shown in Fig. 6a, JHMV-infected RAG-1−/− recip-
ients of either virus-specific CD4+ or CD8+ T cells from
WT mice showed increased (p < 0.05) clinical disease
severity compared to recipients of miR-155−/− T cells.
Animals were sacrificed at day 9 post-transfer (day 12 p.i.),
and viral titers and T cell infiltration into the CNS were
assessed. Our findings indicate that viral titers within the
brain were higher in JHMV-infected RAG1−/− mice that re-
ceived either virus-specific miR-155−/− CD4+ or CD8+ T
cells compared to recipients of WT virus-specific T cell
subsets (Fig. 6b). Importantly, CNS accumulation of both
virus-specific CD4+ (Fig. 6c) and CD8+ (Fig. 6d) T cells was
significantly (p < 0.01) reduced in mice that received miR-
155−/− T cells compared to recipients of WT T cells. These
results provide further evidence that miR-155 is important
for T cell trafficking.

Discussion
In this report, we have examined the mechanisms by
which miR-155 affects both host defense and disease
progression following JHMV infection of the CNS. Our
findings revealed that miR-155 expression is associated
with susceptibility to JHMV-induced neurologic disease.
Expression of miR-155 is necessary for effective antiviral
T cell responses as ablation of miR-155 resulted in
increased morbidity/mortality that was associated with
elevated viral titers within the CNS. Increased disease
severity most likely reflects dampened CD8+ T cell
responses, as reflected by reduced CNS accumulation of
virus-specific CD8+ T cells. Furthermore, cytolytic
activity by CD8+ T cells, as well as secretion of IFN-γ,
was reduced in miR-155−/− CD8+ T cells, highlighting a
role for this molecule in configuring effective responses
by virus-specific CD8+ T cells. While expansion of virus-
specific CD4+ T cells was not affected in the absence of
miR-155, IFN-γ secretion by CD4+ T cells was

Fig. 4 T cells from miR-155−/− mice exhibited impaired antiviral effector function. WT and miR-155−/− mice were immunized with DM-MHV via i.p.
injection. a Animals were sacrificed 8 days p.i., and CD4+ and CD8+ T cells were isolated and pooled. The frequencies of total and virus-specific
CD8+ T cells were determined by tetramer staining [96]. Equivalent numbers of virus-specific CTLs were added to target cells pulsed with either
the immunodominant CD8+ T cell epitope within the spike (S) glycoprotein spanning residues 510-518 (S510-518, 50 μM) or control ovalbumin
peptide (50 μM) at the indicated ratios, and lytic activity was determined as previously described [31, 96]. In addition, antigen recall responses to
the immunodominant CD4 T cell epitope (M133-147) (b) or CD8 T cell epitope S510-518 (c) was performed, and IFN-γ levels were determined by
ELISA as previously described [96]. Data are representative of at least two independent experiments, with at least five mice from each group.
*p < 0.05; ***p < 0.001
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diminished. Importantly, the ability of T cells to migrate
to the CNS was dramatically reduced in the absence of
miR-155 expression, and this was associated with in-
creased susceptibility to JHMV-induced neurologic dis-
ease. Whether increased susceptibility to JHMV-induced
neurologic disease reflects a T cell intrinsic problem or

whether our findings reflect an extrinsic effect via other
immune cells, e.g., dendritic cells, is not known at this
time. While this is an important question, we believe
that muted antiviral T cell responses in miR-155−/− mice
following JHMV infection reflects an intrinsic problem
in that (i) adoptive transfer of miR-155−/− virus-specific

Fig. 5 Chemokine receptor expression on virus-specific WT and miR-155−/− mice. WT and miR-155−/− mice were infected i.p. with DM-MHV and
spleens were isolated at day 8 p.i.. Flow cytometric analysis revealed similar levels of CXCR3 on virus-specific CD4+ T cells isolated from WT and
miR-155−/− mice (a, b). However, expression of CXCR3 was decreased (p < 0.05) on virus-specific CD8+ T cells isolated from miR-155−/− mice compared
to WT mice (c, d). Flow cytometric analysis revealed similar levels of CCR5 on both virus-specific CD4+ T cells (e, f) and virus-specific CD8+ T cells (g, h)
isolated from WT and miR-155−/− mice. Plots represent average ± SEM; statistical significance was measured using unpaired, one-tailed Student’s T tests.
Data are representative of two independent experiments, with a minimum of four mice per group per experiment. *p < 0.05; **p < 0.01
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Fig. 6 Silencing of miR-155 dampened the accumulation of adoptively transferred virus-specific T cells within the CNS of JHMV-infected RAG-1−/−

mice. JHMV-infected RAG1−/− mice received equal numbers of either WT or miR-155−/− virus-specific CD4+ or CD8+ T cells via i.v. injection on the
day following i.c. instillation of virus. a Clinical disease in mice that received either miR-155−/− CD4+ (n = 3) or CD8+ T cells (n = 3) was reduced
(p < 0.05) when compared to recipients of WT CD4+ (n = 3) or CD8+ (n = 3) cells. Increased disease severity was associated with an inability to
control viral replication within the CNS (b) and a dramatic reduction (p < 0.01) in migration of CD4+ (c) and CD8+ (d) T cells into the brains
compared to WT cells at day 9 post-transfer. a, b Data are presented as average ± SEM. c, d Representative dot blots are shown and histograms
are presented as average ± SEM. Statistical significance was measured using unpaired, one-tailed Student’s T tests. *p < 0.05; **p < 0.01
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T cells into JHMV-infected mice was unable to effect-
ively reduce CNS viral titers and (ii) recent studies
employing experimental infection of miR-155−/− mice
with lymphocytic choriomeningitis virus (LCMV) indi-
cate that impaired T cell responses are due to specific
deficiencies in T cells [21].
Within the context of neuroinflammatory diseases, miR-

155 was initially shown to be critical in the induction of
myelin-reactive Th17 cells in EAE, the prototypic model
of the human demyelinating disease multiple sclerosis
(MS) [67, 68]. In addition, miR-155 expression by endo-
thelial cells of the blood-brain barrier (BBB) has been
shown to regulate BBB function and affect neuroinflam-
mation during EAE [69]. More recently, a role for miR-
155 has been implicated in contributing to neuroinflam-
mation in models of Parkinson’s disease [70], Alzheimer’s
disease [71], alcohol-induced neuroinflammation [72], and
amyotrophic lateral sclerosis (ALS) [73]. Although the
mechanisms by which miR-155 affects neuroinflammation
have not been firmly established, an emerging concept is
that expression of miR-155 by microglia is important in
regulating expression of proinflammatory genes that sub-
sequently influence neuroinflammation [74–77]. We are
currently further investigating the mechanisms by which
miR-155 affects host defense and disease progression in
models of viral encephalitis. Results from the current
study are congruent with recent reports by Rouse and col-
leagues [24] demonstrating that miR-155 affects suscepti-
bility to HSV-1-induced encephalitis as a result of
impaired antiviral T cell responses as well as homing to
the CNS. Similarly, the severity of neuroinflammation is
reduced following experimental infection with Japanese
encephalitis virus (JEV) in the absence of miR-155, and
this is associated with dampened expression of proinflam-
matory cytokines [26]. These findings emphasize an im-
portant role for miR-155 in augmenting host defense in
response to CNS infection by neurotropic viruses through
different mechanisms, including regulating gene expres-
sion by resident glia and tailoring T cell responses. With
regard to the former, negative regulation of Ship1 by miR-
155 was found to affect expression of proinflammatory
cytokines and modulate neuroinflammation during JEV
infection [26]. A number of different mechanisms by
which miR-155 controls T cell responses following viral
infection have been proposed. In the absence of miR-155,
virus-specific CD8+ T cells have enhanced type-I
interferon signaling, leading to increased susceptibility to
interferon’s anti-proliferative effect [23]. Impaired antiviral
CD8+ T cell responses have also been associated with re-
duced activation of the prosurvival Akt pathway, arguing
that miR-155 promotes T cell survival/function in
response to viral infection [21]. Targeting of Socs1 by
miR-155 has also been shown to disrupt T cell function in
response to viral infection, and these studies emphasized

the importance of both cell type and context in determin-
ing how miR-155 affects lymphocyte function [22].
Whether these miR-155-related pathways and/or targets
are affected in response to JHMV infection of the CNS
remains to be determined and is the focus of ongoing
studies by our group.
Previous work from our lab and others has implicated

chemokines as important in regulating lymphocyte mi-
gration to the CNS in response to viral infection [78].
Specifically, we have shown that expression of both
CXCR3 and CCR5 promote migration of virus-specific T
cells into the CNS of JHMV-infected mice [42, 43, 45, 79].
Our findings that impaired migration of miR-155-
deficient, virus-specific CD8+ T cells to the CNS of
JHMV-infected mice correlated with reduced expression
of CXCR3, but not CCR5, are interesting and argue that
expression of chemokine homing receptors may be modu-
lated by miR-155. In our hands, this effect was restricted
to CD8+ T cells, as neither CXCR3 nor CCR5 expression
was affected in miR-155-deficient CD4+ T cells. Nonethe-
less, homing to the CNS by CD4+ cells was reduced, argu-
ing that the absence of miR-155 may affect the ability of
these cells to efficiently migrate to sites of infection. This
theory was further supported by adoptive transfer experi-
ments demonstrating that in RAG-1−/− mice that received
miR-155-deficient CD4+ or CD8+ cells, there was a dra-
matic deficiency in CNS accumulation of CD4+ or CD8+

T cells, respectively. In addition, there was an impaired
ability to control viral replication compared to recipients
of WT cells. Recent work has demonstrated that miRNAs,
including miR-155, may influence chemokine receptor
expression on circulating lymphocytes [80–82], suggesting
that sufficient expression of these homing receptors is
intrinsically influenced by miRNAs.
Mice persistently infected with JHMV develop an

immune-mediated demyelinating disease in which chronic
infiltration of virus-specific T cells and macrophages amp-
lifies the severity of demyelination. The profile of clinical
symptoms and accompanying histopathology associated
with JHMV persistence has been employed as a pre-
clinical animal model of the human demyelinating disease
multiple sclerosis (MS) [28, 83, 84]. Previous studies have
demonstrated that genetic silencing of miR-155 amelio-
rates the severity of EAE and this was associated with a
reduction in the severity of neuroinflammation and de-
myelination, highlighting that miR-155 has a functional
role in pre-clinical MS models [67, 68]. Clinical studies in
MS patients have suggested that microRNAs may be used
as novel diagnostic and predictive biomarkers, as well as
affect disease progression [85–87]. Evidence demonstrat-
ing a potentially important role for miR-155 in MS
includes demonstration that miR-155 expression is in-
creased in peripheral blood mononuclear cells [88] as well
as in brain lesions [89] of MS patients. In addition,
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glatiramer acetate treatment resulted in normalization of
deregulated miRNAs, including miR-155, in peripheral
blood mononuclear cells in patients with relapsing-
remitting MS, arguing that miR-155 has a role in the regu-
lation of immune responses in MS patients [90]. Other
potential roles for miR-155 in controlling disease progres-
sion include regulation of proinflammatory responses in
blood-derived and CNS-resident myeloid cells [91].
Furthermore, microRNAs may represent novel regulators
of oligodendrocyte differentiation via control of transcrip-
tional networks that influence myelin gene expression and
cell cycle transitions [92, 93]. Our findings indicate that in
the JHMV model, miR-155 does not affect demyelination
per se, as there were similar levels of myelin damage in
JHMV-infected WT and miR-155−/− mice at the peak of
disease. Whether these results reflect the use of the JHM
strain of MHV is not known at this time. The A59 strain
of MHV has been shown to induce demyelination in the
absence of the adaptive immune suggesting that macro-
phage/microglia may be sufficient to initiate white matter
damage [94]. We are currently investigating whether miR-
155 influences processes governing demyelination and/or
remyelination at later stages of JHMV through control of
oligodendrocyte progenitor maturation. In addition, we
are examining whether the absence of miR-155 affects
proinflammatory gene expression by resident glia, e.g.,
astrocytes and microglia.

Conclusions
This study demonstrates that miR-155 contributes to
antiviral T cell responses in a model of viral-induced en-
cephalomyelitis. Our findings illustrate that the absence
of miR-155 increases susceptibility to death in response
to viral infection of the CNS and that this correlates
with increased viral replication within the CNS, limited
T cell trafficking to the CNS, muted secretion of IFN-γ,
and reduced cytolytic activity. However, macrophage
trafficking and the severity of demyelination were not
significantly affected in virally infected miR-155−/− mice,
indicating increased disease severity reflected impaired
T cell responses. Importantly, because miR-155 plays a
host-protective role during JHMV-mediated neuroin-
flammation, yet plays a pathogenic role in autoimmune
models of neuroinflammation and demyelination follow-
ing immunization with encephalitogenic peptides, its
therapeutic targeting in the clinic should be carefully
considered.
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