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Abstract

Gene expression is regulated in part by protein transcription factors (TFs) that bind target 

regulatory DNA sequences. Predicting DNA binding sites and affinities from transcription factor 

sequence or structure is difficult; therefore, experimental data are required to link TFs to target 

sequences. We present a microfluidics-based approach for de novo discovery and quantitative 

biophysical characterization of DNA target sequences. We validated our technique by measuring 

sequence preferences for 28 S. cerevisiae TFs with a variety of DNA binding domains, including 

several that have proven difficult to study via other techniques. For each TF, we measured relative 

binding affinities to oligonucleotides covering all possible 8-bp DNA sequences to create a 

comprehensive map of sequence preferences; for 4 TFs, we also determined absolute affinities. 

We anticipate that these data and future use of this technique will provide information essential for 

understanding TF specificity, improving identification of regulatory sites, and reconstructing 

regulatory interactions.
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Recent evidence suggests that knowledge of both strongly-and weakly-bound sequences and 

their interaction affinities is required for an accurate understanding of transcriptional 

regulation. Weak-affinity sites are evolutionarily conserved, make significant contributions 

to overall transcription1,2, and may allow closely related TFs to mediate different 

transcriptional responses3. In addition, quantitative models require both strongly-and 

weakly-bound sequences and their binding affinities to recapitulate transcriptional 

responses4-7.

Unfortunately, quantitative data detailing TF binding are often lacking, even for model 

organisms. In vivo immunoprecipitation-based methods (e.g. ChIP-chip8 and ChIP-SEQ9 

provide genome-wide information about promoter occupancy. However, these techniques 

require knowledge of physiological states under which TFs are bound to promoters, cannot 

distinguish whether a TF contacts DNA directly or is tethered via another DNA-binding 

protein, and do not measure affinities.

In vitro methods complement in vivo data by measuring binding affinities, distinguishing 

whether TFs directly bind DNA, and allowing manipulation of post-translational 

modifications and buffer conditions. Furthermore, in vitro methods can be used without 

knowledge of conditions under which TFs are active. However, current in vitro methods 

cannot simultaneously discover both high-and low-affinity target sequences and measure 

their affinities. Electromobility shift assays (EMSAs)10 DNAse footprinting11 and surface 

plasmon resonance12 require prior knowledge of potential binding sites, precluding motif 

discovery. Conversely, selection techniques (i.e. SELEX) and one-hybrid systems13 

discover motifs from a large sequence space, but recover only the most strongly bound 

sequences, without affinity information. Protein binding microarrays (PBMs)3,14-18 can 

discover both strongly-and weakly-bound sequences but cannot measure reactions at 

equilibrium, preventing affinity measurements. PBMs also suffer from reduced sensitivity: a 

recent study using PBMs to probe TF binding in S. cerevisiae failed to recover consensus 

motifs for 49 of 101 TFs with previous evidence of direct DNA binding15. Embedding 

immobilized DNA in hydrogels19 extends the PBM technique to allow affinity and kinetic 

measurements, but limits available DNA sequences to ∼ 100.

An alternative approach is Mechanically-Induced Trapping of Molecular Interactions 

(MITOMI), a technique that uses a microfluidic device to measure binding interactions at 

equilibrium, allowing construction of detailed maps of binding energy landscapes. The first-

generation MITOMI device measured 640 parallel interactions and required TF-specific 

DNA libraries20.

Here, we report a second-generation MITOMI device (MITOMI 2.0) capable of measuring 

4,160 parallel interactions. Devices were fabricated in polydimethylsiloxane (PDMS) using 

multilayer soft lithography; each device had 4,160 unit cells and approximately 12,555 

valves to control fluid flow (Fig. 1a). Each unit cell contained a DNA chamber and a protein 

chamber, controlled by micromechanical valves: a ‘neck’ valve, ‘sandwich’ valves, and a 

‘button’ valve (Fig. 1a, Supplementary Fig. 1). Unit cells were programmed with particular 

DNA sequences by aligning and bonding the device with a non-covalently spotted DNA 

microarray containing a library of 1457 double-stranded Cy5-labeled oligonucleotides. To 
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accommodate all 65,536 DNA 8-mers, each 70-bp oligonucleotide contained 45 

overlapping, related 8-mer de Bruijn sequences21 (Fig. 1b). Each oligonucleotide sequence 

appeared in at least 2 unit cells.

To evaluate the performance of this technique, we measured DNA binding for 28 S. 

cerevisiae TFs from 10 different families (Supplementary Table 1). Of these, 26 TFs had 

prior evidence of direct, sequence-specific DNA binding and 2 TFs had no previously 

annotated literature motifs, despite multiple previous attempts14,15,22.

All TF protein was produced by in vitro transcription/translation. PCR-generated linear 

expression templates were added directly to rabbit reticulocyte lysate off-chip in the 

presence of a small fraction of BODIPY-labeled lysine charged tRNA to produce BODIPY-

labeled, His-tagged TFs (Fig. 1c, Supplementary Fig. 2). In each experiment, ∼ 50 μL of 

extract (∼ 100 ng of protein) was loaded into the device.

Following alignment to DNA microarrays, slide surfaces within the protein chamber were 

derivatized with anti-pentaHis antibodies beneath the button valve and passivated elsewhere 

(Fig. 1d). Introduction of His-tagged TFs into both chambers solubilized spotted DNA, 

allowing TFs and DNA to interact. TF-DNA complexes were captured on the surface 

beneath the button valve during a ∼ 1 hour incubation; rapid closure of the button valve 

trapped interactions at equilibrium concentrations prior to a final wash to remove unbound 

material before imaging20.

BODIPY intensities under the button valve reflect the number of surface-bound protein 

molecules; Cy5 intensities under the button valve reflect the number of DNA molecules 

bound by surface-immobilized protein (Fig. 1d,e,f). Therefore, the ratio of Cy5 to BODIPY 

fluorescence is linearly proportional to the number of protein molecules with bound DNA, 

or protein fractional occupancy. Cy5 intensities within the DNA chamber reflect the amount 

of soluble DNA available for binding.

All 28 TFs showed oligonucleotide-specific variations in bound Cy5 intensities, 

demonstrating marked preferences for individual oligonucleotides (Fig. 2a, Supplementary 

Fig. 3). By contrast, the distribution of intensities for rabbit reticulocyte extract alone was 

well-fit by a Gaussian (reduced χ2 = 1.0, p = 0.47), establishing that binding is due to 

expressed TFs and not components of the in vitro transcription/translation system (Fig. 2a).

Variations in fluid flow between channels can lead to differences in the number of protein 

molecules beneath each button valve. To account for these differences and generate a 

quantity proportional to fractional occupancy, Cy5 intensities were normalized by BODIPY 

intensities to yield a dimensionless intensity ratio (Cy5 intensity/BODIPY intensity) (Fig. 

1e). Intensity ratios also showed strong preferences for individual oligonucleotide 

sequences, with no clear preference detected for rabbit reticulocyte lysate alone (Fig. 2b; 

Supplementary Fig. 4, Supplementary Table 2). Intensity ratios were well correlated both 

between measurements of the same 70-mer oligonucleotide at different locations within a 

given device (Fig. 2c; Supplementary Table 3) and between experiments (Supplementary 

Fig. 5).
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Binding affinity can be described by a single-site binding model relating intensity ratio (r) to 

DNA concentration ([D]); Kd, the DNA concentration at which measured intensities reach 

half their maximum value (rmax) provides a quantitative measure of binding affinity (Eqn. 

1):

(1)

At low DNA concentrations, measured intensity ratios are approximately inversely 

proportional to Kd. Calibrated measurements of DNA chamber intensities in our experiments 

establish that soluble DNA concentrations are indeed low (150 ± 25 nM, mean ± s.e.m.) 

(Supplementary Fig. 6), suggesting it might be possible to accurately estimate interaction 

affinities from intensity ratios measured at a single, low DNA concentration.

To test this hypothesis, we first measured concentration-dependent binding for 4 TFs from 2 

different families (Cbf1p, Cin5p, Pho4p, and Yap1p), each interacting with 10 

oligonucleotides from the 8-mer DNA library. We then globally fit Eqn. 1 over all 

oligonucleotides at all concentrations to get accurate Kd measurements (Fig. 3a,b; 

Supplementary Fig. 7, Supplementary Fig. 8, Supplementary Fig. 9).

Next, we calculated Kd values for the exact same oligonucleotides from single-concentration 

measurements. The low DNA concentration used for these measurements prevented direct 

determination of rmax, a parameter that depends on quantities that vary between experiments 

(e.g. amount and intensity of BODIPY and Cy5 dyes incorporated during protein and DNA 

library production, respectively), and must be empirically determined. Kd values from 

concentration-dependent binding can be used to “calibrate” the appropriate rmax value 

(Supplementary Information). Single-concentration Kd values calculated using calibrated 

rmax values were in excellent agreement with those derived from concentration-dependent 

binding (r2 = 0.90, p = 2.1 × 10-19) (Fig. 3b). Furthermore, once calibrated, rmax values can 

be used to calculate Kd values for all oligonucleotides with signals above background, 

providing absolute affinities for all 1457 oligonucleotides with only a few additional 

measurements (Fig. 3c,d; Supplementary Fig. 10). The range of Kd values calculated here 

for Pho4p and Cbf1p agree with those measured in previous studies (∼ 10 nM to 10 μM)20, 

validating our approach. Relative differences in binding affinities between oligonucleotides 

(the Gibbs free energy upon binding, ΔΔG) can also be calculated using these calibrated rmax 

values (Supplementary Fig. 11).

Even in the absence of additional information to calibrate rmax values, however, measured 

intensity ratios provide accurate information about binding affinity. To demonstrate this, we 

assumed an rmax value of 1 for all TFs and again compared measured and calculated Kd 

values. Kd measurements were well correlated (r2 = 0.67, p = 1.8 × 10-10), although precise 

values were somewhat offset (Supplementary Fig. 12a). ΔΔG describes relative affinity 

differences between oligonucleotides and is therefore less sensitive to these offsets, with 

stronger correlations (r2 = 0.76, p = 8.0 × 10-13) (Supplementary Fig. 12b).
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Measured intensity ratios reflect interaction affinities between a given TF and a 70-bp 

oligonucleotide. Identifying TF target sites requires determination of the precise 

subsequences responsible for TF binding within each oligonucleotide. Traditionally, analysis 

of TF binding requires designation of sequences into bound and unbound populations, 

followed by a search for sequences overrepresented in the bound population, which ignores 

relative strengths of binding interactions, and can be sensitive to the precise threshold used 

to delineate populations. Here, we used a pipeline that incorporates all intensity information 

for all oligonucleotides to generate a position-specific affinity matrix (PSAM)23 describing 

the change in binding affinity upon mutation of a specific position within a consensus 

sequence (Supplementary Fig. 13). Notably, PSAMs describe actual binding affinities for 

any combination of nucleotides and can used to calculate predicted affinities to arbitrary 

sequences.

First, we analyzed all measured intensity ratios using fREDUCE, an enumerative algorithm 

that searches for sequences whose occurrence within oligonucleotides correlates strongly 

with their measured signal24. For all 28 proteins, fREDUCE returned sequences whose 

appearance within an oligonucleotide correlated strongly with measured intensity ratios (Fig. 

5, Supplementary Table 6, Supplementary Fig. 14).

Next, the highest-correlated 7-and 8-bp fREDUCE sequences were converted to PSAMs 

using MatrixREDUCE23, an algorithm that fits all measured intensity ratios with a 

statistical mechanical model assessing the effects of individual base pair substitutions on 

binding affinity. Investigations of MatrixREDUCE performance have recommended the use 

of initial seed sequences derived from enumerative analysis to ensure optimization of global 

minima24 therefore, the fREDUCE sequences were used as seeds. MatrixREDUCE assumes 

that the free energy contributions of each position in the binding site are independent; 

although this is known to be false in some instances, we employ linear motifs here to 

compare our results with the largest possible set of previous literature.

To choose the single PSAM that best explains measured binding, we compared occupancies 

predicted by each PSAM for all oligonucleotides in the DNA library with measured intensity 

ratios (Supplementary Fig. 15). Predicted and measured values were well-correlated for 

almost all TFs (Supplementary Table 7). For all 26 TFs with described motifs, the final 

recovered motif was in agreement with those previously reported in the literature (Fig. 4) 

14,15,22. We also derive PSAMs for two TFs, Msn1p and Nrg2p, that were previously 

resistant to characterization, establishing significantly enhanced sensitivity over both ChIP-

based and PBM techniques.

Two well-characterized basic helix-loop-helix (bHLH) proteins (Pho4p and Cbf1p) provide 

a test of the ability to detect both high-and low-affinity target sequences. Pho4p binds both 

high-affinity (5′-CACGTG-3′) and low-affinity (5′-CACGTT-3′) sites25 Cbf1p binds to a 

degenerate ‘5-RTCACRTG-3’ motif20,26. For both proteins, we recover the expected motif 

variants (Fig. 4, Supplementary Fig. 15).

Detailed analysis of differences between measured and calculated binding profiles can 

provide additional information about binding preferences. For example, oligonucleotides 
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with high measured intensity ratios but low predicted occupancies, could indicate binding to 

additional motifs. In addition, this comparison allows investigation of whether free energy 

contributions at each position within the sequence are truly independent.

For most TFs, optimized PSAMs successfully described gross binding properties (e.g. 

Pho4p, Cin5p, Msn2p, and Sko1p; Supplementary Fig. 16), albeit with outliers at weak 

binding energies that may represent cooperative interactions between base pair substitutions. 

For a few transcription factors (Rpn4p, Cup9p, Cad1p, Matα2p, and Pdr3p), correlations 

between measured and predicted binding were much weaker (r2 < 0.25). To determine if low 

correlations resulted from binding to additional target sequences, we used 

BioPROSPECTOR27, MDScan27, MEME28, and WEEDER29 to scan for overrepresented 

sequences within oligonucleotides with high measured intensity ratios (Z-score > 25 or 75) 

but low predicted occupancies (Z-score < 3).

For Rpn4p, although both PBM studies and our first analysis identified binding to a 5′-

GCCACC-3′ motif, ChIP and expression data suggest a T-rich 5′ extension of this motif 

upstream of Rpn4p target genes. Strikingly, analysis of the 13 oligonucleotides with 

discordant measured and predicted binding returned this precise extension, establishing that 

unexpected binding data can yield biologically relevant results (Supplementary Fig. 17).

The Cup9p optimized PSAM also agreed with previous PBM15 results (Fig. 4); however, 14 

sequences showed stronger-than-predicted binding (Supplementary Fig. 18). Analysis of 

these sequences yielded motifs similar to the optimized PSAM, but with an ‘ACGT’ core 

(Supplementary Fig. 18, grey box). To assess the affinity of Cup9p for this candidate 

alternate motif, we measured concentration-dependent binding of Cup9p to the primary 

motif, candidate secondary motif, and several related motifs (Supplementary Fig. 19a). A 

random 2 bp substitution abolished binding, but mutating these bases or the entire second 

half of the motif to the candidate secondary motif reduced affinity only ∼ 20-fold 

(Supplementary Fig. 19b), confirming weak-affinity binding. Interestingly, this motif is 

found only 29 times in the genome outside of coding regions, primarily at the boundary of 

subtelomeric repeats and upstream of genes regulated by iron depletion, metal toxicity, or 

oxidative stress (Supplementary Table 8). While the physiological role of these putative 

binding sites is unknown, these results demonstrate the ability of MITOMI 2.0 to detect 

weak but potentially biologically relevant TF binding sites.

For the remaining 3 TFs (Cad1p, Matα2p, and Pdr3p), low correlations between predicted 

and measured binding likely result from experimental variability and not binding to 

additional motifs. Correlations between technical replicates across the device were relatively 

low (Supplementary Table 3) due to either binding to a limited number of oligonucleotides 

(Cad1p, Supplementary Fig. 3) or large variations in protein coverage (for Matα2p and 

Pdr3p). Consistent with this, these TFs do not bind any oligonucleotides with stronger-than-

expected affinity.

The data presented here demonstrate increased sensitivity over current state-of-the-art 

techniques, detecting sequence-specific binding for several proteins that have failed to yield 

results in multiple experiments (Cad1p, Msn1p, Nrg2p, Sko1p, Yap7p, and Pdr3p). 
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Moreover, these data represent the most comprehensive investigation of biophysical binding 

affinities to date, including ΔΔG values for 28 TFs and Kd values for 4 TFs from 2 different 

families (Cbf1p, Cin5p, Pho4p, and Yap1p) binding to 1457 individual sequences. These 

data can be used to test basic assumptions underlying current models of TF-DNA specificity 

and more accurately model cooperativity between nucleotide binding sites (‘non-

additivity’).

The DNA library used here is not organism-specific, making this technique useful for a wide 

range of organisms, including higher eukaryotes and pathogens. In addition, the 

programmable nature of MITOMI 2.0 allows subsequent detailed examination of 

unexpected binding phenomena or systematic mutational analysis of candidate motifs 

through direct observations of concentration-dependent binding. Although these experiments 

probed TF binding to double-stranded DNA, MITOMI 2.0 can be used with only minimal 

changes to investigate single-stranded DNA binding and RNA binding. When paired with 

advances in rapid whole genome sequencing, we anticipate that MITOMI 2.0 

characterization of all recognizable TFs in a given proteome will allow transcriptional 

networks and regulons to be quickly identified and ultimately modeled.

Materials and Methods

Oligonucleotide sequence files and data for all TFs are available for download at http://

derisilab.ucsf.edu.

DNA library and transcription factor production

All possible 65, 536 8-bp DNA sequences were assembled into a maximally compact de 

Bruijn sequence that was subsequently divided over 1457 oligonucleotides. Sequences were 

hybridized to a Cy5-labeled oligonucleotide and extended using Klenow fragment (exo-) 

(NEB) to produce Cy5-labeled dsDNA. Cy5-labeled dsDNA was diluted to a final 

concentration of 1.25 μM in 3X SSC with polyethylene glycol (PEG) (Fluka) and D-(+)-

trehalose dihydrate (Fluka) (for enhanced subsequent solubility) and printed onto custom 

2″×3″ ThermoFisher Scientific SuperChip Epoxysilane slides (ThermoFisher Scientific) 

using a DeRisi lab custom microarrayer.

A two-step PCR reaction was used to amplify TF coding sequences and add appropriate 

upstream and downstream sequences for efficient transcription and translation in rabbit 

reticulocyte lysate (Promega) (Supplementary Fig. 2).

Microfluidic device fabrication and experimental procedure

Flow and control molds were fabricated on 4″ silicon wafers using positive (SPR 220-7.0) 

and negative (SU-8) photoresists, respectively. PDMS devices were produced and the 

MITOMI experimental procedure was performed as described previously20.

Initial data analysis and normalization

Median Cy5 and BODIPY fluorescence intensities varied somewhat between experiments. 

To facilitate comparisons between TFs, Cy5 intensity distributions were fit to a Gaussian 
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and this Gaussian mean was subtracted from all measurements to center the background 

distribution around zero. Fluorescence intensity ratios were calculated by dividing Cy5 

fluorescence intensities by BODIPY fluorescence intensities; ratios were similarly 

normalized such that the background was centered around zero, and further normalized such 

that the maximum measured intensity was 1.

Motif finding pipeline

We searched for 7-and 8-bp sequences that correlated most strongly with measured intensity 

ratios using fREDUCE. Both doubly- (R, Y, S, W, K, M) and triply- (B, D, H, V) 

degenerate IUPAC bases were included, and both the forward sequence and its reverse 

complement were analyzed. The highest-correlated 7-bp and 8-bp sequences were then used 

as seeds for MatrixREDUCE analysis, with additional unspecified base pairs added to either 

side of the 7-bp seed to standardize length.

Occupancy profile calculations

We calculated predicted occupancy profiles from PSAMs using a slight modification of the 

MatrixREDUCE formalism to reflect the fact that, in our assay, transcription factors are 

surface-immobilized and DNA sequences are in solution (Supplementary Information).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall experimental design and procedure. (a) Microfluidic device hybridized to glass 

slide. Unit cells contain two chambers (a ‘DNA chamber’ and a ‘protein’ chamber) 

controlled by three valves: a ‘neck’ valve (green) to separate the two chambers, a ‘sandwich’ 

valve (orange) to isolate unit cells, and a ‘button’ valve (blue) to protect molecular 

interactions. (b) DNA 8mer library design. Each 70 bp oligonucleotide contains 45 

overlapping 8mers, a 3 bp GC-clamp at the 5′ end, and an identical 14-bp sequence at the 3′ 

end for Cy5 labeling and primer extension. (c) PCR generation of linear templates for 
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protein expression. In PCR1, template-specific primers attach a Kozak sequence, 6× His tag, 

and universal overhangs. In PCR2, universal primers add a T7 promoter, poly-A tail, and T7 

terminator. In vitro transcription/translation (ITT) of this template in rabbit reticulocyte 

lysate (RR) with BODIPY-labeled lysine charged tRNA produces labeled, His-tagged 

protein. (d) Overview of experimental procedure. Devices are manually aligned to a spotted 

microarray. Neck valves are closed to protect DNA within chambers, and slide surfaces are 

derivatized with anti-pentaHis antibodies below the button (white) and passivated elsewhere 

(grey). Lysate containing fluorescently labeled His-tagged TFs is introduced and neck 

valves are opened to allow interaction between transcription factors and DNA; sandwich 

valves are closed to isolate each unit cell. Following an incubation, button valves are 

pressurized to protect protein:DNA interactions, unbound DNA and proteins are washed out, 

and the device is scanned. (e) Scanned picture showing final protein (BODIPY, left) and 

DNA (Cy5, right) intensities in the chamber and under the button. (f) Arrays showing 

example protein intensities (left) and DNA intensities (right) under the button for each unit 

cell within a device.
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Figure 2. 
Detailed analysis of measured Cy5 intensities and fluorescence intensity ratios (Cy5/

BODIPY-FL) for rabbit reticulocyte lysate alone, Reb1p, Cin5p, and Cup9p. (a) Distribution 

of measured Cy5 intensities for all oligonucleotides. Light grey box indicates measurements 

within 4 standard deviations of the mean (as determined by a Gaussian fit). Measured Cy5 

intensities for rabbit reticulocyte lysate alone are well-fit by a Gaussian (reduced χ2 = 1.0, p 

= 0.47). For all TFs, measured Cy5 intensities deviate significantly from a Gaussian 

distribution, with measured events many standard deviations above the mean. 

(b)Distribution of measured intensity ratios for all oligonucleotides. Light grey box indicates 
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measurements within 4 standard deviations of the mean (as determined by a Gaussian fit). 

Measured intensity ratios in the presence of TFs deviate significantly from a normal 

distribution (Supplementary Table 2). (c) Correlation between ratios measured for the same 

oligonucleotide at two separate locations within the device.
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Figure 3. 
Comparison between Kd values derived from direct measurements of concentration-

dependent binding and Kd values calculated from ratio measurements at a single 

concentration. (a) Cin5p measurements. Measured ratio signals for all oligonucleotides 

(grey) and selected oligonucleotides (blue) (left); concentration-dependent binding for 

selected oligonucleotides fit to a single-site binding model (right). (b) Kd calculated from 

single-concentration measurements vs. Kd derived from fits concentration-dependent 

binding for Cin5p (blue), Pho4p (red), Yap1p (grey) and Cbf1p (green). (c) Calculated Kd 

values for all oligonucleotides for Cin5p. (d) Calculated Kd values for all oligonucleotides 

for Pho4p.
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Figure 4. 
Comparison between motifs found for all 28 S. cerevisiae TFs and previous literature results 

(SWISS: SwissRegulon30, ChIP-chip: Harbison library22, PBM1′: protein binding 

microarray14, and PBM2: protein binding microarray15). For ChIP-chip data, boxes shaded 

in grey represent literature-derived motifs. For PBM2 results, white boxes represent proteins 

applied to arrays that did not yield motifs; boxes shaded in grey represent proteins that did 

not express sufficiently to be applied to arrays. fREDUCE Seeds: 7-and 8-bp fREDUCE 

motifs that correlate most strongly with measured intensities; Optimized PSAM: 

Fordyce et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2011 March 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



MatrixREDUCE PSAM represented as an AffinityLogo; r2: Pearson correlation coefficient 

between all measured ratio values and protein occupancies predicted by the optimized 

PSAM.
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