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Purpose: This review article summarizes our current
understanding of the mechanisms underlying acquired
hearing loss from hospital-prescribed medications that
affects as many as 1 million people each year in Western
Europe and North America. Yet, there are currently no
federally approved drugs to prevent or treat the debilitating
and permanent hearing loss caused by the life-saving
platinum-based anticancer drugs or the bactericidal
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aminoglycoside antibiotics. Hearing loss has long-term
impacts on quality-of-life measures, especially in young
children and older adults. This review article also highlights
some of the current knowledge gaps regarding iatrogenic
causes of hearing loss.
Conclusion: Further research is urgently needed to further
refine clinical practice and better ameliorate iatrogenic
drug-induced hearing loss.
I n 2018, the consensus of the Ototoxicity Working
Group of Pharmaceutical Interventions for Hearing
Loss, 2018 defined ototoxicity as damage to the in-

ner ear, targeting cochlear and vestibular structures and
sensory function, due to exposure to certain pharmaceuti-
cals, chemicals, and/or ionizing radiation (i.e., iatrogenic
hearing loss). This review article will focus primarily on
hospital-based medications: aminoglycoside antibiotics
and cisplatin. Aminoglycosides are typically used for seri-
ous bacterial and mycobacterial infections, including genta-
micin for meningitis and sepsis, tobramycin or amikacin
for respiratory infections in individuals with cystic fibrosis,
and kanamycin for tuberculosis. Cisplatin- and platinum-
based derivatives like carboplatin and oxaliplatin provide
efficacious treatment for solid (e.g., testicular and ovarian)
tumors, head and neck cancers, and glioblastomas in the
brain.

Other ototoxins include solvents and jet fuels (Davis
et al., 2002; Fechter et al., 2007; Steyger, 2009), metals
such as lead (Counter & Buchanan, 2002; Jamesdaniel
et al., 2018), and cyclodextrins, which is a primary com-
ponent of drug formulations that, at high doses, can se-
quester membrane cholesterols (Crumling et al., 2017).
Ototoxicity is primarily considered a peripheral, inner ear
phenomenon; however, ototoxic agents can also affect cen-
tral neural (or auditory) pathways and are then considered
to be neurotoxic (Gopal et al., 2012; Hinduja et al., 2015).
Ototoxins can also cause kidney damage and associated re-
nal dysfunction (i.e., nephrotoxicity; Humes, 1999; Jiang
et al., 2017; Karasawa & Steyger, 2015).

Adults that lose their exquisite sense of hearing in-
variably have diminished interactions via spoken language
with loved ones, friends, and colleagues, and reduced aware-
ness of environmental sounds with a corresponding loss of
safety (Centers for Disease Control and Prevention, 2004;
Monson et al., 2019). The clinical consequences of uncor-
rected or maladaptation to hearing loss can include isolation,
depression, and loss of self-esteem that can lead to declining
cognitive ability and social withdrawal (Lin et al., 2013).
Uncorrected congenital or acquired hearing loss in infants
can lead to delayed acquisition of listening and spoken lan-
guage skills expected of their peers with typical hearing,
with concomitant delays meeting academic, linguistic, and
psychosocial milestones (Dedhia et al., 2013; Gurney et al.,
2007). Loss of vestibular function is also debilitating and
can lead to depression and cognitive decline (Smith &
Darlington, 2013; Smith & Zheng, 2013). In addition,
there is a socioeconomic cost > $1.5 million over the life-
time of each deafened child and > $375,000 for each adult
in the United States (extrapolated into 2019 values from
Mohr et al., 2000).
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Figure 1. Main cochlear trafficking routes for systemically administered
aminoglycosides and cisplatin. Both blood-borne drugs enter
the cochlea primarily from the capillaries in the stria vascularis.
Aminoglycosides enter endolymph through as-yet-unidentified
ion channels or transporters, although several candidates exist
(e.g., transient receptor potential [TRP] vanilloid subtype 1 [TRPV1]
and TRP vanilloid subtype 4 [TRPV4]). Cisplatin also enters endolymph
potentially trafficking via organic cation transporter-2 (OCT2) and
copper-like transport-1 (CTR1) transporters in the marginal cells.
From the endolymph, these ototoxins enter hair cells across their
apical membranes. Adapted with permission from Figure 1 in the
study of Kros and Steyger (2019), copyright © Cold Spring Harbor
Laboratory Press.
Incidence of Iatrogenic Drug-Induced Hearing Loss
and Vestibular Disorders

In preclinical models, aminoglycoside-induced hear-
ing loss is typically dose dependent (Wu et al., 2001). The
prevalence of clinical aminoglycoside dosing in the United
States has decreased from several million in the 1980s due
to the use of β-lactams in the 1980s and 1990 to a few hun-
dred thousand during the current era of antibiotic steward-
ship (Pitiriga et al., 2017; Whelton, 1984). The incidence of
hearing loss in humans after aminoglycoside treatment re-
mains unclear due to variable dose stratification regimens
and limited pure-tone testing that does not always include
frequencies above 8 kHz in audiometric assays; nonetheless,
the incidence of hearing loss may occur in 20%–63% of
those receiving aminoglycosides for multiple days (Elson
et al., 2020; Fausti, Frey, et al., 1992; Fausti, Henry, et al.,
1992; Garinis, Cross, et al., 2017; Garinis, Liao, et al., 2017).
Patients often report vestibular (and tinnitus) issues be-
fore any awareness of aminoglycoside-induced hearing
loss (Van Hecke et al., 2017); however, the incidence of
aminoglycoside-induced elevations of vestibular thresh-
olds for motion detection (Shayman et al., 2018) is likely
underreported due to the widespread absence of clinical
apparati (away from major academic medical centers) for
determining vestibular function.

Platinum-based drugs, like cisplatin, have long been
known to be cochleotoxic in humans and preclinical models
(Brock et al., 2012). Cisplatin is clinically very effective in
reducing the mass of solid or central nervous system tumors,
yet the incidence of hearing loss is cumulatively dose
dependent (Callejo et al., 2015; Knight et al., 2005, 2007;
Paken et al., 2016). Cisplatin has recently been reported
to dose-dependently induce loss of vestibular hair cells
and vestibular function in preclinical models (Callejo
et al., 2017). Although there are fewer reports of cisplatin-
induced vestibular dysfunction, this is more likely due to
geographic limitations in determining human vestibular
thresholds for motion detection (Prayuenyong et al.,
2018), and lack of routine clinical assessments, as for
aminoglycosides.
Trafficking of Aminoglycosides and Cisplatin
Into the Inner Ear

The trafficking of these ototoxins into the inner ear
and hair cells are generally similar, although more details
are known for aminoglycosides. The blood–labyrinth barrier
(BLB) separates cochlear cells and fluids from the blood-
stream, akin to the blood–brain barrier. The endothelial
cells of cochlear blood vessels are typically coupled together
by tight junctions to form the primary BLB and prevent
macromolecules and blood cells from entering the cochlea
(Nyberg et al., 2019). Within the cochlea, perilymph has
an ionic composition typical of other extracellular fluids
(i.e., high in Na+, low in K+, and millimolar Ca2+) and
the larger fluid volume (Wangemann, 2006). Although sys-
temically administered aminoglycosides and cisplatin can
888 American Journal of Audiology • Vol. 30 • 887–900 • October 202
enter the perilymphatic space surrounding the basolateral
membranes of hair cells from the bloodstream (Hellberg et al.,
2013; Tran Ba Huy et al., 1986), aminoglycosides do not easily
enter hair cells from this domain (Li & Steyger, 2011).

In contrast, endolymph bathes the apical surfaces of
hair cells and has a unique extracellular ionic composition
in the mammalian body (i.e., high in K+, low in Na+, and
~20-µM Ca2+). Cochlear, but not vestibular, endolymph
has a highly positive potential of ~ +80 mV relative to
blood or perilymph that is crucial for sensitive hearing.
Tight junction–coupled epithelial cells surround the smaller
endolymphatic volume (relative to perilymph) to prevent
fluid mixing with perilymph (and hearing loss). The endo-
lymphatic potential and its ionic composition are generated
by the highly metabolically active cells of the vascularized
stria vascularis (see Figure 1) in the lateral wall of the co-
chlea (Wangemann, 2006). Systemically administered ami-
noglycosides cross the BLB of the stria vascularis more
rapidly than into the adjacent spiral ligament in the peri-
lymphatic domain (Dai & Steyger, 2008). Surprisingly, sys-
temically administered aminoglycosides also enter hair
cells more rapidly than when aminoglycosides are directly
infused into the perilymphatic compartment that sur-
rounds the basolateral membranes of hair cells (Li &
Steyger, 2011). Systemic inflammation and noise, both of
which are associated with vasodilation of the blood vessels
in the stria vascularis, enhance cochlear uptake of amino-
glycosides (Koo et al., 2015; Li et al., 2015). The cellular
1



and molecular mechanisms by which aminoglycosides cross
the BLB (i.e., endothelial cells) into the stria vascularis and
transverse the tight junction–coupled marginal cells into
endolymph remain unknown, and they likely include one
or more ion channels, transporters, exchangers, or trans-
cytosis (Koo et al., 2015).

Less is known about how systemically administered
aminoglycoside traffic to vestibular hair cells, although the
transitional and dark cells more readily take up aminogly-
cosides than hair cells and their surrounding supporting
cells (Liu et al., 2015). Vestibular endolymph is maintained
by dark cells in the vestibule (Wangemann, 2006), akin to
the stria vascularis and suggestive of similar mechanisms in
trafficking aminoglycosides into endolymph. Intratympanic
injection of aminoglycosides also led to more prominent
uptake by type I hair cells as well as the crypt cells at the
base of vestibular ampullae. It has not been determined
in vivo if this was via trafficking into vestibular endolymph,
prior to into hair cells and crypt cells (Lyford-Pike et al.,
2007; Zhang et al., 2013). Strikingly, intratympanically
administered aminoglycosides are taken up by auditory
afferent neurons and vestibular efferent neurons from
perilymph and transported into the brainstem. Whether
this phenomenon has any functional consequences has yet
to be established (Zhang et al., 2012).

Several lines of evidence suggest that cisplatin prefer-
entially enters the cochlea via the stria vascularis (Breglio
et al., 2017; Chu et al., 2016; van Ruijven et al., 2005) before
entering hair cells, presumptively from endolymph (Brock
et al., 2012). The putative cisplatin transporters copper-like
transport-1 (CTR1) and organic cation transporter-2 (OCT2)
are expressed by cells in the stria vascularis but not in the
spiral ligament, suggestive of potential trafficking mecha-
nisms for cisplatin transport across the BLB into the endo-
lymph (Ciarimboli et al., 2010; More et al., 2010; Waissbluth
& Daniel, 2013). Trafficking of cisplatin into vestibular cells
remains largely unexplored, yet in preclinical models, cis-
platin can cause loss of vestibular hair cells and sensory
function in all five vestibular end organs (Sergi et al., 2003;
Takimoto et al., 2016).

Entry of Aminoglycosides and Cisplatin Into
Sensory Hair Cells

Permanent drug-induced cochleotoxicity typically
requires these ototoxins to enter hair cells (Hiel et al.,
1993). The mechanically gated transmembrane channel-like
protein-1 (TMC1) nonselective cation channels at the tips of
most (but not all) hair cell stereocilia (see Figure 2A) that
transduce sound or motion into electrical signals are readily
permeable to the polycationic aminoglycosides (Alharazneh
et al., 2011; Marcotti et al., 2005; Pan et al., 2018). The
+80-mV potential of endolymph electrochemically drives
cations through the TMC channels into hair cells with their
−40- to −70-mV resting potential adding to this electro-
chemical flux. Aminoglycosides transiently bind to the
open-channel pore and are permeant blockers of TMC chan-
nels (Marcotti et al., 2005). Aminoglycoside permeation of
these large, nonselective cation channels can be blocked by
polyvalent cations, including magnesium and calcium (see
Figure 2B), as well as organic compounds like curare and
quinine (Alharazneh et al., 2011; Coffin et al., 2009). Once
in hair cells, aminoglycosides appear unable to readily es-
cape (Hiel et al., 1992; Leitner et al., 2011; Marcotti et al.,
2005; Zhai et al., 2013).

Other aminoglycoside-permeant cation channels are
also expressed by hair cells, particularly transient receptor
potential (TRP) channels, individually activated by various
physical or chemical stimuli (Nilius & Szallasi, 2014). TRP
vanilloid subtype 1 (TRPV1) and TRP vanilloid subtype 4
(TRPV4) expressed on the apical membranes of hair cells
are also aminoglycoside-permeant channels (see Figure 2C),
and both are also expressed in the stria vascularis (see Fig-
ure 1; Jiang et al., 2019; Karasawa et al., 2008; Myrdal &
Steyger, 2005; Zheng et al., 2003). Hair cell expression of
TRPV1 is upregulated in the cochlea during inflammation
that, in vitro, increases aminoglycoside entry into vestibular
hair cells (Jiang et al., 2019; Qian et al., 2020). The TRP
ankyrin 1 (TRPA1) channel is another aminoglycoside-
permeant channel that is presumptively expressed on the
basolateral membranes of outer hair cells (OHCs; see Fig-
ure 2D). Activation of TRPA1 by reactive oxygen species
enhanced the cellular uptake of fluorescently tagged genta-
micin (Stepanyan et al., 2011). This suggests that endoge-
nous signals (e.g., pro-inflammatory cytokines and reactive
oxygen species) during inflammation or noise can activate
aminoglycoside-permeant TRP channels cochlear stress
(e.g., noise and infection) to increase hair cell uptake of
aminoglycosides (Goncalves et al., 2020; Kaewpitak et al.,
2020).

Another entry route into hair cells is via non–receptor-
mediated endocytosis at the apical and synaptic mem-
branes of hair cells and trafficking toward lysosomes (see
Figure 2E). However, blocking endocytosis (see Figure 2F)
or impeding intracellular trafficking of aminoglycoside-laden
endosomes does not prevent hair cell death (Alharazneh
et al., 2011; Hailey et al., 2017; Hashino et al., 2000; Qian
et al., 2020; Vu et al., 2013).

Defining the mechanisms by which cisplatin enters
hair cells remains challenging, as cisplatin can enter cultured
cells (see Figure 3A) across the cell membrane via passive
diffusion (Hall et al., 2008). In zebrafish neuromasts, hair
cells with functional TMC1 channels (see Figure 3B) are
more susceptible to cisplatin-induced cytotoxicity (Thomas
et al., 2013). Cellular uptake of cisplatin can be enhanced
by the expression of putative cisplatin transporters, and
two (i.e., CTR1 and OCT2) are expressed by cochlear hair
cells (see Figure 3C; Ciarimboli et al., 2010; Hall et al.,
2008; More et al., 2010; Waissbluth & Daniel, 2013). Sys-
temic administration of cimetidine, an OCT blocker, geno-
mic loss of both OCT1/2, or local administration of copper
sulfate all ameliorate cisplatin-induced cochleotoxicity,
demonstrating an as-yet-to-be specified (trafficking or hair
cell uptake) role for these putative cisplatin transporters
in the cochlea (Ciarimboli et al., 2010; More et al., 2010).
However, zebrafish hair cells do not express the putative
Steyger: Mechanisms of Ototoxicity 889



Figure 2. Entry of aminoglycosides into hair cells. Aminoglycosides preferentially enter hair cells across their apical membranes, predominantly via
the transmembrane channel-like protein-1 (TMC1) channel complex, consisting of two TMC subunits (purple), each with a permeation pore (A). Entry
of aminoglycosides can be blocked by curare, quinine, and high polyvalent cation levels among others (B). Other aminoglycoside-permeant cation
channels on the apical membrane of hair cells include transient receptor potential (TRP) vanilloid subtype 1 (TRPV1) and TRP vanilloid subtype 4
(TRPV4) channels (C), and TRP ankyrin 1 (TRPA1) channels on the basolateral membranes of outer hair cells (D). (E) Nonspecific endocytosis also
traffics aminoglycosides into hair cells and to lysosomes. (F) Blocking endocytosis does not prevent hair cell death when aminoglycosides
can enter hair cells via the TMC1 channel.

Figure 3. Entry of cisplatin into hair cells. Cisplatin has multiple potential entry routes, for which the relative importance has not been established.
Neutral cisplatin can enter cells across the plasma membrane via diffusion and, once in the cytoplasm, is readily aquated into the more toxic
form of cisplatin to form adducts with proteins and deoxyribonucleic acid. Uptake of (likely) aquated cisplatin is most dependent on a
functional, mechanically gated transmembrane channel-like (TMC) channel complexes. Cellular uptake of the aquated form of cisplatin
may also occur via copper-like transport-1 (CTR1) and organic cation transporter-2 (OCT2) transport proteins. TMC1 = transmembrane
channel-like protein-1.

890 American Journal of Audiology • Vol. 30 • 887–900 • October 2021



cisplatin transporters CTR1 or OCT2 (Thomas et al., 2013),
leaving open the mechanically gated TMC transduction
channels as a primary candidate for cisplatin entry into
hair cells. Once in the cochlea and hair cells, cisplatin is
retained for at least 12–18 months (Breglio et al., 2017).

Patterns of Cochlear Hair Cell Death
Systemically administered aminoglycosides initially

induce hair cell death in the outer cells of the basal, high-
frequency region of the cochlea. Continued dosing leads to
OHC death at lower frequencies in more apical regions of
the cochlea, and inner hair cells begin to also die (Forge &
Schacht, 2000). Systemically administered cisplatin also
initially leads to OHC death in the basal, high-frequency
region of the cochlea before affecting hair cells at more
apical, lower frequency regions. Increasing cumulative dos-
ing of either ototoxin consistently leads to an increasing
risk of permanent hearing loss in humans (Brock et al.,
2012; Garinis, Cross, et al., 2017). The apices of dying hair
cells are severed from their cell bodies by the expanding
phalangeal plates of surrounding supporting cells to form
a “scar” and maintain the structural integrity of the reticu-
lar lamina, that is, the apical tight junctions between adja-
cent cells of the organ of Corti facing the scala media. This
phenomenon maintains optimal responsiveness in surviving,
functional hair cells by preventing the equilibration of endo-
lymphatic and perilymphatic fluids. These “scar” formations
are characterized by distinct reticular patterns of junctional
and cytoskeletal proteins at the site of the missing hair cell
(Leonova & Raphael, 1997; Steyger et al., 1997). The hair
cell bodies are typically phagocytosed by adjacent support-
ing cells and resident macrophages (Monzack et al., 2015).
In the vestibule, the preferential uptake of aminoglycosides
by a majority of type I hair cells may underlie their phar-
macological and physiological sensitivity to aminoglyco-
sides compared with the extra-striolar type II hair cells
(Lyford-Pike et al., 2007; Sultemeier & Hoffman, 2017).

Multiple Mechanisms of Ototoxicity
Once inside hair cells, aminoglycosides and cisplatin

cause multiple mechanisms of hair cell death that are reviewed
in more detail elsewhere (Jiang et al., 2017; Karasawa &
Steyger, 2015; Kros & Steyger, 2019). Highlighted here
are peripheral mechanisms of ototoxicity that illustrate
multiple (yet incompletely) characterized mechanisms of
cytotoxicity and pathophysiology induced by aminogly-
cosides and cisplatin.

Following entry via ion channels into the cytoplasm,
aminoglycosides bind to hundreds of proteins (Karasawa
et al., 2010, 2011), yet for most protein binding to amino-
glycosides, the downstream consequences are not known.
Aminoglycosides also bind to the phosphatidylinositol family
of lipids, particularly phosphatidylinositol 4,5-bisphosphate
(PIP2), that, in mammalian hair cells, blocks voltage-gated,
outwardly rectifying potassium channels on the basolateral
membranes of OHCs. This blockade prevents the rapid
repolarization of hair cells crucial for hair cell survival
(Leitner et al., 2011; Schacht et al., 1977). In zebrafish neuro-
mast hair cells, aminoglycosides dysregulate the endoplasmic
reticulum that leads to calcium flux into mitochondria and
the generation of cytotoxic levels of reactive oxygen species
in zebrafish neuromast hair cells (Esterberg et al., 2013, 2014,
2016). Intracellular aminoglycosides have been implicated
in the degradation of presynaptic ribbons in hair cells (Liu
et al., 2013; Oishi et al., 2015) that may underlie the re-
ported loss of auditory function in cochlear regions despite
the presence of many surviving hair cells (Koo et al., 2015;
Nicol et al., 1992). Vestibular synaptopathy also occurs af-
ter aminoglycoside dosing (Sultemeier & Hoffman, 2017).

Mammalian sensory hair cells do not undergo cell di-
vision, avoiding the primary toxic effect of cisplatin binding
to deoxyribonucleic acid (DNA) that initiates apoptotic
signaling in proliferating cells (Eastman, 1999). Cisplatin
affects many other intracellular pathways and binds to
hundreds of proteins that could potentially dysregulate cells
and lead to cell death (Karasawa et al., 2013; Karasawa &
Steyger, 2015). For cochlear cells, uptake of cisplatin trig-
gers the transcription factor, signal transducer, and activator
of transcription 1 (STAT1) to activate the TRPV1 and
NADPH oxidase 3 (NOX3) signaling pathways that gener-
ate toxic levels of reactive oxygen species that ultimately
induce cell death (Mukherjea et al., 2008, 2011).

Ototoxicity can occur in nonsensory cochlear or ves-
tibular cells that have crucial homeostatic functions essen-
tial for sensitive hair cell function, that is, cisplatin-induced
cytotoxicity in intermediate and marginal cells of the stria
vascularis responsible for generating the endolymphatic po-
tential (Laurell et al., 2007; McAlpine & Johnstone, 1990).
Aminoglycosides can structurally damage marginal and
intermediate cells in the stria vascularis, yet this does not
appear to have a major effect on strial generation of the en-
dolymphatic potential (Forge et al., 1987; Ono & Tachibana,
1990; Xiong et al., 2011). More transiently, the medial olivo-
cochlear reflex that protects hair cells from loud sounds is
dysregulated by aminoglycosides binding to the efferent
synapses at the base of OHCs (Avan et al., 1996; Blanchet
et al., 2000).
Factors Enhancing the Risk of Hearing Loss
Exacerbation of Aminoglycoside-Induced Cochleotoxicity

Experimentally induced sepsis (via parenteral injec-
tion of lipopolysaccharides [LPS]) potentiates the degree of
aminoglycoside-induced hearing loss in mice (Jiang et al.,
2019; Koo et al., 2015), and likely vestibulotoxicity (Qian
et al., 2020). Pilot data suggest that inflammation (and fever)
also increases the risk of aminoglycoside-induced hearing
loss (Cross et al., 2015; Henry et al., 1983). Aminoglyco-
sides lyse bacteria and increase blood levels of bacterial
immunogens (e.g., LPS) that enhance the severity of inflam-
matory responses, a phenomenon known as the Jarisch–
Herxheimer reaction (Kaplanski et al., 1998; Shenep &
Mogan, 1984). Thus, the very patients with infection-induced
inflammation and treated with aminoglycosides are likely
Steyger: Mechanisms of Ototoxicity 891



to be at higher risk of ototoxin-induced hearing loss (Koo
et al., 2015), such as individuals with sepsis or cystic fibrosis.

Other clinical risk factors that enhance the risk of
aminoglycoside-induced hearing loss include the following:
concomitant renal insufficiency that decreases clearance of
aminoglycosides from blood (Zager, 1992), increasing age
and the decreased glomerular filtration rate associated with
aging (Gatell et al., 1987; Manian et al., 1990; McClure,
1992; Triggs & Charles, 1999); depletion of endogenous
antioxidants (or poor nutritional status) to counter the
aminoglycoside-induced toxic generation of reactive oxygen
species (Lautermann, McLaren, et al., 1995); fever (higher-
than-normal body temperature); and transient ischemia/
hypoxia (Lin et al., 2011). Aminoglycoside dosing in rats
during inactive hours (i.e., daytime rest phase for many
rodents) has also been associated with greater hearing loss
than when administered during active, nighttime hours for
these rodents (McKinney et al., 2015; Soulban et al., 1990).
How the circadian rhythm modulates ototoxicity is still to
be determined.

A variety of mitochondrial mutations in ribosomal
ribonucleic acid (RNA; e.g., A1555G and C1494T) have a
higher affinity for binding to aminoglycosides. This leads
to mistranslation of messenger RNA and inaccurate protein
synthesis resulting in greater susceptibility to aminoglycoside-
induced hearing loss (Hobbie et al., 2008; Matt et al., 2012;
Qian & Guan, 2009). While several genomic polymorphisms
are thought to increase the risk of cisplatin-induced hearing
loss (see below), none have yet been described to increase
(or decrease) susceptibility to aminoglycoside-induced hear-
ing loss, although several studies are underway.

Concomitant dosing with specific therapeutics syner-
gistically enhances aminoglycoside ototoxicity and co-
administration should be avoided whenever possible. These
cotherapeutics include the loop diuretics in hypertensive
individuals (Bates et al., 2002; Mathog & Klein, 1969; Rybak,
1993), and vancomycin, a glycopeptide antibiotic commonly
prescribed in the neonatal intensive care unit (Brummett et al.,
1990; Rubin et al., 2002). Loop diuretics co-administered with
neuromuscular blocking agents (e.g., pancuronium bromide
or vecuronium bromide) for patients requiring respiratory
assistance (via intubation and ventilation) or surgical proce-
dures that also induce cochleotoxicity (Cheung et al., 1999;
Masumoto et al., 2007).

Since the late 1960s and 1970s, loud sound exposures
have been known to readily enhance aminoglycoside-induced
hearing loss (Brown et al., 1978; Darrouzet, 1963; Gannon
& Tso, 1969; Gannon et al., 1979; Vernon et al., 1978).
Subototoxic dosing of aminoglycosides becomes ototoxic
in the presence of noise that is greater than either insult
alone (Collins, 1988). Loud sound exposures up to 2 months
prior to aminoglycoside dosing appears to enhance the oto-
toxicity observed compared with aminoglycoside exposure
alone. However, if noise exposure occurs 4 weeks (or
more) after aminoglycoside dosing, little or no ototoxic
synergy is present. Noise exposure within 3 weeks after ami-
noglycoside will increase ototoxicity, although with decreas-
ing severity over time compared with simultaneous noise
892 American Journal of Audiology • Vol. 30 • 887–900 • October 202
plus aminoglycoside exposure (Ryan & Bone, 1978, 1982).
These data will be relevant to those operating in noisy
conditions where there is an increased risk of injury and/or
infection subsequent to exposure that may require pharma-
cotherapy with aminoglycosides (e.g., surgery and burns).

Exacerbation of Cisplatin-Induced Cochleotoxicity
Experimentally induced sepsis (via LPS) also potenti-

ates the degree of cisplatin-induced hearing loss in mice
(Oh et al., 2011). LPS-induced inflammation in subjects
treated with cisplatin occurs when the gastrointestinal tract
is irradiated, killing commensal bacteria that then increase
blood levels of LPS (Paulos et al., 2007). LPS typically binds
to Toll-like receptor 4 (TLR4) that also recognizes endoge-
nous damage-associated molecular patterns including DNA,
heat shock proteins, and immunogens from injured cells to
induce a sterile inflammatory response (Bhattacharyya et al.,
2017; Oblak & Jerala, 2011) that can enhance the ototoxicity
of cisplatin or other ototoxic chemotherapeutics. Other risk
factors that enhance the ototoxicity of cisplatin include those
that potentiate aminoglycoside-induced ototoxicity, including
renal insufficiency and dehydration (Gandara et al., 1991),
malnutrition that depletes antioxidant levels (Lautermann
et al., 1997; Lautermann, Song, et al., 1995), and the use
of blood–brain barrier disruption protocols that also dis-
rupt the BLB (Neuwelt et al., 1996).

Specific genomic mutations may predispose individuals
to cisplatin-induced hearing loss, including gene variants
for DNA adduct repair enzymes like ERCC2 and XPC
(Caronia et al., 2009; Turan et al., 2019); antioxidant enzymes;
and drug efflux or membrane pumps ACYP2, ABCC3,
COMT, and TPMT (Ross et al., 2009; Xu et al., 2015).
However, the predictive value in identifying these genomic
variants in predisposing individuals for cisplatin-induced
ototoxicity is currently poor (Langer et al., 2020; Tserga
et al., 2019). Enhanced cisplatin-induced hearing loss also
occurs when co-administered with ototoxic therapeutics,
including aminoglycosides, loop diuretics, and cranial radi-
ation (Clemens et al., 2016; McAlpine & Johnstone, 1990;
Miller et al., 2009; Paulino et al., 2010). Although conflict-
ing data can also be found in the literature, there are many
differences in experimental design and treatment that could
mitigate against these outcomes. Prior or low dosing with
cisplatin (preconditioning) can synergize with subsequent
cisplatin dosing to enhance ototoxicity (Harrison et al., 2015).
Cisplatin dosing in rats during inactive hours (i.e., daytime)
hours is also associated with greater hearing loss (Bielefeld
et al., 2018). Noise exposure also increases cisplatin-induced
hearing loss (Bokemeyer et al., 1998; Gratton & Kamen,
1990; Gratton et al., 1990; Laurell, 1992).

An additional phenomenon that exacerbates preexist-
ing hearing loss has been identified in patients treated with
cisplatin. Those with existing hearing loss at higher frequen-
cies prior to treatment are more likely to experience hearing
loss at lower frequencies that extend into the conventional
hearing range and important for speech discrimination (Dille
et al., 2012), affecting their ability to hear posttreatment com-
pared with pretreatment baselines. The development of
1



predictive ototoxicity modeling can enable pretreatment
counseling to prepare for rehabilitating iatrogenic hearing
loss (Deutsch et al., 2021; Dille et al., 2012).
Gaps in the Current Ototoxicity Knowledge Base
While the identity of several predisposing factors like

aging, renal insufficiency, inflammation, genetic variants,
or co-therapeutics are known to enhance the risk of oto-
toxicity, their interaction with each ototoxin is rarely well
characterized, especially in human populations. The prev-
alence and incidence of these predisposing factors remain to
be determined clinically, and this is typically complicated by
the variability of each subject’s medical history in a clinical
population. These individual interactions with each ototoxin
can also affect the impact of other predisposing factors and
pose an overwhelming challenge to better predict the oto-
toxic impact of prescribed aminoglycosides and cisplatin,
although innovative studies now provide a framework to
incorporate additional data points particularly for cisplatin-
induced hearing loss (Deutsch et al., 2021; Dille et al., 2012;
Hong et al., 2020; Konrad-Martin et al., 2010, 2014; Zhou
et al., 2014). To enable better prediction of the risk of oto-
toxicity, much progress must first be made in better charac-
terizing the key data points for individual medical settings
that influence the risk of ototoxicity. Examples of key ques-
tions that need answers include the following.

1. Which molecular mechanisms enable ototoxins to
cross the BLB and enter/traverse cochlear cells be-
fore entering hair cells?

2. What are the multiple molecular mechanisms of cyto-
toxicity for each ototoxin?

3. Which factors potentiate ototoxin trafficking, cellu-
lar entry, and cytotoxicity during inflammation?

4. What is the threshold for key inflammatory bio-
markers to be associated with enhanced drug traf-
ficking across the BLB and inflammation-enhanced
drug-induced cochleotoxicity or vestibulotoxicity?

5. Are these biomarkers the same for inflammatory re-
sponses arising from different etiologies (i.e., bacterial,
viral, drug-induced, and tumor- or radiation-derived
inflammation)?

6. Are inflammatory responses from different etiologies
(e.g., Gram-positive or Gram-negative bacterial species,
and viral) equally potent in driving inflammation-
enhanced ototoxicity?

These questions can also be rephrased by replacing
inflammation with any exacerbating factor. The identifi-
cation of prognostic, genomic, or diagnostic biomarkers of
cochlear damage is an area of intense focus (Landegger
et al., 2019; Lassaletta et al., 2019; Schmitt et al., 2018).
It will be important for systemic biomarkers (i.e., molecu-
lar assays) or noninvasive functional (auditory or vestibular)
assessments to efficaciously predict the risk of ototoxicity,
especially with the growing list of predisposing factors
interacting with the ototoxins. The identification of these
biomarkers will require better characterization of these pre-
disposing factors in preclinical models that then must be val-
idated in human studies to be used clinically. Thus, much
research lies ahead to provide new insights into iatrogenic
ototoxicity. This research will ultimately lead to the identi-
fication of druggable targets to preserve or restore hearing
during/after iatrogenic ototoxicity. Furthermore, otopro-
tectants must also efficaciously preserve or restore hearing
and/or vestibular function in medical settings that include
inflammation, exposure to other ototoxic agents including
renal insufficiency, aging, and/or noise.

Finally, additional insights into cochleotoxicity and
vestibulotoxicity will come from widespread ototoxicity
monitoring, improved objective, data-driven measures of
hearing loss (rather than blunt categories of relative hear-
ing deficits), and widespread adoption of extended higher
frequency audiometry, potentially via use of tablet-based
audiometers.
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