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ABSTRACT
Cancer is characterized by genetic and molecular aberrations whose number 

and complexity increase dramatically as cells progress along the spectrum of 
carcinogenesis. The pharmacologic application of agents in the context of a lower 
burden of dysregulated cellular processes constitutes an efficient strategy to enhance 
therapeutic efficacy, and underlies the rationale for using cancer prevention agents 
in high-risk populations. A longstanding barrier to implementing this strategy is that 
the risk in the general population is low for any given cancer, many people would have 
to be treated in order to benefit a few. Therefore, identifying and treating high-risk 
individuals will improve the risk: benefit ratio. Currently, risk is defined by considering 
a relatively low number of factors. A strategy that considers multiple factors has the 
ability to define a much-higher-risk cohort than the general population. This article will 
review the rationale for evaluating multiple risk factors so as to identify individuals 
at highest risk. It will use breast and lung cancer as examples, will describe currently 
available risk assessment tools, and will discuss ongoing efforts to expand the impact 
of this approach. The high potential of this strategy to provide a way forward for 
developing cancer prevention therapy will be highlighted.

INTRODUCTION

Cancer is a disease that develops through a multistep 
process of carcinogenesis. In the case of advanced cancer, 
for example metastatic breast cancer, its presence can 
easily be detected in a given person through widely 
available technology. However, at this advanced stage, 
there exists a high number of aberrant genetic, molecular 
and functional defects that are present within a given 
individual’s cancer. This underlies the fact that in this 
situation it is not currently possible to inhibit eventual 
disease progression and resultant death, even with the 
application of multiple therapies. In contrast, early in the 
process of carcinogenesis, the number of aberrant defects 
that exist within cells is far fewer, and such at risk cells 
in fact appear morphologically normal. As such, they 
constitute early events that increase risk for developing 

cancer in the future, but exist within individuals who 
do not yet have any clinical evidence of cancer. From a 
pharmacologic standpoint, such a situation allows one to 
apply therapy in the context of a lower burden of targets 
that need to be modulated in order to achieve a given 
therapeutic outcome. These factors constitute a core 
rationale for preventing the development of clinical cancer 
by treating at risk individuals with cancer prevention 
drugs. An example is the use of single agent tamoxifen, 
a selective estrogen receptor modulator (SERM), that is 
able to decrease the chance of a women of ever developing 
breast cancer by fifty percent among high risk women 
[1, 2]. This achievement demonstrates the potential power 
of cancer prevention therapy.

However, several practical barriers impede the 
attainment of this potential. They include the need to treat 
many people for long periods of time in order to benefit 
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only a few. Further, there is low tolerance for toxicity, 
and with any drug, toxicity increases with length of 
administration. In the case of breast cancer prevention, 
only 20% of eligible women opt for SERM therapy 
because of side effects, real or perceived [3].

A logical strategy to begin addressing these barriers 
involves identifying individuals at higher risk. This 
creates a more favorable risk: benefit ratio for therapeutic 
intervention. Further, it decreases the time it takes to 
assess agent efficacy. Historically, approaches to defining 
risk have relied upon very few factors, sometimes only 
age and gender. However, multiple factors have been 
associated with a given cancer. A strategy that takes into 
consideration multiple factors therefore has the potential 
to define risk-enriched cohorts.

Genetic factors account for a portion of individuals’ 
risk, while demographic and environmental factors 
substantially contribute. Simultaneously incorporating 
a combination of genetic factors, personal factors and 
environmental factors has the potential to more precisely 
characterize an individuals’ risk, compared to existing 
approaches. In addition, and importantly, there is a 
rapidly evolving set of biosensors that provide readouts 
reflective of factors that either provide measures of early 
carcinogenic changes, or drivers thereof, thereby having 
the potential to further refine risk. They are largely 
driven by emerging technologies that can be applied at 
the population level and are financially sustainable. 
Incorporation of all these factors has the ability to identify 
those whose risk is far greater than that of the general 
population. The act of targeting screening, counseling 
and intervention strategies, inclusive of therapeutic, to 
individuals at the highest risk has the potential to optimally 
benefit individual outcomes. Further, the diminished 
clinical readout timeframe will improve the efficiency 
of testing interventions, inclusive of therapeutic, thereby 
advancing the field by increasing efficiency.

This review will discuss cancer risk assessment 
models that take into account multiple factors, will discuss 
their design, will focus on personalized risk assessment, 
will focus on lung and breast cancer as examples and will 
discuss recent advances and future directions. Breast and 
lung cancer represent the world’s more common types of 
newly diagnosed cancer [4], and for each cancer type high 
risk individuals can be identified based on multiple risk 
factors, but in practice much of this information tends to 
be underutilized.

STATISTICAL CONSIDERATIONS FOR 
DEVELOPMENT OF POPULATION-LEVEL 
RISK MODELS

In order to develop a risk prediction model one must 
first define what the model is predicting, i.e. its primary 
endpoint, and the population to which the model will 
be applied. In most cancer prevention therapy studies, 

the intended population is the general population, while 
the primary endpoint is diagnosis of a specific cancer 
within a certain time period (e.g., diagnosis of breast 
cancer over the next five years). Appropriate data sets 
need to be available which contain data on the primary 
endpoint, known and potential risk factors. Because 
the cancer incidence is rare in the general population, 
a data set required for development of a risk prediction 
model is usually very large (>1 million individuals). 
In a typical setting, data from a cohort study are used, 
which contains information on baseline risk factors, 
outcome (diagnosis of cancer), vital status and follow-up 
time. In order to evaluate the model performance, data 
are randomly divided into two sets: a training set and a 
validation set. The training set is used to develop a model, 
while the validation set is used to evaluate the model’s 
performance. In general, the model is developed using a 
multivariable regression model such as logistic regression 
for a binary outcome or Cox proportional hazard 
regression for a censored outcome. The standard variable 
selection methods (e.g., best subset selection, stepwise 
procedure) can be used to develop a parsimonious model. 
In particular, LASSO (least absolute shrinkage and 
selection operator) is popularly used as a variable selection 
procedure for high dimensional data such as genome-wide 
association studies (GWAS) to identify a subset of single 
nucleotide polymorphisms (SNPs) that are predictive of 
the cancer risk. The goodness-of-fit of the continuous 
model was often tested using Hosmer-Lemeshow method. 
The estimated regression coefficients are then used to 
generate a predicted risk or probability of the outcome for 
each subject. More recently machine learning algorithms 
are used to develop a prediction model, such as random 
forest and neural network [5], especially for a study 
with high dimensionality of risk factors and lower than 
expected events. Regardless of which type and form of 
the prediction model, the model performance is evaluated 
using the validation set for discrimination (c-Statistics, 
ROC AUC), model fit (goodness of fit test) and calibration 
(expected vs. observed events). Barlow et al. [6] provides 
an excellent example of the breast cancer risk prediction 
model following this general strategy using the Breast 
Cancer Surveillance Consortium (BCSC) (https://www.
bcsc-research.org/). The general statistical workflow 
is illustrated in Figure 1. To be specific, Barlow et al. 
used data collected from 1,007,600 women participating 
in the BCSC including seven mammography registries 
with 2,392,998 eligible screening mammograms (1st 
step in Figure 1). This is a prospective follow-up study 
with women at baseline free of breast cancer and newly 
diagnosed breast cancer cases was ascertained during 
the follow-up. Barlow et al. separate the data randomly 
into a training dataset (75% of sample) for risk model 
construction and a validation dataset (25% of the sample) 
for validation of the model derived from the training 
dataset (2nd step in Figure 1). Then, separate logistic 
regression models were constructed for premenopausal 
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and postmenopausal women in the training dataset using 
a very stringent level of P < 0.0001 for inclusion of 
covariates, in order to eliminate the concern that small 
effects can be statistically significant at P < 0.05 due to 
the very large sample size (3rd step in Figure 1). Last, 
concordance c statistics was calculated for the validation 
dataset by using the predicted model derived from the 
training dataset. Goodness-of-fit of the data using Hosmer-
Lemeshow test was also used (4 step in Figure 1). After 
all these steps, the final prediction model was established 
and validated.

A major limitation for development of a risk 
prediction model is the availability of data, particularly 
information related to risk factors. In many cancer types, 
large cohort study data are unavailable. Instead, case-
control study data with the appropriate outcome and risk 
factor information may be available and can be used to 
develop a prediction model. The Gail model [7] addressed 
this challenge by combining case-control study data with 
cancer incidence data; however, the model still requires 
appropriate case-control data with relevant risk factor 
information.

Of highest importance to consider in the context of 
prevention therapy, one should also note that different risk 
profiles may give rise to the same probability of cancer 
incidence, but the biological underpinnings that underlie 
the different risk factors may in fact be different. Further, 
this difference in biology may inform a difference in 
prevention therapy strategy. For example, a 50-year-
old woman with a family history of breast cancer and 

no other risk factor may have a similar probability of a 
breast cancer as a 50-year-old woman with an extremely 
dense breast but without a family history of breast cancer. 
The predicted risk or probability itself may not inform 
an optimum intervention strategy for each individual; a 
thorough risk profile and understanding of the potential 
underlying biological mechanism may be required to 
develop a personalized prevention therapy strategy.

STATISTICAL CONSIDERATIONS FOR 
PREVENTION THERAPY TRIALS

We increasingly need to consider information 
available from assay methodologies that serve as 
biosensors, which in turn stem from our rapidly 
evolving understanding of cancer biology, rather than 
from evaluation of a population-based database, to be 
potentially incorporated into a risk prediction model. 
For initial investigation, a prevention clinical trial 
study design is a commonly used method. In general, a 
prevention therapy trial requires a large sample size and 
longer trial duration because of the very low event rate. 
For example, the largest prevention trial among women-
the Women’s Health Initiative, enrolled 161,808 women 
and were followed for over 25 years [8]. If there is an 
accurate risk prediction model, and if we can use it to 
identify those with the high event rate and those likely 
to benefit from the prevention therapy, we can design 
a more efficient trial with a smaller sample size and 
shorter trial duration. Consider an example of designing 

Figure 1: General statistical workflow for development and validation of a risk prediction model.
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a prevention therapy trial using a new biosensor for lung 
cancer. It is estimated that 10-year risk for lung cancer 
is 4.0% in the general population and the Bach model’s 
highest quintile category’s 10-year risk for lung cancer is 
10% [9, 10]. Now consider the emerging technology of 
spectral imaging [11], which uses light-based methods to 
detect nanoscale macromolecular changes associated with 
early carcinogenesis. Suppose that those with a cancer 
associated spectral signature in the oral cavity will have 
double the risk of developing lung cancer in the next 10 
years. Assuming a randomized phase III trial, Table 1 
show the sample sizes required to detect 25% reduction 
in lung cancer risk if the subjects are accrued from the 
general population (2-year risk of 0.8%), Bach’s highest 
quintile (2-year risk of 2%), or positive spectral signature 
(hypothetical 2-year risk of 4%). The benefit of having 
a strong risk predication model is clear; positive spectral 
signature, if the risk doubles in that group, will lead to 
80% reduction in the sample size.

REVIEW OF EXISTING CANCER RISK 
PREDICTION AND ASSESSMENT TOOLS 
FOR BREAST CANCER

Background: breast cancer

In 2019, there will be an estimated 268,600 new 
cases and 41,760 deaths attributed to female breast cancer 
in the United States [12], making it the most commonly 
diagnosed cancer and the second most common cause of 
cancer-related death in women in the country.

Current risk assessment tools for breast cancer

In the past two decades, several breast cancer 
risk prediction models have been developed to evaluate 
a woman’s potential risk for this disease. In addition to 
the National Cancer Institute (NCI)’s summary on risk 
assessment models on breast cancer [13], three other 
systematic reviews have been done on this topic [14–16]. 
Lee et al. conducted a systematic review and identified 
13 risk factors that were consistent throughout models 
[15]. Van Zitteren et al. conducted a systematic review 
on genetic risk models [16]. Through applying genetic 
risk models among a simulated population of 10,000, 
the study showed the genetic risk models alone based on 
low susceptibility variants for non-familial breast cancer 
has the potential to be comparable to that of current 
breast cancer risk models using clinical and historical 
risk factor data. More recently, Al-Ajmi et al. reviewed 
14 non-clinical/non genetic models and concluded that 
breast cancer risk models with modifiable risk factors 
have been well calibrated (i.e. how predicted probabilities 
agree with observed proportions) but have less ability to 
discriminate (i.e. the ability to separate individuals into 
different classes) [14].

Pike model and its extended model (Rosner and Colditz 
model)

The Pike model was developed in 1983 using life-
table analysis to estimate the breast cancer risk among 
breast cancer patients’ mothers and sisters [17]. This model 
estimates the risk within each decade between 20–70 years 
of age, depending on the index patient’s age at diagnosis 
and the laterality of breast cancer. According to the model, 
first-degree female relatives of premenopausal patients 
with bilateral disease had higher risk than patients with 
unilateral disease independent of age at diagnosis. Sisters 
are at higher risk than mothers. In 1994, a modification 
of the Pike Model was suggested by Rosner et al. among 
women participating in the Nurses’ Health Study [18]. 
The model includes the following variables: age, age at 
all births, menopause age and menarche age. Later in 
1996, Rosner et al., refined the extended Pike model and 
developed a log-incidence mathematical model, which 
provided an efficient framework for modeling the effect 
of lifestyle risk factors on breast cancer incidence, this 
model also excluded current age from the variable list and 
a C-statistic = 0.57 was derived [19]. In 2000, Colditz et 
al. further modified the model by including the following 
variables: benign breast disease, use of post-menopausal 
hormones, type of menopause, weight, height and alcohol 
and the model performance was further improved by 
showing a C-statistic = 0.64 [20]. Since studies have 
shown that blood estradiol level in postmenopausal women 
predict later breast cancer risk, Rosner et al. evaluated 
the prediction tool adding estradiol levels to the previous 
log-incidence model [21]. This addition of a serological 
biomarker significantly improved risk prediction. Rice 
et al. also updated the Rosner-Coltiz model by including 
more recently identified historical and behavioral risk 
factors including adolescent somatotype (body shape and 
physique type), vegetable intake, breastfeeding, physical 
activity and predicted percent mammographic density 
[22] to predict breast cancer risk overall and molecular 
subtype. This study showed adolescent somatotype and 
predicted percent mammographic density improved the 
overall model; among the aggressive subtype of ER-
disease, breastfeeding and vegetable intake was associated 
with improved risk prediction.
Gail model and its extended model

The Gail model was developed in 1989 by Dr. 
Mitchell Gail [7] by combining the risk estimates obtained 
from a case-control study with age-specific incidence 
rates (baseline hazards) from the NCI Surveillance, 
Epidemiology, and End Results (SEER) program. This 
model is part of the NCI Breast Cancer Assessment Tool 
(BCRAT) (Table 2), has been validated [23–25], and 
extended to different race/ethnic groups [26–28].

The earliest Gail Model took into account of age at 
menarche, age at the time of first live birth, the number 
of first degree relatives with breast cancer, the number 
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of breast biopsies; later, history of breast cancer, ductal 
carcinoma in situ (DCIS) or lobular carcinoma in situ 
(LCIS), BRCA1/2 mutation status, current age, biopsy 
displaying atypical hyperplasia and race were added into 
the model.

The Gail model was also developed based on 
estrogen receptor (ER) status in postmenopausal women. 
Chlebowski et al. utilized data from the WHI cohort and 
compared the model’s performance for ER-positive and 
ER-negative breast cancer and showed that the Gail model 
could identify populations at increased risk for ER+ but 
not ER- cancer [29].

Other extensions of Gail model include modification 
made by Clause et al. to consider women with first degree 
family history of ovarian cancer [30], and by Jonker et 
al. [31] to estimate the familial cluster of breast cancer 
to include BRCA1, BRCA2 and a hypothetical BRCAu 
either as dominant or recessive variant. Jonker’s model 
is comparable to Claus et al.’s and the dominant and the 
recessive model provided similar estimates.

The performance of the Gail breast cancer risk 
prediction model among the non-white population 
remains understudied in the US, though there have been 
some attempts to tailor it to specific non-white population 
[27]. One modified Gail model, termed as AABCS (Asian 
American breast cancer study) estimated absolute risk 
separately for Chinese, Japanese, Filipino, Hawaiian, 
Pacific Islander, and Asian women [27]. The AABCS 
model was calibrated to ethnicity-specific incidence rates 
and in these groups demonstrated better performance than 
the Gail (BCRAT) model for counseling Asian Pacific 
American women. The Gail model was also calibrated 
for Hispanic women, the Hispanic risk model (HRM). 
The HRM model was found to overestimate the risk for 
foreign-born women compared to US-born women and 
suggested further evaluation of its validity [28]. The 
CARE model targeted the African American population, 
was modified from the Gail model [26], and used data 
collected from African American case and control 
subjects in the Women’s Contraceptive and Reproductive 
Experiences (CARE) Study. Recently, Boggs et al. 
developed a new model for African American women 
based on 10 years of follow-up from the Black Women’s 
Health Study (BWHS) [32]. The new BWHS model 
included family history, previous biopsy, BMI at age 18 

years, age at menarche, age at first birth, oral contraceptive 
use, bilateral oophorectomy, estrogen plus progestin use 
and height. This new model was well calibrated with 
higher discriminatory accuracy among younger African 
American women less than age 50 years.

Finally, it is well recognized that breast cancer 
patterns vary between countries. Multiple extension 
models of the Gail model have therefore been tailored to 
different counties, including Japan [33], Korea (KoBCRAT 
model) [34, 35], Thailand [36], Italy (IT-GM model) [37, 
38], the Czech Republic [39], Sweden [40], Sudan [41] 
and Nigeria [42]. All such extensions have been shown to 
improve performance.

Dense breast tissue is known to be a strong risk 
factor for breast cancer development [43]. Chen et al. 
incorporated breast density from mammogram results 
as a variable into the Gail model. This adjusted model 
predicted higher risks when compared against the Gail 
model among women with higher breast density; however, 
the model provided average risk prediction in various age 
groups similar to the Gail model, suggesting that the new 
model has modest improvement in discriminatory power 
[44]. Another study by Tice et al. using the BCSC data, 
however, showed breast density incorporated into a breast 
cancer prediction model can improve the estimated 5-year 
risk of invasive breast cancer [45].
Tyrer-Cuzick model

In 2004, out of the International Breast cancer 
Intervention Study (https://www.ibis-trials.org/), 
Tyrer and Cuzick et al. developed a breast cancer risk 
prediction model (Tyrer-Cuzick model or IBIS tool, 
Table 2) incorporating the BRCA genes and a panel of 
more comprehensive personal risk factors [46]. The 
model includes classic breast cancer risk factors as well 
as genetic testing results. It has been validated in many 
studies [47–49] and the most current version incorporated 
breast mammographic density.
Breast Cancer Surveillance Consortium (BCSC) risk 
prediction model

Scientists participating in the BCSC (Barlow et al.) 
developed the risk calculator to estimate both 5-year and 
10-year breast cancer risk [6]. For premenopausal breast 
cancer, age, breast density, family history of breast cancer 
and a prior breast procedure were significant risk factors; 

Table 1: Hypothesized sample size for a prevention therapy trial for lung cancer prevention

Risk Group Power Per Arm Total % Event 
in Control

% Event in 
Treatment

Treatment/Control 
Event Ratio Alpha % Reduction 

in Sample Size
General 
Population 0.8 27278 54556 0.006 0.008 0.75 0.05 0.0%

Bach Model 0.8 10795 21590 0.015 0.02 0.75 0.05 60.4%
Spectral 
Imaging 0.8 5301 10602 0.03 0.04 0.75 0.05 80.6%

https://www.ibis-trials.org/
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Table 2: Online breast cancer risk assessment model
Model or  

Tool Name Website Risk Factors  
in the Assessment

Application 
Population Comments

The Breast 
Cancer Risk 
Assessment 
Tool (BCRAT)

Gail Model

https://
bcrisktool.
cancer.gov/
calculator.html

1.  History of Breast cancer or DCIS 
or LCIS or previous radiation 
therapy to the chest or treatment 
to Hodgkin lymphoma

2.  BRCA1 or BRCA2 gene mutation 
or a genetic syndrome diagnosis

3. Age
4. Race/ethnicity
5. Ever had a breast biopsy

a.  number of breast biopsy
b. atypical hyperplasia

6. Age at menarche
7.  Age at first live birth of a child
8.  Number of first-degree relatives 

that have had breast cancer

Women 35–74 
years old

Not applied for 
women carrying 
mutation in 
BRCA1/2, women 
with a previous 
history of invasive 
or in situ breast 
cancer or certain 
other subgroups

The tool estimates 
a women’s risk of 
developing invasive 
breast cancer over 
the next 5 years and 
until age 90 years old. 
Validated for White, 
Black, Hispanic and 
Asian/Pacific Islander 
women in the U.S.

Breast cancer 
Surveillance 
Consortium 
(BCSC) Risk 
Calculator

http://tools.
bcsc-scc.org/
BC5yearRisk/

1. Age
2. Race/ethnicity
3.  Family history of breast cancer in 

a first-degree female relative
4.  History of a breast biopsy with 

benign breast disease diagnoses if 
known

5.  BI-RADS® breast density assessed 
by a radiologist

Women 35–74 
years old 
undergoing 
screening.

Not applied to 
women with 
previous diagnosis 
of breast cancer, 
or DCIS or those 
who had breast 
augmentation or 
mastectomy

In 2015, the BCSC risk 
calculator has been 
updated to include 
benign breast disease 
diagnoses and to 
estimate both five-year 
and ten-year breast 
cancer risk.
Developed and validated 
in 1.1 million U.S. 
women and externally 
validated in the Mayo 
Mammography Health 
Study

Tyrer-Cuzick 
model (IBIS 
tool) V8

http://www.
ems-trials.org/
riskevaluator/

1. Age at menarche
2. Parity
3.  Age at first childbirth (if parous)
4.  Age at menopause 

(if postmenopausal)
5. Atypical hyperplasia
6. Locular carcinoma in site
7. Height
8. BMI
9.  Family history of breast or 

ovarian cancer
10. Ashkenazi descent
11. Prior breast biopsy
12. BRCA genes mutations
13. Mammographic density

General population 
until age 85

This model was first 
developed from U.K. 
population. It was 
validated in Sweden 
population as well 
as U.S. population. 
It can be used for 
general risk assessment 
as well as risk of 
mutation carriers. 
Mammographic density 
was recently added into 
the latest version of the 
model (V8).

Susan Komen 
Foundation 
Risk Factors 
Table

https://ww5.
komen.org/
Breastcancer/
Breastcancerrisk 
factorstable.
html

1. Established and probable factors
•  Increases breast cancer risk
•  Decreases breast cancer risk
•   Not  related  to  breast  cancer  risk 

(neither increases nor decreases risk)
2. Possible Factors
3.  Factors with inconsistent results 

or insufficient evidence

For general 
population’s 
knowledge

The tables lists both 
factors linked to breast 
cancer and factors still 
under study. 

https://bcrisktool.cancer.gov/calculator.html
https://bcrisktool.cancer.gov/calculator.html
https://bcrisktool.cancer.gov/calculator.html
https://bcrisktool.cancer.gov/calculator.html
http://tools.bcsc-scc.org/BC5yearRisk/
http://tools.bcsc-scc.org/BC5yearRisk/
http://tools.bcsc-scc.org/BC5yearRisk/
http://www.ems-trials.org/riskevaluator/
http://www.ems-trials.org/riskevaluator/
http://www.ems-trials.org/riskevaluator/
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
https://ww5.komen.org/Breastcancer/Breastcancerriskfactorstable.html
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for postmenopausal breast cancer, age, breast density, race, 
ethnicity, family history of breast cancer, a prior breast 
procedure, BMI, natural menopause, hormone therapy 
and a prior false-positive mammogram were risk factors. 
It was validated among 1.1 million women undergoing 
mammography across the U.S., with 18,000 diagnosed 
with invasive breast cancer. The BCSC Risk Calculator 
(Table 2) has been externally validated in the Mayo 
Mammography Health Study [50].
Inclusion of Single Nucleotide Polymorphisms (SNPs) 
into risk prediction and hypergeometric polygenic model

With the development of GWAS, there has been 
increasing interest in adding SNPs identified from GWAS 
to breast cancer risk prediction models. Supplementary 
Table 1 summarizes the risk prediction models for breast 
cancer incorporating SNPs in the models.

Wachold et al. evaluated 10 common genetic 
variants that, when added to traditional risk factors, 
were used to predict breast cancer risk [51]. The 
results showed that adding additional genetic variant 
information only modestly improved the risk prediction 
models’ performance. Further stratifying breast cancer 
into its molecular subtypes, Husing et al. evaluated the 
predictive capacity of GWAS-identified SNPs alone and 
in combination with traditional risk factors among breast 
cancer cases with different hormone receptor status [52]. 
Through AUC analysis, increasing the numbers of genetic 
variants does steadily increase the discriminatory ability in 
breast cancer risk prediction; however, the overall effect 
size is small. Importantly, the discrimination performs 
better in receptor-positive cases.

Dite et al. conducted age group stratified analyses 
among cases and controls aged 35–49 years in the 

Australian Breast Cancer Family Registry to evaluate 
whether young age groups would have better performance 
than older age group [53]. Through calculating the AUC, 
the authors found among women aged 35–39 years, the 
AUC improved from 0.61 to 0.65 after including seven 
SNPs; among women aged 40–49 years, the AUC 
improved from 0.61 to 0.63. The overall AUC improved 
from 0.58 to 0.61. The data showed incorporating SNPs 
into the BRCAT model improved the model performance 
especially among women aged 35–49 years.

Jupe et al. developed a polyfactorial risk model 
(PFRM) to predict sporadic breast cancer risk among 
a Caucasian population [54]. This model included 5 
clinical risk factors and 22 SNPs including 19 genes with 
6 genes specifically involved in the regulation of steroid 
metabolism. This model was found to outperform the 
Gail model almost 2 fold in terms of 5-year and lifetime 
risk prediction. The model was developed based on 5,022 
Caucasian women and validated in another cohort of 
1,193 women.

McCarthy et al. evaluated the performance of the 
BCRAT and the combined BCRAT+SNPs model using 
a cohort of African American and white women [55]. 
Agreement between the BCRAT and the BCRAT+SNPs 
model was low for identifying high-risk women. Adding 
SNPs had the greatest prediction impact among African 
Americans, with 33% identified as high-5-year risk by 
the combined model compared against 12.4% identified 
by the BCRAT. Among African Americans, 21% were 
reclassified as having high-5-year risk, while 10% of white 
women were reclassified. This study showed evidence that 
SNPs are especially valuable among African Americans 
for use in breast cancer risk prediction. Likewise, 
combining together SNPs with clinical risk factors 

CARE model

SAS Macro

https://dceg.
cancer.gov/
tools/risk-
assessment/care

1. Number of breast biopsies
2.  Age at menarche in years (non-

negative integer years)
3.  Number of first degree relatives 

with breast cancer (non-negative 
integer counts)

4.  Biopsy displays atypical 
hyperplasia

5. Race
6. Current age
7. Projecting age in years in the set 

African American The model is being 
updated periodically as 
new data or research 
becomes available.

Breast and 
Ovarian 
Analysis 
of Disease 
Incidence 
and Carrier 
Estimation 
Algorithm 
(BOADICEA)

https://pluto.
srl.cam.ac.uk/
cgi-bin/bd3/v3/
userReg2.web2.
cgi

1. Pedigree number
2.  Clinical history (sex and status, 

age or age at death, year of birth), 
age at breast cancer diagnosis, age 
at ovarian cancer diagnosis, age 
at pancreatic cancer diagnosis, 
genetic testing

3.  Breast cancer pathology (ER, PR, 
HER2, CK14, CK5/6)

General population 
and individuals 
with family history

BOADICEA can 
be used to predict 
BRCA1/2 mutation 
carrier probabilities and 
breast cancer as well as 
ovarian cancer risks at 
specific future ages

https://dceg.cancer.gov/tools/risk-assessment/care
https://dceg.cancer.gov/tools/risk-assessment/care
https://dceg.cancer.gov/tools/risk-assessment/care
https://dceg.cancer.gov/tools/risk-assessment/care
https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/userReg2.web2.cgi
https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/userReg2.web2.cgi
https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/userReg2.web2.cgi
https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/userReg2.web2.cgi
https://pluto.srl.cam.ac.uk/cgi-bin/bd3/v3/userReg2.web2.cgi
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improves risk prediction in both Chinese and Japanese 
populations [56, 57].

Van Veen et al. evaluated a panel of 18 SNPs 
(SNP18) in combination with classic risk assessed by the 
Tyrer-Cuzick model [58]. This study found adding SNP18 
provided a better risk stratification among women in both 
the lower and higher risk groups [58].

Antoniou et al. developed a hypergeometric 
polygenic BOADICEA model for populations with a known 
family history of breast or ovarian cancer by incorporating 
BRCA1 and BRCA2 mutations, as well as the joint 
multiplicative effects of a polygenic component of multiple 
genes of small effect [59]. Later, BOADICEA model was 
updated using data from two UK breast cancer studies and 
family data from BRCA1/2 carriers [60]. The BOADICEA 
is applied to individuals with any family history to predict 
their gene mutation probabilities and cancer risk. Later, Lee 
et al. further updated the BOADICEA model extending its 
capabilities, making it easier to use in clinics with more 
accurate predictions, and updated the web interface to be 
available for general use [61].

In addition to the use of breast cancer or BRCA1/2 
mutation status as the primary variable, Crooke et al. 
developed a model for looking at the kinetic effect of 
genetic variants of the enzymes CYP1A1, CYP1B1, 
and COMT as well as phenotype factors on the 
production of the main carcinogenic estrogen metabolite 
4-hydroxyestradiol (4-OHE(2)), expressed as an AUC 
metric (4-OHE(2)-AUC) [62]. This model showed 
women at higher 4-OHE(2)-AUC level are at greater 
risk developing breast cancer among both pre- and post-
menopausal women.

To evaluate whether polygenic risk score (PRS) or 
breast density from BI-RADS is independent risk factor 
for breast cancer or not, Vachon et al. evaluated PRS and 
breast density into the BCSC risk prediction model and 
found that PRS added independent information (P < .001) 
to the BCSC model and improved discriminatory accuracy 
[50]. Shieh et al. evaluated the BCSC risk model in 
combination with a PRS compared of 83 SNPs identified 
from GWAS studies [63]. Using data from a nested case-
control study within a screening cohort, the study found 
the PRS, family history and breast density remained strong 
risk factors, a combined model including the BCSC risk 
factors with PRS improved the BCSC model to AUROC 
0.65 from 0.62. The BCSC-PRS model classified 18% of 
cases as high-risk compared with 7% by BCSC model. 
This study further suggested BCSC-PRS model’s better 
prediction ability.

Summary of breast cancer risk prediction models

Breast cancer prediction models are developed and 
refined over years, tailored to both the general population 
and specific populations, with dynamic adjustments 
given our evolving understanding of pathophysiology, 
risk factors, and detection technology development. The 

calibration performance and discrimination performance 
vary across models. There is no universal model to predict 
breast cancer risk, though among different populations, a 
constellation of different models exist and are undergoing 
constant refinement. Key variables that are used to predict 
breast cancer occurrence include: multiple ages (current 
age, age at menarche, age at 1st child birth), race/ethnicity, 
family history of breast cancer among first degree female 
relatives, history of breast biopsy, breast density, genetic 
factors including BRCA gene mutations and the factors 
may be expanded/refined with more research update. 
Efforts that leverage orthogonally informative sources of 
information, inclusive of history, high dimensional genetic 
analysis, and an emerging panel of biosensors, while 
striving for simplicity of models will be at the forefront 
of effectiveness.

REVIEW OF EXISTING CANCER RISK 
PREDICTION AND ASSESSMENT TOOL 
FOR LUNG CANCER

Background: lung cancer

Lung cancer is the leading cause of cancer-related 
mortality both in the U.S. and worldwide, for both men and 
women. In 2018 in the U.S. there were over 234,000 new 
cases of lung cancer, accounting for 25.3% of all cancer 
deaths [64]. Small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC) account for the vast majority of 
lung cancer diagnoses, comprising approximately 15% and 
85%, respectively [65]. If detected at an early stage, lung 
cancer can be cured through local modality-based therapy.

The single most important risk factor associated with 
the development of lung cancer is tobacco smoking [66]. 
Tobacco use patterns, in response to control efforts are 
largely responsible for the decreased incidence in the U.S. 
However, the success of such control efforts are varied 
worldwide. In addition to tobacco smoke exposure, other 
factors associated with the development of lung cancer 
include air pollution, radiation, coal smoke, indoor fuel 
burning, other organic compounds, industrial exposure to 
asbestos or mining of metals, and exposure to radon [65].

Lung cancer screening

The natural history of lung cancer is such that there 
is often a long asymptomatic preclinical phase. This 
scenario is not well suited for using clinical signs for early 
detection, but does provide the requisite opportunity for 
early detection in the preclinical phase. Symptoms such 
as cough, hemoptysis, dyspnea and chest pain often reflect 
invasion into local or distant structures, often signaling 
advanced disease [67]. However, the epidemiology of 
lung cancer makes it a particularly attractive candidate for 
screening given its significant prevalence, identifiable risk 
factors and the ability to cure early stage disease.
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Although several modalities for lung cancer 
screening have been considered, including chest 
radiography and sputum cytology testing, the only 
modality that has been prospectively shown to reduce 
mortality in a randomized trial is low-dose computed 
tomography (LDCT). This benefit was proven in 
the National Lung Screening Trial (NLST), which 
demonstrated a relative reduction in mortality of 20% 
when using annual screening by LDCT compared to 
chest radiographs [68]. The study evaluated individuals 
between 55–74 years old with at least 30 pack-years 
smoking history, and for non-current smokers, cessation 
within 15 years. Based largely on this study, LDCT 
screening for relevant cohorts is recommended by the 
American Cancer Society, National Comprehensive 
Cancer Network, American Society of Clinical Oncology, 
the US Preventative Services Task Force and other groups. 
However, some groups, such as the American Academy 
of Family Physicians, conclude that there is insufficient 
evidence to recommend for or against screening. If all 
currently eligible individuals in the U.S, were screened 
according to these criteria, a 2018 estimate concluded that 
12,000 lives per year could be saved [69].

Poor uptake of screening

Despite the compelling effectiveness data and 
guidelines advocating for broader uptake of LDCT 
for screening eligible populations, a 2017 study found 
that only 3–4% of eligible individuals are undergoing 
the recommended screening [70]. There are several 
underlying reasons. Firstly, lung cancer screening itself 
does not come without risks. While LDCT demonstrated 
a reduction in mortality, the screening process exposes all 
patients to radiation, and there was a high incidence of 
false positives among positive screening results. Further, 
half of lung cancer cases continue to occur outside of the 
screening-eligible population [71]. Positive screening 
findings caused significant anxiety and stress, and many 
exposed patients to invasive and potentially unnecessary 
procedures such as biopsy, bronchoscopy, or surgery. 
Additionally, over diagnosis itself is a risk, a situation in 
which the presence of a cancer is detected early, but the 
natural history of the cancer detected may not have gone 
on to cause symptoms or limit life expectancy. Further, 
patients identified as high-risk for development of lung 
cancer have concordant increased risk for related comorbid 
conditions, such as chronic obstructive pulmonary disease, 
coronary artery disease or cerebrovascular disease among 
many others [72]. These comorbid conditions not only 
compete with the potential development of lung cancer 
as conditions that can adversely impact health, they add 
significantly to the risk of conducting invasive procedures 
in pursuit of positive initial LDCT findings. Therefore, 
the patients identified as the most likely to benefit from 
early detection and early intervention may also be the 

poorest candidates for said early intervention based on 
their comorbidity profiles. Finally, there are large financial 
implications associated with screening and the costs of 
following up on the high rate of false positive findings.

Taken in concert, the demonstrable benefits in 
mortality achievable with lung cancer screening, the 
high false-positive rate of said screening, and relatively 
low uptake of such screening despite guideline 
recommendations all suggest that development of tools 
to optimize screening patient populations by improving 
specificity could result in improved uptake of screening 
and therefore lives saved.

Current risk assessment tools for lung cancer

Current screening recommendations based on the 
NLST data identify candidates for screening based solely 
on their age and past cigarette exposure in the form of 
pack-years. One means of limiting over diagnosis would 
be to apply increasingly precise, targeted-screening 
protocols towards populations with an enriched disease 
burden. As a parallel to breast cancer, the development 
of risk-assessment tools may assist with identifying 
individuals with the highest pre-test probability of disease. 
In fact, an analysis of the NLST data that divides the 
screened individuals into quintiles based on perceived 
6-year risk of death from lung-cancer demonstrates that 
those in the highest quintile of risk contained nearly 90% 
of the screen-prevented lung cancer deaths [73]. Within 
the highest quintile, the number needed to screen to 
prevent 1 lung cancer death was 161.

Several subsequent risk-assessment tools have been 
developed or are under development that incorporate 
additional historical and demographic information beyond 
smoking history and age, such as race, ethnicity, education, 
obesity, history of cancer, and other comorbidities, or 
even other proposed screening tests or biomarkers which 
could improve the operating characteristics of the LDCT 
test to more specifically predict risk of lung cancer 
development. Despite the number of risk assessment 
tools, they are difficult to validate in real-world patient 
populations. A recent analysis of nine accepted models 
compared their relative performance characteristics by 
retrospectively using the NLST and the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trial (PLCO) 
data [74]. By assessing these models based on their 
calibration, discrimination, and clinical usefulness, the 
authors found that the PLCOm2012, Bach, and Two-
Stage Clonal Expansion incidence models had the best 
characteristics, outperforming the original NLST entry 
criteria in both sensitivity and specificity [9, 75, 76]. 
However, this concept has not yet been proven in a 
prospective randomized trial in the same way the original 
NLST demonstrated a mortality benefit.

The concept of tying a separate test modality, such as 
a biomarker, to complement imaging (specifically LDCT) 
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has been a tantalizing prospect as a means to orthogonally 
modify an individual’s candidacy for screening or to 
interpret indeterminate screening results. However, there 
are numerous biomarker candidates that are in a variety of 
stages of development, and none have been prospectively 
evaluated in a randomized clinical context to assess their 
real-world performance characteristics, let alone integrated 
with LDCT to see if they improve upon the ability to 
detect early cases of lung cancer and prevent mortality. 
Acknowledging this limitation, a 2016 simulation performed 
by Kong, et. al examines the prospect of a combination 
theorized biomarker and LDCT strategy for screening in 
the context of cost-effectiveness [77]. However, because 
the biomarkers assessed in this study are theoretical, the 
generalizability of the conclusions are limited.

To further investigate the premise of better 
identifying candidates for screening with biomarkers, 
the 2018 INTEGRAL study evaluated the performance 
of a panel of biomarkers [cancer antigen 125 (CA-125), 
carcinoembryonic antigen (CEA), cytokeratin-19 fragment 
(CYFRA 21–1), and precursor surfactant B (Pro-SFTPB] 
with LDCT [78, 79]. This panel was developed based 
on a cohort of patients at high risk of lung cancer, and 
then blindly validated in a separate cohort of patients of 
63 patients with lung cancer and 90 matched controls. 
The results do demonstrate improvement in the AUC 
of patients who develop lung cancer when using the 
biomarker panel compared to the smoking status alone 
as per the original NLST population. SNPs have been 
also incorporated into lung cancer prediction models and 
Supplementary Table 2 summarized the risk prediction 
models for lung cancer with SNPs included as one of the 
predictors.

The potential application of a robust multifactorial 
risk assessment tool for lung cancer risk could be well 
suited to identify ideal candidates for lung cancer 
screening programs. Taken a step further, a robust tool 
would similarly identify strong candidates for prevention 
therapy strategy, in a similar vein to the above proposed 
strategies with regards to breast cancer.

New biosensor technology is increasingly able to 
identify high-risk populations, narrowing down prevention 
trial sample size. For example, special imaging is a fast 
developing field for early diagnosis. The basic principle 
of spectral analysis is that the epithelial surface exposed 
to the cohesive laser will reflect a unique spectral pattern. 
The nature of the pattern is determined by the intracellular 
nanoscale macromolecular structure, especially 
chromatin. Chromatin structure is one of the earliest and 
most common changes that can drive cancer. In upper 
respiratory tracts, including lung and several organ types, 
all of these organs are at risk of “field carcinogenic” 
effects [80]. Assess the risk of a nearby organ area, such 
as the mouth, can predict the risk of lung cancer. Consider 
smokers and lung cancer, people who smoke expose cells 
in their oral cavity to smoke at the same time they expose 
their lungs to it. Changes in the spectral signature of oral 

cells are seen coincident with changes in lung epithelial 
cells. As a non-invasive method, oral cell DNA is readily 
available in contrast to DNAs from the lung. Some of the 
oral DNA adducts have been identified in lung DNA from 
smokers and changes in DNA can be routinely quantified 
by spectral imaging technique [81]. We expect the 
intensity of the spectral characteristics of oral epithelial 
cell DNA increases with the increase in the risk of lung 
cancer, therefore, it can be readily used into lung cancer 
risk prediction model to improve identifying the high-risk 
cancer population.

CONCLUSIONS

Cancer is not predicted by a single factor. A 
combination of non-clinical, clinical, and genetic risk 
factors together provide a more comprehensive and 
accurate assessment of risk for each individual. Efficient 
prevention therapy strategies will need to rely on 
such comprehensive risk assessment tools for targeted 
intervention and for effective cancer prevention strategies 
that are both sustainable and acceptable. The landscape 
of biomarker technology is extremely dynamic, with 
many promising new candidates, covering a spectrum of 
operating characteristics. Therefore, the development of 
risk prediction models for prevention therapy will need 
to evolve in a rational manner in order to incorporate the 
many factors that contribute to risk. Future prevention 
therapy trials will increasingly rely on the continued 
development of increasingly robust risk assessment tools to 
not only quantify risk, but to also determine the biological 
basis of that risk, and thus the type of intervention strategy.
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