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Abstract: We have recently reported in our previous work that one-dimensional dielectric grating
can provide an open structure for Fabry–Perot mode excitation. The grating gaps allow the sample
refractive index to fill up the grating spaces enabling the sample to perturb the Fabry–Perot mode
resonant condition. Thus, the grating structure can be utilized as a refractive index sensor and
provides convenient sample access from the open end of the grating with an enhanced figure of merit
compared to the other thin-film technologies. Here, we demonstrate that 2D grating structures, such
as rectangular pillars and circular pillars, can further enhance refractive index sensing performance.
The refractive index theory for rectangular pillars and circular pillars are proposed and validated
with rigorous coupled wave theory. An effective refractive index theory is proposed to simplify the
2D grating computation and accurately predict the Fabry–Perot mode positions. The 2D gratings
have more grating space leading to a higher resonant condition perturbation and sensitivity. They
also provide narrower Fabry–Perot mode reflectance dips leading to a 4.5 times figure of merit
enhancement than the Fabry–Perot modes excited in the 1D grating. The performance comparison
for thin-film technologies for refractive index sensing is also presented and discussed.

Keywords: grating Fabry–Perot; 2D grating; optical sensors; optical resonators; sensor
enhancement; instrumentation

1. Introduction

In recent years, optical resonators [1,2] are one of the favored structures in sensors
for sensing applications, such as biomedical sensing [3], refractive index sensing [4], and
ultrasonic detection [5–7] due to their high-quality factor (Q factor) of the narrow resonant
mode [8], which arises from resonant cavity [9].

At present, there are several types of resonators, including thin-film resonators [10],
ring resonators [11], and grating waveguides [12]. Our previous work [13] has identified
that subwavelength and near wavelength dielectric grating can serve as Fabry–Perot (FP)
resonant cavity. The FP resonances excited in a thin film-based grating consisting of a thin
gold layer and a one-dimensional (1D) rectangular dielectric grating, as shown in Figure 1a.
The FP mode allows convenient sample access from the open space similar to surface
plasmon resonance (SPR) detection [14–16] with a uniform gold layer of 48 nm as shown
in Figure 1b, unlike well-known FP resonators, such as Bragg reflectors [8,17,18]. The
dielectric grating is a lossless structure; the gold layer provides a loss mechanism [15,19]
for the FP mode. Figure 1c shows reflectance spectra of 1D polydimethylsiloxane (PDMS)
grating (nPDMS = 1.43 [20]) as depicted in Figure 1a with the grating thickness (hg) of
900 nm; grating period (λg) of 791 nm; grating width (Wg) of 237 nm, and a uniform gold
layer with gold refractive index ngold of 0.18344 + 3.4332i [21]; the gold thickness (dg) of
48 nm and 38 nm for transverse magnetic (TM) polarization and transverse electric (TE)
polarization, respectively, when the refractive index of the sensing region was water with
the refractive index of 1.33 and bovine serum albumin (BSA) protein solution with the
refractive index of 1.372 [22]. Figure 1c showed the reflectance spectrum for the 1D PDMS
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grating when the grating was illuminated by a TM linearly polarized coherent laser source
at 633 nm wavelength. The sample fills the grating gaps; this has enabled the sample
refractive index to embed as a part of the FP grating resonant cavity. In other words, the
external sample refractive index can perturb the FP grating resonant condition. This feature
is not present in the other closed FP resonant structures, such as bimetallic grating [8,23]
and Bragg mirrors [24–26]. Figure 1d shows reflectance spectra of the SPR platform with
the two refractive indices. Note that Figure 1c,d was calculated using rigorous coupled-
wave theory; calculation details are provided in the Materials and Methods section below.
Thus, both the SPR and the FP mode excited by the grating can respond to refractive index
change in the same fashion.
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can lead to a higher sensitivity since there is more sample loaded inside the grating gap. 
The sensitivity is proportional to the volume of the gap region, and one may predict that 
the FOM can be enhanced by the same proportion only. This linear FOM enhancement is 
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hance the Q factor or the FWHM leading to a further FOM enhancement. 
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ing to a 4.5 times enhancement in FOM. Computation for 2D grating structures requires 
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Figure 1. Schemes of (a) 1D rectangle grating for FP mode coupling; (b) Kretschmann configuration- based surface
plasmon resonance structure; (c) Reflectance spectrum of 1D rectangle grating for FP mode coupling, and (d) Reflectance
spectrum of surface plasmon resonance configuration for sample refractive indices of 1.33 (water) and 1.372 (bovine serum
albumin (BSA) protein solution) when the structures were illuminated by a linearly TM-polarized coherent laser source at
633 nm wavelength.

In our previous work [13], we reported that the thin film-based grating resonator
gave a narrow full-width at half maximum (FWHM) and better figure of merit (FOM),
which leads to better refractive index sensing capability for small changes in the sample
refractive index region. However, it has slightly lower sensitivity than the SPR, as shown
in Figure 1c.

Having explained the sensing mechanism of the 1D FP grating mode, if more of the
1D grating dielectric material has been replaced with the sample, such as making narrower
stripes or removing the material in the other direction making a 2D grating, these can
lead to a higher sensitivity since there is more sample loaded inside the grating gap. The
sensitivity is proportional to the volume of the gap region, and one may predict that the
FOM can be enhanced by the same proportion only. This linear FOM enhancement is valid
for 1D grating, but not the case for the 2D grating since the 2D grating can also enhance the
Q factor or the FWHM leading to a further FOM enhancement.

This paper presents a theoretical framework for analyzing two-dimensional (2D)
rectangular and circular dielectric gratings to enhance sensitivity and FWHM further,
leading to a 4.5 times enhancement in FOM. Computation for 2D grating structures requires
more resources and is time-demanding than those 1D gratings. An effective refractive index
model for 2D gratings is proposed and discussed so that the complex optical diffractions
and modes of the 2D gratings can be simulated by a uniform homogeneous layer of the



Sensors 2021, 21, 4958 3 of 14

effective refractive index to predict the responses of the 2D gratings with no need for
extensive computing power [27,28]. The performance of optical structures for refractive
index sensing reported in the literature is also quantified, compared, and discussed. To the
best of the authors’ knowledge, analysis of Fabry–Perot Resonance in 2D grating structures
has never been investigated and reported before in the literature.

2. Materials and Methods
2.1. 2D FP Grating Structures

There are two 2D optical FP grating structures investigated here, which were:

(1) Rectangular pillars made of PDMS with nPDMS of 1.4283 [29] coated plasmonic gold
sensor with thickness dg and refractive index ngold of 0.18344 + 3.4332i [21] on a
standard BK7 glass coverslip with the refractive index n0 of 1.52. The rectangular
grating was on a rectangular grid with the grating height of hg, the grating periods
along the x-axis λgx and y-axis λgy with the width of deposited PDMS along the x-axis
Wgx and y-axis Wgy, respectively as shown in Figure 2a. The sensing region is on the
top of the structure with the sample refractive index of ns. Grating fill factors along
the x-axis FFx and the y-axis FFy are defined as Wgx/λgx and Wgy/λgy.

(2) Circular pillars made of PDMS with nPDMS of 1.4283 [29] coated plasmonic gold
sensor with thickness dg and refractive index ngold of 0.18344 + 3.4332i [21] on a
standard BK7 glass coverslip with the refractive index n0 of 1.52. The circular grating
was on a rectangular grid with the grating height of hg, the grating periods along the
x-axis λgx and the y-axis λgy are the same for the circular pillars. The diameter of
deposited PDMS pillars is defined by Dg, as shown in Figure 2b. The sensing region
is on the top of the structure with the sample refractive index of ns. Grating fill factor
along the x-axis FFx, and the y-axis FFy are the same and defined as Dg/λgx and Dg/λgy.
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Figure 2. Schematic diagrams of (a) 2D rectangular pillar grating on a rectangular grid and (b) 2D circular pillar grating on
a rectangular grid. The red dashed box indicates the unit cell for each scheme.

2.2. Optical Detection and Optical Simulation

The optical detection scheme measured the reflectance from the optical gratings
when the gratings were illuminated by a linearly polarized coherent source with the
incident wavelength λ0 of 633 nm (Helium-Neon laser), the incident angle of θ0 in the
glass substrate. The incident plane φ is defined relative to the x-axis and the polarization
angle, Ψ, as depicted in Figure 2a,b. In this study, two linear polarizations were considered:
the transverse magnetic (TM polarization or p-polarization) when was 0 rad, and the
transverse electric (TE polarization or s-polarization) Ψ was π/2 rad.

Recently, in Sasivimolkul et al. [13], we have reported that the optimum gold thickness
for the minimum reflectance dip was different for the TM polarization and TE polarization
due to the different loss of energy dissipation of each polarization [13]. Therefore, the
optimum gold thicknesses for TM polarization and TE polarization dg of 48 nm and 38 nm,
respectively, were employed in this study.

Rigorous coupled-wave analysis (RCWA) [30–32] is employed to compute optical
responses, including reflection coefficients, reflectance, and field distribution for the two
types of the 2D gratings, as shown in Figure 2. The RCWA software was developed in-
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house under MATLAB environment utilizing parallel computing and graphic processing
unit computing. All the simulations reported here were computed using diffracted orders
in the x-axis and the y-axis of 21 orders and 21 orders, respectively, corresponding to
the total diffracted orders of 441 orders to ensure that the simulation convergence has
been reached.

2.3. Quantitative Performance Parameters

Sensitivity (S) is defined as the change in the n0sinθ0 over the change in sample
refractive index ns as expressed in Equation (1) and shown in Figure 3. The sensitivity is
defined using the change in the normalized wave-vector to reflect the coupling resonant
condition of the FP and SP modes explained later in Equation (3). The n0sinθ0 term
can visualize the critical angle of the optical structure, allowing a direct comparison of
refractive indices. It also indicates the numerical aperture (NA) required to excite the
proposed FP modes. The change in n0sinθ0 can be measured using back focal plane
imaging [8,14,19,31], enabling simultaneous measurements of multiple modes through an
objective lens. Other detection mechanisms, such as measuring the change in intensity level
and measuring the change in the coupling wavelength, will be investigated and reported
in a subsequent publication.

S =
dn0sinθ0

dns
(1)
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Figure 3. Shows how sensitivity and FWHM are calculated from the reflectance spectra.

The full width at half maximum (FWHM) is defined as the width of reflectance dips
at the intensity of 0.5, as depicted in Figure 3.

The figure of merit (FOM) is defined as the sensitivity divided by the full width at half
maximum (FWHM) considering (1) how far the dip moves, which is the sensitivity, and (2)
how narrow the dip is. The FOM is expressed as shown in Equation (2).

FOM =
S

FWHM
(2)

Dynamic range or detection range is defined as the range of sample refractive indices
in which the sensor can still respond with the minimum reflectance dip of at least the
reflectance of 0.25.
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3. Results
3.1. Effective Refractive Index Model

In Sasivimolkul et al. [13], we have recently reported an effective refractive index
model that the FP mode position excited through 1D grating can be located using an
asymmetric FP condition as expressed in Equation (3), where the grating layer can be
simplified by a homogeneous layer of effective refractive index (neff) and the layer thickness
hg as depicted in Figure 4.

2kz,cavityhg + δupper + δlower = 2πM (3)
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The term δupper is the phase of reflection coefficient between the neff layer and the
sample layer. The term δlower is the phase of reflection coefficient between the neff layer
and the glass substrate layer. Note that the δlower and δupper can be calculated using Fresnel
equations. M is the FP mode number, M = 0, 1, 2, ... It is established that the M of
0 only presents in TM polarization due to the existing TM polarization of a stripe line
waveguide [33,34]. kz,cavity is the wave vector in the z-axis, which can be calculated as
described by Equation (4). The difference between the 1D grating and the 2D grating is
that the 2D grating diffracts light in both the x and y axes, whereas the 1D grating diffracts
light in the x-axis only. In other words, the Ky term in Equation (4) is 0 for 1D grating.

kz,cavity =

√[
2π

λ0
ne f f

]2
−
[
Kx + Ky

]2 (4)

Kx = kxi + kg,x, kxi =
2π
λ0

n0 sin θ0 cos φ and kg,x = mπ
λgx

, m = 0, ±1, ±2, ±3, . . .

Ky = kyi + kg,y, kyi =
2π
λ0

n0 sin θ0 sin φ and kg,y = nπ
λgy

, n = 0, ±1, ±2, ±3, . . .

3.1.1. D Rectangular Grating

The neff for the 1D grating can be expressed as shown in Equation (5) [13]. It is crucial
to point out that this neff equation allows us to calculate and predict the mode position
with no need for grating simulation software. This simplified model, of course, has some
limitations. In Sasivimolkul et al. [13], the effective refractive index theory has been justified
by comparing the optical response from the effective refractive index layer and the rigorous-
coupled wave theory. The effective refractive index theory is valid for (1) the refractive
index contrast between the two grating materials are less than 1, and (2) the grating period
λg is less than 2 times the optical incident wavelength, in which λg is in subwavelength
and near wavelength regimes. In other words, it does not consider the high index contrast
grating behaviors, and it only calculates the response of the zeroth-order diffraction of
the grating. The zeroth-order diffraction of rectangular grating has the highest diffraction
energy in the subwavelength and near wavelength grating period.
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ne f f =
√

n2
PDMSFF + n2

s (1 − FF) (5)

Figure 5 shows calculated FP mode positions using asymmetric FP condition expressed
in Equation (3) and effective refractive index neff express in Equation (5) (dashed blue
curves) in comparison with the optical reflectance calculated using RCWA for the 1D
grating with varying hg from 0 to 4λ0, λg of 0.1λ0, FF of 0.5 and dg of 48 nm and 38 nm
for TM polarization and TE polarization, respectively. It is clear to see that the proposed
effective refractive index model can accurately predict the FP mode positions of the 1D
grating. The red dashed curve shows the short-range surface plasmon polaritons (SRSPP)
wave-vector kSRSPP labeled as ’SRSPP’ in Figure 5a, which can be approximated by surface

plasmon dispersion relation [13], given by 2π/λ0

√
n2

goldn2
e f f /

(
n2

gold + n2
e f f

)
.
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Figure 5. Shows results for 1D grating (a) TM polarization with 48 nm gold and (b) TE polarization with 38 nm gold. Other
parameters: hg of 0 to 4λ0, λg of 0.1λ0, and FF of 0.5.

3.1.2. D Gratings

The 2D gratings can also be treated as a uniform dielectric layer with the layer thick-
ness hg and effective refractive index (neff). However, it is not as simple as a geometric
averaging effect described in Equation (5). The neff model for the 2D gratings also depends
on the grating shape and the two-dimensional geometry. The neff for the 2D gratings
for different pillar shapes, including rectangular and circular pillars, can be expressed
in Table 1.

Figure 6a shows optical reflectance calculated using RCWA for the 2D rectangular
grating with FFx of 0.3, FFy of 0.5, λgx, and λgy of 1.25λ0 deposited on a uniform gold layer
with the gold thickness dm of 48 nm when illuminated by linearly polarized TM wave
at 633 nm wavelength. There are FP modes after the critical angle of 1. The first mode
that appears at the lower grating height is the short-range surface plasmon polaritons
(SRSPP) labeled as ‘SRSPP’ in Figure 6b,d. Figure 6b shows different grating diffracted
orders from m of −1 and n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using
the effective refractive index model expressed in Equation (6) and the asymmetrical FP
condition Equation (3). Figure 6c,d was calculated using the same method as Figure 6b;
however, they were calculated for m of 0 and 1 instead. Thus, the FP modes in the 2D
grating were excited by the m of 0 and n of 0 diffracted order.
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Table 1. Effective refractive index equations for 2D gratings with rectangular pillars and circular pillars.

Structure Effective Refractive Index

Rectangle
pillar
TM

polarization ne f f =
√

n2
2FFxFFy + n2

3
(
1 − FFxFFy

)
(6)

TE
polarization ne f f =

1
2

√
n2

2FFxFFy + n2
3
(
1 − FFxFFy

)
+ 1

2

√
1/
(

FFx FFy

n2
2

+
1−FFx FFy

n2
3

)
(7)

Circular pillar
TM

polarization ne f f =

√
1

λgxλgy

(
n2

2π
(

Dg
2

)2
+ n2

3

(
λgxλgy − π

(
Dg
2

)2
))

(8)

TE
polarization

ne f f =
1
2

√
1

λgxλgy

(
n2

2π
(

Dg
2

)2
+ n2

3

(
λgxλgy − π

(
Dg
2

)2
))

+

1
2

√√√√√λgxλgy/

π
(

Dg
2

)2

n2
2

+

(
λgxλgy−π

(
Dg
2

)2
)

n2
3


(9)

Note that Dg is the diameter of grating circular pillars.
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Figure 6. Optical responses of 2D rectangular grating with FFx and FFy of 0.5 (equivalent to 𝐷𝑔 of 0.625λ0), λgx and λgy of 1.25λ0 
deposited on a uniform gold layer with the gold thickness dm of 48 nm when illuminated by linearly polarized TM wave at 633 
nm wavelength: (a) Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1; (c) Grating diffracted 
orders m of 0, and (d) Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using the 
effective refractive index model expressed in Equation (6) and the asymmetrical FP condition in Equation (3). 

Figure 7 shows the grating parameters’ response on a uniform gold thickness of 38 
nm when illuminated by linearly polarized TM wave at 633 nm wavelength. Similar to 
the TM case, the refractive index model described in Equation (7) and the asymmetrical 
FP condition in Equation (3) can accurately predict the FP mode positions. The dominant 
FP modes were excited by the m of 0 and n of 0 diffracted order. 

Similar to the rectangular grating, the proposed effective index model for circular 
pillars given by Equations (8) and (9) for TM polarization and TE polarization, respec-
tively, can also provide correct mode positions compared to the RCWA calculation as 
shown in Figures 8 and 9. Figures 8 and 9 were calculated for FFx and FFy of 0.5 (equivalent 

Figure 6. Optical responses of 2D rectangular grating with FFx and FFy of 0.5 (equivalent to Dg of 0.625λ0), λgx and λgy

of 1.25λ0 deposited on a uniform gold layer with the gold thickness dm of 48 nm when illuminated by linearly polarized
TM wave at 633 nm wavelength: (a) Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1;
(c) Grating diffracted orders m of 0, and (d) Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0
to 3 calculated using the effective refractive index model expressed in Equation (6) and the asymmetrical FP condition in
Equation (3).

Figure 7 shows the grating parameters’ response on a uniform gold thickness of 38 nm
when illuminated by linearly polarized TM wave at 633 nm wavelength. Similar to the
TM case, the refractive index model described in Equation (7) and the asymmetrical FP
condition in Equation (3) can accurately predict the FP mode positions. The dominant FP
modes were excited by the m of 0 and n of 0 diffracted order.
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Figure 7. Optical responses of 2D rectangular grating with FFx of 0.3, FFy of 0.5, λgx, and λgy of 1.25λ0 deposited on
a uniform gold layer with the gold thickness dm of 38 nm when illuminated by linearly polarized TE wave at 633 nm
wavelength: (a) Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1; (c) Grating diffracted
orders m of 0, and (d) Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using
the effective refractive index model expressed in Equation (7) and the asymmetrical FP condition in Equation (3).

Similar to the rectangular grating, the proposed effective index model for circular
pillars given by Equations (8) and (9) for TM polarization and TE polarization, respectively,
can also provide correct mode positions compared to the RCWA calculation as shown in
Figures 8 and 9. Figures 8 and 9 were calculated for FFx and FFy of 0.5 (equivalent to Dg of
0.625λ0), λgx, and λgy of 1.25λ0 deposited on a uniform gold layer with the gold thickness
dm of 48 nm and 38 nm for TM polarization and TE polarization.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 14 
 

 

to 𝐷 of 0.625λ0), λgx, and λgy of 1.25λ0 deposited on a uniform gold layer with the gold 
thickness dm of 48 nm and 38 nm for TM polarization and TE polarization.  

 
Figure 7. Optical responses of 2D rectangular grating with FFx of 0.3, FFy of 0.5, λgx, and λgy of 1.25λ0 deposited on a uniform 
gold layer with the gold thickness dm of 38 nm when illuminated by linearly polarized TE wave at 633 nm wavelength: (a) 
Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1; (c) Grating diffracted orders m of 0, and (d) 
Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using the effective refractive 
index model expressed in Equation (7) and the asymmetrical FP condition in Equation (3). 

 
Figure 8. Optical responses of 2D circular grating with FFx of 0.3, FFy of 0.5, λgx, and λgy of 1.25λ0 deposited on a uniform gold 
layer with the gold thickness dm of 48 nm when illuminated by linearly polarized TM wave at 633 nm wavelength: (a) Optical 
reflectance calculated using RCWA; (b) Grating diffracted orders m of −1; (c) Grating diffracted orders m of 0, and (d) Grating 
diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using the effective refractive index model 
expressed in Equation (8) and the asymmetrical FP condition in Equation (3). 

Figure 8. Optical responses of 2D circular grating with FFx of 0.3, FFy of 0.5, λgx, and λgy of 1.25λ0 deposited on a uniform
gold layer with the gold thickness dm of 48 nm when illuminated by linearly polarized TM wave at 633 nm wavelength:
(a) Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1; (c) Grating diffracted orders m of 0,
and (d) Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0 to 3 calculated using the effective
refractive index model expressed in Equation (8) and the asymmetrical FP condition in Equation (3).
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tures of the grating enhance the FWHM. There is nonlinear FWHM behavior depending 
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Figure 9. Optical responses of 2D circular grating with FFx and FFy of 0.5 (equivalent to Dg of 0.625λ0), λgx and λgy of
1.25λ0 deposited on a uniform gold layer with the gold thickness dm of 38 nm when illuminated by linearly polarized
TE wave at 633 nm wavelength: (a) Optical reflectance calculated using RCWA; (b) Grating diffracted orders m of −1;
(c) Grating diffracted orders m of 0, and (d) Grating diffracted orders m of 1, with n of −1 to 1 for the FP mode numbers of 0
to 3 calculated using the effective refractive index model expressed in Equation (9) and the asymmetrical FP condition in
Equation (3).

3.2. Refractive Index Sensing Performance of 2D Gratings

Although the proposed effective refractive index theory can predict FP mode positions
and can be employed to calculate sensitivity, the sensitivity parameter alone is not a
complete story about quantifying the refractive index sensing performance. In other words,
for sensing application, not only how far the dip moves but also how wide the dip is [35].
The narrowness of the resonant dip cannot be computed from the refractive index model.
Therefore, in this section, the results were computed using the RCWA.

Sasivimolkul et al. [13] reported that the 1D grating with FFx of 0.3, hg of 900 nm, and
λgx of 1.25λ0 is a practical sensor design, considering the fabrication feasibility and the
proposed 1D grating does not show a strong mode hybridization. Hybridization between
modes may obscure the continuity of FP dip movement, degrading the sensitivity and
the detection range. Here, we have taken the 1D feature forward and remove the grating
material along the y-axis, making a 2D grating structure by keeping the other parameters.
Figure 10a–c shows the sensitivity in the blue curve and the FWHM in the red curve. The
sensitivity is linearly proportional to the volume of the gap region available to the sample
refractive index. The lowest possible FFy is at FFy of 0.3 before the FP mode cutoff occurs.
It is pretty straightforward to predict that the sensitivity is enhanced by the amount of
sample material inside the grating. However, this does not show how obvious the 2D
features of the grating enhance the FWHM. There is nonlinear FWHM behavior depending
on the FFy. The 2D rectangular grating can provide a narrower FP dip than the 1D grating
case (FFy of 1), as shown in Figure 10b–d, leading to a 3.8 and 2.4 FOM enhancement factor
for TM polarization and TE polarization, respectively. The FOM enhancement, however,
comes with a tradeoff in the detection range. The detection range for the TE polarization
was narrower than the TM polarization. Therefore, the TE polarization is not suitable for
gas sensing, as shown in Figure 10d, whereas gratings with FFy more than 0.6 are suitable
for biological sensing for the two polarizations, as shown in Figure 10b–d.
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compared to Figure 10a–c. These enhancements led to the FOM enhancement factors of 
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Figure 10. Refractive index performances of the 2D rectangular grating with varying FFy from 0.3 to 1, hg of 900 nm, λgx of
1.25λ0, λgy of 1.25λ0, FFx of 0.3, and varying ns from 1.00 to 1.40 when a linearly polarized coherent light illuminated the
gratings at 633 nm wavelength and the incident plane relative to the grating φ of 0 deg for (a) sensitivity and FWHM for TM
polarization, (b) FOM and dynamic range for TM polarization, (c) sensitivity and FWHM for TE polarization, and (d) FOM
and dynamic range for TE polarization. The sensitivity is shown in solid blue curves; the FWHM is shown in dashed red
curves; the FOM is shown in solid pink curves, and the dynamic range is shown in dashed green curves.

Figure 11a–c shows the sensing performance of circular pillar gratings with varying
Dg from 300 nm to 800 nm, hg of 900 nm, λgx and λgy of 1.25λ0, and varying ns from 1.00 to
1.40 when a linearly polarized coherent light illuminated the gratings at 633 nm wavelength
and the incident plane relative to the grating φ of 0 deg. The sensitivity for the FFxFFy of
0.14 (equivalent to Dg of 300 nm) was slightly higher than the rectangular grating with
FFx and FFy of 0.3. Of course, the circular pillars allow the sample refractive index to fill

up more space in the grating layer by the factor of 1 − π
(

D2
g/4
)

/
(

FFxFFy
)

equivalent
to 21%. This extra sample space inside the grating accounts for the higher sensitivity of
the circular pillar grating compared to the rectangular grating. The circular pillar grating
also provided a narrower FWHM than the rectangular grating, as shown in Figure 11a–c
compared to Figure 10a–c. These enhancements led to the FOM enhancement factors
of 4.5 and 3.0 higher than the 1D grating for the TM polarization and TE polarization,
respectively, as shown in Figure 11b–d. For the dynamic range, the rectangular grating has
a similar detection range compared to the rectangular grating.
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Figure 11. Refractive index performances of the 2D circular grating with varying Dg from 300 nm to 800 nm, hg of 900 nm,
λgx and λgy of 1.25λ0, and varying ns from 1.00 to 1.40 when a linearly polarized coherent light illuminated the gratings
at 633 nm wavelength and the incident plane relative to the grating φ of 0 deg for (a) sensitivity and FWHM for TM
polarization, (b) FOM and dynamic range for TM polarization, (c) sensitivity and FWHM for TE polarization, and (d) FOM
and dynamic range for TE polarization. The sensitivity is shown in solid blue curves; the FWHM is shown in dashed red
curves; the FOM is shown in solid pink curves, and the dynamic range is shown in dashed green curves.

The performance parameters explained and defined in Section 2.3 are computed for the
following thin film-based structures to make a direct comparison across different sensors:

(1) SPR sensor with 50 nm thick uniform gold layer coated on a uniform BK7 glass
substrate with TM polarization illumination.

(2) Closed FP structure consisting of a sensing region sandwiched by two gold mirrors
with the thickness of 45 nm and 90 nm [13].

(3) Closed FP structure consisting of a sensing region sandwiched by 2 Bragg mirrors with
alternating refractive indices made of nlow with the MgF2 refractive index of 1.37 [36]
and nhigh with the TiO2 refractive index of 2.4 [37], and with the layer thickness of
λ0/(4nlow) and λ0/(4nhigh) for nlow and nhigh, respectively. The Bragg mirror’s top and
bottom consist of nhigh, nlow, nhigh, nlow, and nhigh stacking.

(4) Open FP structure using 1D grating with FF of 0.3, hg of 900 nm, λgx and λgy of 1.25λ0,
and dg of 48 nm with TM polarization illumination.

(5) Open FP structure using 1D grating with FF of 0.3, hg of 900 nm, λgx and λgy of 1.25λ0,
and dg of 38 nm with TE polarization illumination.

(6) Open FP structure using 2D rectangular pillar grating with FFx and FFy of 0.3, hg of
900 nm, λgx and λgy of 1.25λ0, and dg of 48 nm with TM polarization illumination.

(7) Open FP structure using 2D rectangular pillar grating with FFx and FFy of 0.3, hg of
900 nm, λgx and λgy of 1.25λ0, and dg of 38 nm with TE polarization illumination.

(8) Open FP structure using 2D circular pillar grating with Dg of 300 nm, FFx and FFy of
0.38, hg of 900 nm, λgx and λgy of 1.25λ0, and dg of 48 nm TM polarization illumination.

(9) Open FP structure using 2D circular pillar grating with Dg of 300 nm, FFx and FFy of
0.38, hg of 900 nm, λgx and λgy of 1.25λ0, and dg of 38 nm TE polarization illumination.
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Table 2 shows the refractive index sensing performance of the structures. For the
sensitivity, the FP modes of the open grating structures were lower than the closed FP
structures and slightly lower than the conventional SPR sensor. However, the FWHM for
the open FP grating structures was two-fold narrower than the closed FP structures and the
SPR measurement. The FWHM of the proposed 2D gratings were 2 to 3.5 times narrower
than the previously reported 1D FP grating. The increase in sensitivity and narrower
FWHM lead to a FOM enhancement of 4.5 times higher than the 1D FP grating and higher
than the other compared thin-film structures.

Table 2. Performance of each structure in refractive index sensing.

Structure Sensitivity,
RIU−1 FWHM FOM,

RIU−1
Dynamic Range,

RIU

Conventional SPR [13] 1.1870 0.0349 34 1.00–1.40
Two metallic [13] 9.0811 0.0248 365 1.23–1.36

Bragg mirrors [13] 13.0490 0.0307 426 1.10–1.27
1D grating

with TM polarization [13] 0.7236 0.0011 680 1.00–1.38

1D grating
with TE polarization [13] 0.6287 0.0006 902 1.00–1.35

Rectangular 2D grating
with TM polarization 0.8820 0.0003 2580 1.00–1.18

Rectangular 2D grating
with TE polarization 0.7522 0.0003 2190 1.17–1.26

Circular 2D grating
with TM polarization 1.0298 0.0003 3040 1.00–1.25

Circular 2D grating
with TE polarization 0.8902 0.0003 2720 1.16–1.32

Note that RIU stands for refractive index unit.

4. Conclusions

The theoretical framework to analyze FP modes excited through subwavelength and
near wavelength 1D and 2D grating structures has been proposed and discussed. The
proposed open gratings allow convenient sample access from the top of the structure,
such as surface plasmon resonance measurement. This feature is not present in the other
closed FP grating structures, such as a spacer sandwiched by two metallic mirrors or Bragg
mirrors. The grating layer provides a resonant cavity forming an FP mode. The grating gap
is filled up by the sample leading to the FP resonant condition perturbation. The effective
refractive index models for 1D grating, 2D rectangular pillars, and circular pillars have been
introduced and verified by comparing the FP modes’ position excited through the gratings
with reflectance calculated using rigorous coupled-wave analysis. The effective refractive
index model allows the FP resonant mode condition to be computed with no need for time
and resource-consuming 2D grating calculations. The limitations of the proposed effective
refractive index model are (1) it is only valid for the grating index contrast less than 1, (2) it
can only calculate the response from the 0th diffraction order. The 0th diffracted order has
the highest strength for the proposed 1D and 2D gratings. For the sensing performance,
the FP modes in the 2D gratings not only have higher sensitivity than the 1D grating since
there is more sample material filling up the more significant grating gaps, but the FP dips
also become narrower leading to 4.5 times enhancement in FOM compared to the FP modes
in the 1D grating.
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