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Background. *ere are few biomarkers with an excellent predictive value for postacute myocardial infarction (MI) patients who
developed heart failure (HF). *is study aimed to screen candidate biomarkers to predict post-MI HF. Methods. *is is a
secondary analysis of a single-center cohort study including nine post-MI HF patients and eight post-MI patients who remained
HF-free over a 6-month follow-up. Transcriptional profiling was analyzed using the whole blood samples collected at admission,
discharge, and 1-month follow-up. We screened differentially expressed genes and identified key modules using weighted gene
coexpression network analysis. We confirmed the candidate biomarkers using the developed external datasets on post-MI HF.*e
receiver operating characteristic curves were created to evaluate the predictive value of these candidate biomarkers. Results. A total
of 6,778, 1,136, and 1,974 genes (dataset 1) were differently expressed at admission, discharge, and 1-month follow-up, re-
spectively. *e white and royal blue modules were most significantly correlated with post-MI HF (dataset 2). After overlapping
dataset 1, dataset 2, and external datasets (dataset 3), we identified five candidate biomarkers, including FCGR2A, GSDMB,
MIR330,MED1, and SQSTM1. WhenGSDMB and SQSTM1were combined, the area under the curve achieved 1.00, 0.85, and 0.89
in admission, discharge, and 1-month follow-up, respectively. Conclusions. *is study demonstrates that FCGR2A, GSDMB,
MIR330,MED1, and SQSTM1 are the candidate predictive biomarker genes for post-MI HF, and the combination of GSDMB and
SQSTM1 has a high predictive value.

1. Introduction

Heart failure (HF) is one of the primary long-term
complications of acute myocardial infarction (MI).
Meanwhile, post-MI HF has been identified as a time-
dependent variable significantly related to mortality with a
hazard ratio of 3.31 [1–3]. Screening the post-MI HF genes
served as novel candidate biomarkers facilitates exactly
diagnosis and timely intervention. However, despite many
proposed biomarkers involving post-MI HF, few of them
have gained widespread acceptance and application in
clinical practice [4].

We analyzed the gene expression profile of post-MI HF
patients and those who remained HF-free over a 6-month
follow-up using plasma samples collected at admission,
discharge, and 1-month follow-up. Differential expression
analysis and weighted gene coexpression network analysis
(WGCNA) were combined to screen the top-ranked cir-
culating candidates. In addition, we performed enrichment
analysis to illustrate the potential influence on progression
from MI to HF using functional annotation algorithms.
Moreover, we confirmed the differentially expressed genes
(DEGs) and key modules using external datasets from 2
different acute MI patient cohorts, 4 single-cardiac cell
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transcriptomic studies [5], and 12 ischemic cardiomyopathy
patients’ expression profiles [6]. *is study aimed to identify
circulating biomarkers to predict post-MI HF usingmachine
learning methods.

2. Methods

2.1. Data Acquisition. A total of 64 samples from patients
with ST-elevationMI were enrolled from the First Chair and
Department of Cardiology of the Medical University of
Warsaw, with the approval of the Ethics Committee of the
Ain Shams the Faculty of Medicine [7]. All 17 patients were
indicated for direct percutaneous coronary intervention.
Coronary angiography, angioplasty of the infarct-related
artery, and pharmacological therapy were performed fol-
lowing the 2008 European Society of Cardiology guidelines
for acute myocardial infarction [8]. Whole blood samples
were collected at the time point of admission (first day of
MI), discharge (4 to 6 days after MI), and 1-month follow-
up, respectively. According to the manufacturer’s instruc-
tions, the transcriptional profiling was analyzed using Hu-
man Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, USA;
Platform GPL6244). *e involvement of this study did not
influence treatment. All participants were provided written
informed consent following the Declaration of Helsinki.*is
study was a secondary data analysis on publicly available
data, and the raw data were acquired from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/) [7]. Figure 1 shows a flow diagram summarizing the
entire study design.

2.2. Data Processing and Probe Reannotation.
Log2-transformation, background correction, and quantile
normalization were performed on the raw gene expression
profiles using the linear models for the microarray data
(limma) algorithm. *en, the probe serial numbers were
converted into gene symbols according to the annotation file
provided by the manufacturer. When a single gene was
mapped by more than one probe, the average expression
level of this gene was calculated. Finally, the expression
profile containing 23,307 genes was further processed.

2.3. Clustering Analysis and Visualization. Clustering anal-
ysis is a powerful tool to perform molecular classification
among samples and identify subtype characterization
[9–11]. Among the many clustering algorithms, hierarchical
cluster analysis and k-means clustering are the two prom-
inent representatives, whereas t-distributed stochastic
neighbor embedding analysis and principal component
analysis are widely used unsupervised methods to reduce
dimensions of expression data.

*e processed expression data were first analyzed by the
k-means cluster method and visualized using a heatmap.
*en, we performed an unsupervised hierarchical cluster
analysis with a scale-free network and topological overlaps.
Meanwhile, hierarchical cluster analysis is a cluster analysis
method to create a hierarchy of clusters and thus group
patients with similar gene expressions into the same clusters

[12,13]. Additionally, we ran the discriminant analysis using
t-distributed stochastic neighbor embedding analysis, a
nonlinear dimensionality reduction algorithm well-suited
for visualizing high-dimensional data [14,15]. In this study,
hierarchical cluster and t-distributed stochastic neighbor
embedding analysis were performed on the full set (all the
four time points) of detected genes, which aimed to illustrate
the general difference in expression patterner between the
post-MI HF and non-HF groups.

Moreover, we performed principal component analysis
on the expression data of admission, discharge, and 1-month
follow-up, respectively. *e principal component analysis is
a widely used distance-based statistical algorithm that re-
duces the dimensionality of complex datasets, increases
interpretability, and minimizes information loss [14–19]. An
appropriate time point with good distinguishing ability will
be selected based on the expression parameter revealed by
principal component analysis.

2.4. Screening Differentially Expressed Genes (DEGs). Fold
change is a univariate filter method to compare the absolute
expression value change between two groups, and it has been
widely used as a threshold for screening possible biomarkers.
We analyzed the gene expression profile acquired at three
time points (admission, discharge, and 1-month follow-up)
and screened DEGs between the post-MI HF and non-HF
groups based on log2 fold change expression using the limma
method [20]. We assumed that the difference in blood
samples might be smaller compared with tissue samples (like
heart tissue). *erefore, to avoid eliminating excessive
candidate biomarkers, we set a lower threshold of fold
change >1.1 and P value < 0.05.*e DEGs were visualized as
a volcano plot and heatmap using the “ggplot2” and
“pheatmap” package in R.

2.5. Construction of WGCNA. WGCNA is a bioinformatics
algorithm to explore the transcriptome expression patterns
across genes, identify gene modules associated with complex
disease features, and reveal the biologically functional in-
terpretations of network modules [21–24]. Based on the
time-series gene expression profiles, we used the one-step
network construction function of the “WGCNA” package
(version 1.60) for constructing the coexpression network
and identifying key modules. Scale independence and mean
connectivity were calculated using a gradient method with a
range of 1 to 20, and the power value was selected with a
threshold of independence degree >0.8. *e minimal
module size and the merge cut height were set as 30 and 0.3,
respectively. After module construction, we summarized the
module eigengene according to the first module principal
component to evaluate the significance of each module, and
the module-trait relationships were assessed based on the
correlation between module eigengenes and clinical traits.
Furthermore, we calculated all genes’ average absolute gene
significance within one module and evaluated the correla-
tion strength accordingly. In addition, the gene significance
value was defined by log10-transformed P value in the linear
regression between expression and clinical traits. *e
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modules with the highest MS values were considered as the
key modules [21].

After constructing coexpression networks, we further
evaluated the preservation levels of key modules using
module preservation analysis, which summarizes different
preservation statistics into one single overall measure of
preservation (i.e., Zsummary value). Zsummary is a statistic
value composed of multiple statistics related to density
connectivity [25]. Generally, a higher Zsummary value
suggested the more substantial evidence that a module
should be preserved: Zsummary value less than 2 indicated
“no evidence,” Zsummary value between 2 and 10 indicated
“weak evidence,” and Zsummary value higher than 10 in-
dicated strong evidence. However, the Zsummary value
tends to increase with the rise of module size, and therefore,
it is unappropriated to use the Zsummary value to perform
preservation analysis on modules with distinct sizes. In that
case, medianRank, which is calculated based on the observed
preservation statistics and not affected by module size,
should also be applied [26]. A module with a lower
medianRank value is more preserved than those with a
higher medianRank.

2.6. Enrichment Analysis and Protein-Protein Interaction
(PPI) Network. To reveal the roles of key modules in the
progression of post-MI HF, we ran gene ontology (GO)
enrichment analysis using the “clusterProfiler” package.
Moreover, we performed association and enrichment
analysis based on DisGeNET [27] database and visualized
using Metascape, which was a tool to systematically analyze
and interpret OMICs-based research [28]. DisGeNET, a
gene-disease associations database, contains publicly avail-
able collections of genes and human disease-associated
variants [27]. In addition, we ran a PPI enrichment analysis
on genes from key modules and created an interaction
network. *e molecular complex detection algorithm was
also applied to detect densely connected network compo-
nents [29].

2.7. Identification of Potential Biomarkers and Expression
Analysis. To identify potential biomarkers for post-MI HF,
DEGs (dataset 1) were cross-referenced with genes from key
modules (dataset 2). We considered the biomarkers would
be reproducible if they were identified by both expression
analysis and coexpression network analysis at the same time.
In parallel, we included other candidate biomarkers from
external datasets (dataset 3): (1) a recently published re-
search combining aptamer-based proteomics from 2 dif-
ferent acute MI patient cohorts and 4 single-cardiac cell
transcriptomic studies, which identified 36 potential cir-
culating biomarkers [5]; (2) an open-access gene expression
profile of human heart evaluating the influence of heart
failure on human nucleocytoplasmic transport-related
genes: 12 samples from ischemic cardiomyopathy and 5
samples from control hearts [6]. *en, we ranked bio-
markers according to 3 priorities: lower priority (observed in
1 of 3 datasets), intermediate priority (observed in 2 of 3
datasets), and high priority (observed in all three datasets).

2.8. Statistical Analysis. Continuous variables were repre-
sented as mean± standard deviation (normal distribution) or
median + interquartile range (skewed distribution). Cate-
gorical variables were presented as percentages. *e one-way
ANOVA test, Kruskal–Wallis test, and chi-square test were
used to determine statistical differences, as appropriate. *e
receiver operating characteristic (ROC) curves were created,
and the area under the curve (AUC) was calculated to assess
the predictive value of these possible biomarkers. All statistical
analysis was performed by R software version 3.6.1 (R
Foundation for Statistical Computing, Vienna). P< 0.05 was
considered as statistical significance.

3. Results

3.1. Clinical Characteristics of the Study Population. *is
study included 17 patients with myocardial infarction
who volunteered for a six-month visit. All these patients

8 patients without post-
MI HF

9 patients
with post-MI HF

Plasma collected at admission, discharge,
and 1-month follow-up

Single-center cohort 

Differential Expression WGCNA

External data

Recent published
research on post-MI HF

36 potential biomarkers

Dataset 1 Dataset 2

An open-access gene
expression profile of

human heart

12 ICM vs 5 healthy

Other candidate biomarkers 
Dataset 3

Lower priority: observed in 1 of 3 datasets
Intermediate priority: observed in 2 of 3 datasets
High priority: observed in all 3 datasets

Identification and assessment of
potential biomarkers involving post-MI HF

Figure 1: Study workflow diagram summarizing the entire study design. MI: myocardial infarction; HF: heart failure; ICM: ischemic
cardiomyopathy; WGCNA: weighted gene coexpression network analysis.
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were diagnosed with STEMI and received coronary an-
giography, angioplasty, and pharmacological treatment
following current guidelines [8]. After six months, 9
patients were diagnosed with HF (post-MI HF group),
and the other 8 individuals were grouped into the post-
MI non-HF group. No significant difference was observed
in age, sex, body mass index, hypertension, diabetes,
smoking, hypercholesterolemia, anterior myocardial
infarction, and medications (beta-blockers, aspirin,
clopidogrel, statins, and angiotensin-converting enzyme
inhibitors) at baseline (all P> 0.05). However, the post-
MI HF group showed higher NT-proBNP (918.3 ± 848.5
vs. 62 ± 14.1 pg/mL, P< 0.001), lower LVEF (39.3 ± 8.4 vs.
66.8 ± 1.9%, P � 0.001), and more administration of di-
uretics (7 vs. 1, P � 0.015) compared with the non-HF
group. Baseline demographic and clinical characteristics
have been summarized in the parent study [7].

3.2. Clustering Analysis and Visualization. K-means cluster
analysis indicated a distinct expression patterner between
the HF and non-HF groups, although only limited ex-
pression similarity was observed in samples from the same
time point (Figure 2(a)). Consistently, hierarchical cluster
and t-distributed stochastic neighbor embedding analysis
suggested that post-MI HF patients showed a different ex-
pression patterner compared with non-HF patients
(Figures 2(b) and 2(c)). Principal component analysis on the
expression data of three time points showed that the ex-
pression at admission and discharge might be appropriate
time points with a good distinguishing ability (Figures 2(d)–
2(f)).

3.3. Differential Gene Expression Profiling in HF and Non-HF
Groups. For the expression data acquired at admission,
3,556 genes were significantly upregulated, whereas 3,222
genes were significantly downregulated (Figures 3(a) and
3(b)). At the time point of discharge, differential expression
analysis identified a total of 1,136 genes associated with post-
MI HF events (519 up- and 617 downregulated in HF pa-
tients; Figures 3(c) and 3(d)). However, 1,974 genes were
differently expressed at 1month (950 up- and 1024 down-
regulated in HF patients; Figures 3(e)and 3(f)).

3.4. Weighted Coexpression Network Construction and Key
Modules Identification. *e soft-thresholding power of 8
was selected according to the scale-free topology criterion
(scale-free R2 � 0.81, Figures 4(a) and 4(b)), and 28 modules
were created (Figure 4(c)). All the genes that could not be
put into any other modules were included in the grey
module, and the grey module was excluded from the fol-
lowing research. Next, we analyzed the association between
modules and clinical traits, including the diagnosis of HF
and follow-up time (Figures 4(d) and 4(e)). *e white and
royal blue modules were most significantly positively or
negatively correlated with post-MI HF, respectively. Ac-
cordingly, white and royal blue modules were identified as
the key modules. A total of 40 and 105 genes were included

in the white and royal blue modules, respectively. In
Figures 4(f) and 4(g), we illustrated the correlation between
module membership and gene significance in white (cor-
relation coefficient� 0.91, P< 1e-200) and royal blue module
(correlation coefficient� 0.74, P � 1.8e-111). Figure 4(h)
shows the module preservation statistics, and the Zsummary
values of both white and royal blue modules were more than
10. Additionally, Figure 4(i) illustrates the medianRank
score analysis of different modules.

3.5. Enrichment Analysis of Key Modules and Interaction
Network. We ran enrichment analysis on the key modules
using the Gene Ontology database. As shown in Figure 5(a),
enriched biological processes were mainly involved in
autophagy, a process utilizing autophagic mechanism,
negative regulation of ubiquitin-dependent protein catabolic
process, negative regulation of proteolysis involved in cel-
lular protein catabolic process, and positive regulation of
RNA splicing. *e cellular components were mainly
enriched in nuclear chromatin, inclusion body, mediator
complex, clathrin-coated endocytic vesicle membrane, and
nuclear pore nuclear basket. Enriched molecular functions
mainly involved nuclear hormone receptor binding, hor-
mone receptor binding, histone binding, vitamin D receptor
binding, and thyroid hormone receptor binding. Addi-
tionally, Figure 5(b) shows the gene network of GO analysis,
and the network of enriched terms is shown in Figure 5(c).
Moreover, the enrichment analysis in DisGeNET revealed
that genes in the key modules were associated with sleep
disturbances, multiple congenital anomalies, delayed speech
and language development, bulbous nose, and neuro-
developmental disorders (Figure 5(d)). Furthermore, the
PPI network was illustrated in Figure 5(e), and 2 cluster
subnetworks (including SMARCC1, NR3C1, RNF2, NCOR1,
MED1, MED14, TNRC6A, APP, PTBP3, and BCL7C) were
created using the molecular complex detection algorithm.

3.6. Identification of Potential Biomarkers and Expression
Analysis. Dataset 1 included 200 DEGs from 3 time points,
and dataset 2 included 145 genes from key modules. After
overlapping dataset 1 and dataset 2, a total of 5 genes were
acquired, including OR7E14P, GSDMB, TAX1BP3,
SQSTM1, and KAT6B. *e detailed cross-reference infor-
mation was provided in Figure 6(a). Moreover, 9 genes were
found in all three datasets and considered high-priority
candidates, including FCGR2A, RQCD1, IRF8, RELL1,
GPR21, PTBP3, CYB5R1, ICA1, and CPNE8 (Figure 6(b)).
Based on a literature search, we identified 5 genes that might
most effectively differentiate the post-MI HF patients from
those without HF: FCGR2A, GSDMB, MIR330, MED1, and
SQSTM1. Figures 6(c)–6(e) shows the expression level of
these genes at admission, discharge, and 1month after
discharge, respectively.

3.7. Accuracy of Biomarkers for Predicting Post-MI HF. To
evaluate the predictive value of the 5 biomarkers, we created
ROC curves and calculated the AUC at all 3 time points,
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Figure 2: Clustering analysis of the expression profile. (a) K-means clustering, (b) hierarchical cluster, and (c) t-distributed stochastic neighbor
embedding analysis. Principal component analysis on the sample collected at (d) admission, (e) discharge, and (f) 1-month follow-up. HF: heart
failure; PC: principal component.
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respectively (Table 1). When combining GSDMB and
SQSTM1, the AUCs achieved 1.00, 0.85, and 0.89 in ad-
mission, discharge, and 1-month follow-up, respectively.

4. Discussions

In this study, we performed a secondary analysis of a cohort
study using machine learning including nine post-MI HF
patients and eight post-MI patients who remained HF-free
over a 6-month follow-up. *e main findings are as follows.
(1) Five candidate biomarkers (including FCGR2A, GSDMB,
MIR330,MED1, and SQSTM1) were identified, which might
most effectively differentiate the post-MI HF patients from
those without HF. (2) When combining GSDMB and
SQSTM1, the AUC achieved as high as 1.00, 0.85, and 0.89 in
admission, discharge, and 1-month follow-up, respectively,
indicating a high predictive value for post-MI HF.

FCGR2A, also named FccRIIa, is a low-affinity receptor
for the constant fragment of immunoglobulin G, mainly
expressed on platelets’ surface. Calverley et al. [30] reported

an increased level of FCGR2A in patients with myocardial
infarction, unstable angina, and ischemic stroke. Schneider
et al. [31] analyzed the expression level of FCGR2A in post-
MI patients and found a 4-fold greater risk of subsequent
MI, stroke, and death in those with higher platelet FCGR2A
expression. In our study, we revealed that FCGR2A was
significantly upregulated in post-MI HF patients. Engage-
ment of FCGR2A on platelets by immune complexes will
trigger intracellular signaling events and lead to platelet
activation and aggregation. Multiple studies have revealed
that HF was significantly associated with abnormal platelet
morphology and function [32, 33]. In addition, HF patients
have higher mean platelet volume [34], increased whole
blood aggregation [35], and elevated platelet-derived ad-
hesion molecules [36]. Potential mechanisms include he-
modynamic and vascular factors, secretion of cytokines like
C-C chemokines, and renin-angiotensin system activation
[32].

Gasdermins (GSDMs) are a family of functionally diverse
proteins expressed in various cell types and tissues, and
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Figure 3: *e expression heatmap and volcanic plots of the differential gene expression between post-MI HF and non-HF patients. *e
analysis was performed on the sample collected at (a, b) admission, (c, d) discharge, and (e, f ) 1-month follow-up, respectively. MI:
myocardial infarction; HF: heart failure.

6 Evidence-Based Complementary and Alternative Medicine



Scale independence

2

1

3

4
5 6 7 8 9 10 12 14 16

18

20

Sc
al

e F
re

e T
op

ol
og

y 
M

od
el

 F
it,

 si
gn

ed
 R

^2

0.2

0.4

0.6

0.8

So� �reshold (power)

5 10 15 20

(a)

Mean connectivity

2

1

3
4 5 6 7 8 9 10 12 14 16 18 20

M
ea

n 
C

on
ne

ct
iv

ity

1000

2000

3000

4000

So� �reshold (power)

5 10 15 20

0

(b)
Cluster Dendrogram

H
ei

gh
t

0.85

0.90

0.95

1.00

0.80

Module colors

(c)

-1

-0.5

0

0.5

1

H
F

1s
t d

ay

4-
6 

da
ys

1 
m

on
th

MEgrey

MEyellow

MEbrown

MEdarkturquoise

MEwhite

MEdarkorange

MEred

MEdarkred

MElightgreen

MEtan

MEmagenta

MEpurple

MEdarkgreen

MEblack

MEturquoise

MEmidnightblue

MEsalmon

MEpink

MEblue

MElightcyan

MEgrey60

MEorange

MElightyellow

MEdarkgrey

MEcyan

MEgreen

MEroyalblue

MEgreenyellow

(d)
Gene significance across modules for post-MI HF, P-value=0

G
en

e S
ig

ni
fic

an
ce

0.1

0.2

0.3

0.4

0.0

bl
ac

k

bl
ue

br
ow

n

cy
an

da
rk

gr
ee

n

da
rk

gr
ey

da
rk

or
an

ge

da
rk

re
d

da
rk

tu
rq

uo
ise

gr
ee

n

gr
ee

ny
el

lo
w

gr
ey

gr
ey

60

lig
ht

cy
an

lig
ht

gr
ee

n

lig
ht

ye
llo

w

m
eg

en
ta

m
id

ni
gh

tb
lu

e

or
an

ge

pi
nk

pu
rp

le re
d

ro
ya

lb
lu

e

sa
lm

on ta
n

tu
rq

uo
ise

w
hi

te

ye
llo

w

(e)

Module membership vs. gene significance
Cor=0.55, p=0.00024

G
en

e s
ig

ni
fic

an
ce

 fo
r p

os
t-M

I H
F

0.2

0.3

0.4

0.5

Module Membership in white module

0.60 0.70 0.80 0.90

0.6

(f )

Figure 4: Continued.

Evidence-Based Complementary and Alternative Medicine 7



GSDMs have been well demonstrated to be involved in
pyroptosis, a proinflammatory type of regular cell death [37].
It has been reported that GSDMB promotes noncanonical
pyroptosis by enhancing caspase-4 activity and GSDMD
cleavage [38]. With the deepening understanding of HF and
chronic inflammation, pyroptosis has been revealed as
having an important role in HF [39]. *e pyroptosis of
myocardial cells leads to the irreversible loss of car-
diomyocytes, whereas pyroptosis of cardiac fibroblasts re-
sults in myocardial fibrosis and cardiac hypertrophy, which
leads to the adverse change in cardiac structure and function
and will eventually result in HF. Moreover, accumulating
studies revealed that sleep disturbances significantly in-
creased cellular stress, inflammation, and myoblast pyrop-
tosis, leading to the development of HF [40–42].
Interestingly, our results revealed that GSDMB was differ-
ently expressed in all three time points and included in key
modules showing high similarity with sleep disturbances-
associated genes, suggesting its important role in the de-
velopment of post-MI HF.

SQSTM1 (also known as p62), a multifunctional protein
consisting of a series of domains, acts in concert with
binding partners to regulate the cellular process, especially
autophagy [43]. As an autophagy receptor, SQSTM1 has

been recognized as an autophagy marker [44]. Autophagy is
a self-degradative process for delivering aggregating proteins
and damaged organelles to lysosomes for degradation,
protecting cells from intracellular stress, and providing
essential energy for starving cells [45]. However, the exact
mechanisms between autophagy and HF remain largely
vague despite the many studies. Current evidence indicates
the key role of autophagy in protecting myocardial cells
against HF, while overactivation of autophagy will con-
tribute to the progress of HF [46,47]. In the early stage of HF,
activated autophagy increases protein degradation, reduces
myocardial hypertrophy, and antagonizes ventricular hy-
pertrophy. On the contrary, autophagy promotes car-
diomyocyte death and accelerates the deteriorating
progression of HF. In our study, the expression of SQSTM1
was significantly increased in post-MI HF, which suggested
that excessive autophagy with MI might contribute to the
development of HF. In addition, our results showed that the
combination of GSDMB and SQSTM1 had a high predictive
value for post-MI HF, indicating that pyroptosis and
autophagy played a jointly promoting role in the develop-
ment of post-MI HF.

Mediator, a multisubunit nuclear complex, is a major
component of eukaryotic transcription machinery that
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served as a bridge between transcription factors and RNA
polymerase II [48]. Studies have demonstrated that Med1
(a subunit of mediator) plays an important role in regu-
lating vital cardiac gene expression and maintaining nor-
mal heart function. Reportedly, deletion of Med1 may lead

to cardiac function abnormalities, including left ventricular
dilation, decreased ejection fraction, and pathological
ventricular remodeling [49,50]. Hall et al. [51] revealed that
deletion ofMed1 in cardiomyocytes deregulated more than
5000 genes and promoted the development of acute HF.
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Underlying mechanisms may be involved in the deregu-
lated expression of genes in calcium signaling, cardiac
muscle contraction, and mitochondrial metabolic func-
tions, accompanied by the downregulated expression of
Med1 [52]. Interestingly, Bai et al. [53] had reported that
Med1 in macrophages has an antiatherosclerotic role by
suppressing the expression of proinflammatory genes via
PPARc-regulated transactivation [54, 55], suggesting its
protective role in the cardiovascular system. Similarly, our
study showed thatMed1was significantly downregulated in
patients with post-MI HF, indicating it may be served as an
effective biomarker for HF.

MiRNAs are a class of small noncoding RNAs, which
function as regulators of gene expression at the post-
transcriptional level [56]. Ren et al. [57] demonstrated
that overexpression of MIR330 in acute coronary syn-
drome alleviated acute coronary syndrome by suppressing
atherosclerotic plaque formation and enhancing vascular
endothelial cell proliferation through the WNT signaling
pathway. Moreover, Wei et al. [58] reported that upre-
gulated MIR330 might lead to stable carotid plaques by
targeting Talin-1 in symptomatic carotid stenosis patients.
However, in another research [59], overexpression of
MIR-330 was reported to promote left ventricular
remodeling, increase myocardial infarction sizes, and
aggravate myocardial ischemia-reperfusion injury during
coronary recanalization. Different downstream pathways

exert distinct biological effects, and the role of MIR330 in
post-MI HF remains to be further studied.

5. Limitation

Several limitations should be highlighted in our study.
First, our study belongs to a secondary analysis of a
cohort study. In the parent study [7], the study group and
validation group were created, and microarrays were used
to identify a set of genes associated with post-MI de-
velopment HF in the early phase of MI, especially on
admission. Differently, in our study, we focused on the
study group of the parent study and performed a more in-
depth analysis of the whole blood samples collected at
admission, discharge, and 1-month follow-up to screen
candidate biomarkers to predict post-MI HF in the early
stage using differential expression analysis and WGCNA.
More importantly, the developed external datasets on
post-MI HF were introduced to confirm the candidate
biomarkers, which facilitated increasing sample sizes and
improving the reliability of results. Second, the datasets
contained different cardiac models and pathologies and
failed to include a strictly post-MI HF disease [5, 6],
which posed a risk of introducing false positives and false
negatives. However, these pathologies shared many un-
derlying features and were likely to exhibit similar bio-
marker profiles [5]. Moreover, despite included external
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Figure 6: Identification of potential biomarkers and expression analysis for post-MI HF. (a) *e Venn diagram of genes from the
blue and yellow modules and DEGs from samples acquired at admission, discharge, and 1-month follow-up. (b) *e Venn diagram
of genes from dataset 1, dataset 2, and dataset 3. *e expression levels of the 5 candidate genes in post-MI HF and non-HF patients at
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Table 1: *e value of AUC for five candidate biomarkers of post-MI HF at all three time points.

Admission Discharge 1-month follow-up
FCGR2A 0.8472 0.8333 0.7969
GSDMB 0.9028 0.8148 0.8125
MIR330 0.8750 0.7963 0.6406
MED1 0.7361 0.8333 0.7500
SQSTM1 0.8611 0.7963 0.8438
AUC: the area under the curve; MI: myocardial infarction; HF: heart failure.
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datasets, our study still had relatively smaller sample
sizes, which may have an effect on the stability of results,
reduce the test efficiency, and cause possible bias to the
research results; accordingly, external validation with a
larger cohort is still required to demonstrate their reli-
ability, and meanwhile, further studies should be re-
quired to elucidate the underlying mechanisms. In
addition, our screening tools have their limitations;
therefore, candidate biomarkers need further validation
in clinical and experimental studies.

6. Conclusions

*is study demonstrates that FCGR2A, GSDMB, MIR330,
MED1, and SQSTM1 are the candidate biomarkers for the
progression of HF after MI, and the combination of GSDMB
and SQSTM1 has the highest predictive value. Following
studies are required to further validate the predictive ac-
curacy and clarify the underlying mechanisms.
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