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Identification of novel diagnostic biomarkers for thyroid carcinoma
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ABSTRACT

Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. 
Unfortunately, a limited number of large-scale analyses have been performed to 
identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA 
patients and 59 normal controls from The Cancer Genome Atlas. After identifying 
differentially expressed long non-coding RNA (lncRNA) and protein coding genes 
(PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in 
THCA. A dysregulation network with scale-free topology was constructed. Four 
molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve 
as diagnostic biomarkers of THCA with high sensitivity and specificity. We further 
represent a diagnostic panel with expression cutoff values. Our results demonstrate 
the potential application of those four molecules as novel independent biomarkers 
for THCA diagnosis.

INTRODUCTION

Thyroid carcinoma (THCA) is the most widespread 
endocrine malignancy worldwide, with an incidence rate 
that increases by 4% every year [1, 2]. Tissue biopsy is 
the current gold standard for diagnostic tests for cancers; 
however, biopsy results are often inevitably subjective 
because of differing reporting methods among pathologists 
or limited diagnostic accuracy associated with sampling 
error [3]. For THCA, indeterminate (10-20%) and 
inadequate (10-15%) conclusions perplex clinicians and 
undermine the diagnostic value of biopsy procedures 
[4], and the use of core needle biopsy for the thyroid is 
currently limited by a lack of well-accepted diagnostic 
criteria [5]. Some THCAs are associated with aggressive 
clinical behavior or a poor prognosis [6]. Therefore, 
finding more sensitive and specific biomarkers to use 
for the early detection of THCA is undoubtedly of great 
significance. However, there is still no routine application 
of these markers in clinical practice. Progress in 
understanding the molecular basis of cancers using omics 

technologies has provided opportunities to develop novel 
tools to diagnose, predict cancers and evaluate treatment 
responses [7].

Long noncoding RNA (lncRNA) is unable to 
be translated into proteins, with transcript lengths of 
more than 200 nucleotides [8, 9]. LncRNA has emerged 
as a vital regulator in biological, developmental and 
pathological processes of tissues and diseases including 
various cancers through mechanisms such as chromatin 
reprogramming, cis regulation at enhancers and post-
transcriptional regulation of mRNA processing [10, 11]. 
Cancer-related lncRNAs showed aberrant expression 
patterns in tissue- or cancer type-specific manners, 
suggesting their potentials as novel independent and 
promising biomarkers for cancer diagnosis or prognosis 
[12–16]. Recently, a very large-scale data analysis found 
1289 THCA-associated lncRNAs, just after renal clear 
cell carcinoma (1429 associated lncRNAs), in 27 types 
of cancers [10]. However, a few lncRNAs were declared 
to be implicated in the development and progression of 
THCA. For instance, lncRNAs BANCR and PVT1 were 
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overexpressed, and NAMA and PTCSC3 were down-
regulated in THCA patients [17–20]. To date, limited 
knowledge is known about the diagnostic or prognostic 
values of lncRNA in THCA [21]. In this study, next 
generation sequencing (NGS) datasets from The Cancer 
Genome Atlas (TCGA) [22] were used to identify two 
lncRNAs (LA16c-380H5.2 and RP11-203J24.8) and 
two protein coding genes (PCGs) (MLF1 and SDC4) as 
potential diagnostic biomarkers with high sensitivity and 
specificity.

RESULTS

Transcriptome expression profiles in THCA and 
normal samples

We compared expression levels of PCG and lncRNA 
between 505 cancer and 59 normal samples (sample list 
in Supplementary Table 1). LncRNA was expressed 
at evidently lower levels than PCG in both cancer and 
normal samples (P < 1E-100), showing a low abundance 
of lncRNA in cells (Figure 1A and 1B), which is consistent 
with previous studies [23, 24]. When compared with 
normal samples, the expression perturbation observed for 

lncRNA was more significant in THCA (P = 0.02, Figure 
1C), while PCG variance was considerably weaker in 
cancer samples (P = 0.32, Figure 1D), partly because that 
the specific expression of lncRNA is a vital regulator in 
gene expression.

To identify differentially expressed PCGs and 
lncRNAs in THCA and normal thyroid glands, we 
applied a binary statistical analysis based on the number 
of zero-values in the expression level (read count = 0). 
We identified 690 up-regulated and five down-regulated 
PCGs, and 1634 up-regulated and 21 down-regulated 
lncRNAs with |fold change (FC)| > 2 and FDR < 0.01 
by Fisher’s exact test; as well as 1273 up-regulated and 
880 down-regulated PCGs, and 341 up-regulated and 591 
down-regulated lncRNAs with |FC| > 2 and FDR < 0.05 
by Student's t test (Figure 1E). In total, we found that 2848 
PCGs and 2587 lncRNAs were differentially expressed 
between THCA and normal tissue (Supplementary Table 
2). Among them, 1963 PCGs and 1975 lncRNAs were 
up-regulated, while 885 PCGs and 612 lncRNAs were 
down-regulated (Figure 1F). Up-regulated features were 
found to be much more common than down-regulated 
features (> 2 times), which is similar to the expression 
patterns in two other reports about THCA [4, 25]; these 

Figure 1: Expression profiles of PCG and lncRNA in cancer and normal samples. Average expression levels (RPKM) of PCG 
and lncRNA in normal samples (A) and THCA samples (B). RPKM comparison of lncRNA (C) and PCG (D) between normal samples and 
cancer samples. (E) The number of up- and down-regulated PCG and lncRNA identified through Fisher’s exact test and Student's t test, 
respectively. F_Up/F_Down: up- or down-regulated PCG or lncRNA identified through Fisher’s exact test, T_Up/T_Down: up- or down-
regulated PCG or lncRNA identified through Student's t test. (F) Total number of differentially expressed PCG and lncRNA. Unsupervised 
hierarchical clustering using expression profiles of lncRNA (G) and PCG (H) revealed distinct separation of cancer samples from normal 
samples.
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results likely indicate that the demands of cancer cells for 
quick proliferation, tissue invasion and metastasis are met. 
A hierarchical cluster analysis of differentially expressed 
lncRNA (Figure 1G) and PCG (Figure 1H) showed that 
THCA patients were well discriminated from normal 
individuals according to their expression levels, indicating 
the possibility of selecting a group of features for THCA 
diagnosis.

Pathway analysis of differentially expressed PCGs 
indicated that 34 pathways were enriched significantly (P 
< 0.05, Supplementary Table 3). Many of these pathways 
were linked to cancer, such as “pathways in cancer” (P 
= 0.028), “cytokine-cytokine receptor interaction” (P = 
8.54E-6), which was in accordance with an early research 
[2], “PPAR signaling pathway” (P = 0.022), which was 
particularly associated with THCA [26, 27], and “PI3K-
Akt signaling pathway” (P = 1.63E-4), which was one of 
the most important molecular mechanisms identified in the 
carcinogenesis of THCA [28].

Dysregulated network of differentially expressed 
features

To explore the dysregulation of differentially 
expressed lncRNAs involved in THCA tumorigenesis 
and development, we calculated Pearson’s correlation 
coefficient (PCC) by examining the paired lncRNA 

and PCG expression profiles. In normal samples, 1085 
lncRNAs were identified to have 8393 target PCGs 
with 193424 co-expressed pairs using all PCGs in the 
Ensembl reference (“AllPCG” for short). Among them, 
1083 lncRNAs were positively correlated with 8154 
PCGs with 190880 co-expressed pairs, while only 130 
lncRNAs were negatively correlated with 1260 PCGs 
with 2544 co-expressed pairs (Table 1). When using those 
differentially expressed PCGs (“DiffPCG” for short), 
795 lncRNAs were found to have 1270 target PCGs with 
24752 co-expressed pairs. Among those, 793 lncRNAs 
were positively correlated with 1263 PCGs with 24668 
pairs, while only 24 lncRNAs were negatively correlated 
with 47 PCGs with 84 pairs (Table 1). As for those 
differentially expressed PCGs that were also cancer genes 
(cancer genes were cited from the report of Mathias Uhlén 
et al. [29]; “CancerG” for short, Supplementary Figure 1), 
282 lncRNAs had 37 target PCGs with 579 co-expressed 
pairs. All of the 282 lncRNAs were positively correlated 
with 37 PCGs with 578 pairs, while just one lncRNA 
was negatively correlated with one PCG with one pair 
(Table 1). Although there were positive and negative co-
expression pairs of lncRNA-PCG in normal samples, the 
former was far more common than the latter.

In THCA patients, 558 lncRNAs had 2091 targets 
with 8042 co-expressed pairs in the “AllPCG” level. 436 
lncRNAs had 633 targets with 2131 co-expressed pairs in 

Table 1: Number of differentially expressed lncRNA-PCG co-expression pairs

Co-expression pairs Positive pairs Negative pairs

Pairs lncRNA PCG Pairs lncRNA PCG Pairs lncRNA PCG

AllPCG Normal 193424 1085 8393 190880 1083 8154 2544 130 1263

Cancer 8042 558 2091 8042 558 2091 0 0 0

Total 199146 1317 9238 196602 1315 8999 2544 130 1263

DiffPCG Normal 24752 795 1270 24668 793 1263 84 24 47

Cancer 2131 436 633 2131 436 633 0 0 0

Total 26455 1006 1568 26371 1004 1561 84 24 47

CancerG Normal 579 282 37 578 282 37 1 1 1

Cancer 36 32 16 36 32 16 0 0 0

Total 604 296 42 603 296 42 1 1 1

Co-expressed pairs were defined with cutoff of |PCC| ≥ 0.7 and P < 0.001.
3th-5th column: number of co-expressed pairs between PCGs and differentially expressed lncRNAs.
6th-8th column: number of positively co-expressed pairs between PCGs and differentially expressed lncRNAs.
9th-11th column: number of negatively co-expressed pairs between PCGs and differentially expressed lncRNAs.
3th-4th row: number of co-expressed pairs between all PCGs in the Ensembl reference (“AllPCG” for short) and 
differentially expressed lncRNAs in normal (3th row) or THCA samples (4th row).
6th-7th row: number of co-expressed pairs between differentially expressed PCGs (“DiffPCG” for short) and differentially 
expressed lncRNAs in normal (6th row) or THCA samples (7th row).
9th-10th row: number of co-expressed pairs between those differentially expressed PCGs that were also cancer genes 
(“CancerG” for short) and differentially expressed lncRNAs in normal (9th row) or THCA samples (10th row).
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the “DiffPCG” level. When using “CancerG”, 32 lncRNAs 
had 16 targets with 36 co-expressed pairs (Table 1). It 
was astounding that all of these lncRNAs were positively 
correlated with PCGs in THCA samples without negative 
regulation, showing that PCGs followed the same trends 
as lncRNAs (Figure 1F). Moreover, the number of co-
expressed pairs in THCA patients was significantly 
less than in normal samples, only approximately 
4.16% (8042/193424) in the “AllPCG” level, 8.61% 
(2131/24752) in the “DiffPCG” level, and 6.22% 
(36/579) in the “CancerG” level (Table 1), illustrating a 
massive loss in regulation of lncRNAs to PCGs in THCA 
tumorigenesis or development. This agreed with the idea 
that most characterized lncRNAs display deregulated 
expression in cancers, suggesting they may play oncogenic 
or tumor suppressive functions [30].

Four types of dysregulated pairs among lncRNA-
PCG co-expressed pairs are defined in Table 2. There 
were 196826, 26027, and 593 dysregulated pairs, 
accounting for 98.84% (out of 199146), 98.38% (out 
of 26455), and 98.18% (out of 604) in “AllPCG”, 
“DiffPCG”, and “CancerG” levels, respectively (Table 
1 and Table 2). In particular, in the “CancerG” level, 
nearly 100% of the lncRNAs (295/296) and PCGs (42/42) 
showed dysregulation (Table 2). It is no surprise that the 
overwhelming majority of the population was Type I; there 
were no Type III and Type IV dysregulated pairs (Table 
2). Those lost (Type I) and gained (Type II) dysregulated 
pairs may be one important reason for the aberrance of 
THCA. These results showed dramatic turbulence in the 
regulation roles of lncRNA to PCG in THCA, supporting 
the findings that lncRNAs are frequently dysregulated in 
various tumors [31–33].

Both in Table 1 and Table 2, there was an intriguing 
phenomenon where the number of lncRNAs was much 
lower than that of PCG in both “AllPCG” and “DiffPCG” 

levels, which was concordant with the idea that lncRNA 
could target multiple, even hundreds of genes in the 
human genome [34, 35]. This is just the opposite in the 
“CancerG” level where one PCG was influenced by 
several lncRNAs, suggesting key roles of those 42 cancer 
PCGs in THCA (42 PCGs are listed in Supplementary 
Table 4). For example, ENSG00000105976 (c-Met) is 
an oncogene protein with tyrosine kinase activity, and its 
abnormal activation has been detected in various cancers, 
including THCA [36, 37]. Another example is that 
ENSG00000066468 (FGFR-2), which has been implicated 
in the onset of THCA, was reduced in THCA [38, 39]. In 
agreement with the above reports, c-Met was aberrantly 
up-regulated (P < 2.2E-16, FC = 5.99), and FGFR-2 was 
aberrantly down-regulated (P < 2.2E-16, FC = 2.3) in 
our study (Supplementary Figure 2A and 2B). Pathway 
analysis of those 42 PCGs showed that “Transcriptional 
misregulation in cancer” was the most enriched pathway 
(P = 1.11E-7), followed by “Pathways in cancer” (P = 
2.83E-3), “PI3K-Akt signaling pathway” (P = 8.32E-
3), “Cytokine-cytokine receptor interaction” (P = 0.01), 
“Acute myeloid leukemia” (P = 0.019), and “Central 
carbon metabolism in cancer” (P = 0.024) (Figure 2A). 
All of those six pathways are associated with cancer, these 
key pathways are regulated by lncRNA in THCA.

Therefore, we focused on the co-expressed network 
based on dysregulation pairs of those 42 PCGs and 295 
regulating lncRNAs (Table 2). There were 337 (42 and 
295) nodes and 593 edges in the network (Figure 2B), 
which had a scale-free topology with degree distribution 
following a power law (Figure 2C). Such a scale-free 
network has been found in many different organizational 
levels, ranging from genetics to protein interaction and 
protein domains [40, 41]. A distinguishing feature of 
such a scale-free network is the existence of a few highly 
connected nodes [42]. There were 117 (72.7%) nodes of 

Table 2: Four types of dysregulated pairs among co-expressed pairs of lncRNA-PCG

Type Normal Cancer
AllPCG DiffPCG CancerG

lncRNA PCG Pairs lncRNA PCG Pairs lncRNA PCG Pairs

I Yes No 1060 8344 191104 764 1237 24324 281 36 568

II No Yes 490 1634 5722 371 549 1703 23 14 25

III Positive Negative 0 0 0 0 0 0 0 0 0

IV Negative Positive 0 0 0 0 0 0 0 0 0

Total 1298 9202 196826 985 1546 26027 295 42 593

I: co-expressed pairs appeared in normal samples, while disappeared in THCA. II: co-expressed pairs disappeared in normal 
samples, while appeared in THCA. III: pairs positively co-expressed in normal samples, while negatively co-expressed in 
THCA. IV: pairs negatively co-expressed in normal samples, while positively co-expressed in THCA.
AllPCG: all protein coding genes (PCGs) in the Ensembl reference. DiffPCG: differentially expressed PCGs. CancerG: 
differentially expressed PCGs that were also cancer genes.
The number of lncRNA in this table is the number of differentially expressed lncRNAs between normal and THCA 
samples.
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a degree lower than three, while 23 (6.8%) nodes had 
degrees of six or above. To test the existence of separable 
functional units, we tried to mine feasible sub-modules. 
Two sub-networks were finally found (Figure 2D and 2E). 
There were 26 (Figure 2D) and 19 (Figure 2E) lncRNAs 
and only five of the same PCGs in those two sub-modules. 
A uniquely enriched pathway of all five PCGs (FSTL3, 
KLF6, MLF1, NR4A3, and SDC4) was “Transcriptional 
misregulation in cancer” (P = 0.048), suggesting that those 
five PCGs and their regulating lncRNAs may play roles in 
transcriptional regulation levels in THCA. It also suggests 
their potential as biomarkers or therapeutic targets in 
THCA.

Diagnostic values of LA16c-380H5.2, RP11-
203J24.8, MLF1 and SDC4

The 505 patients were classified into either a high-
risk group or a low-risk group by sub-module 1 (P = 0.028, 
Figure 3A), instead of sub-module 2 (P = 0.093, Figure 
3B), demonstrating a significant difference in estimated 
survival time. Just four of the 31 elements in sub-module 1 
showed predictive power, and were able to independently 
distinguish low-risk patients from high-risk individuals at 
a statistically significant level of 0.1. Those four elements 
were LA16c-380H5.2 (Figure 3C), RP11-203J24.8 (Figure 
3E), MLF1 (Figure 3G), and SDC4 (Figure 3I); the other 
27 elements are shown in Supplementary Figure 3. Patients 
in the high-risk group had a lower survival ratio (Figure 
3C, 3E, 3G, 3I) and shorter survival time (Supplementary 
Table 5) than those in the low-risk group. ROC (receiver 

operating characteristic) curves were applied to evaluate 
whether those four elements could distinguish high- or 
low-risk status. Surprisingly, the AUC (area under the 
ROC curve) was one with RPKM (reads per kilobase per 
million mapped) cutoff values of 0.346, 0.327, 311.258, 
and 18095.531 for LA16c-380H5.2, RP11-203J24.8, 
MLF1, and SDC4, respectively (Supplementary Figure 4). 
These RPKM cutoff values could completely differentiate 
high- or low-risk status with P values less than 1.0E-10 and 
FC values of more than two (Figure 3D, 3F, 3H and 3J). 
The expression of LA16c-380H5.2 and SDC4 tended to 
be up-regulated, while the remaining two (RP11-203J24.8 
and MLF1) were down-regulated for patients in the high-
risk group, suggesting that their expression levels were 
closely related to the development of THCA. Interestingly, 
they all showed obviously different expressions levels in 
the low risk and normal groups (Figure 3D, 3F, 3H and 3J).

ROC curves were further generated to evaluate 
whether they could diagnose THCA. For LA16c-380H5.2, 
the AUC reached 0.781 (95% CI: 0.720-0.843) when using 
the RPKM cutoff value of 0.151, and the sensitivity and 
specificity were 0.677 and 0.847, respectively (Figure 
4A). For RP11-203J24.8, these values are an AUC of 
0.871 (95% CI: 0.825-0.917), a RPKM cutoff value 
of 0.195, and a sensitivity and specificity of 0.838 and 
0.780 (Figure 4B). For MLF1, the AUC was 0.924 (95% 
CI: 0.886-0.962), the RPKM cutoff value was 310.115, 
and the sensitivity and specificity were 0.863 and 0.864 
(Figure 4C). For SDC4, the AUC was 0.898 (95% CI: 
0.870-0.926), the RPKM cutoff value was 4769.11, and the 
sensitivity and specificity were 0.838 and 0.881 (Figure 

Figure 2: The lncRNA-PCG dysregulation network of the 42 PCGs. (A) Results of KEGG pathway enrichment, showing P 
value, gene count, and fold enrichment in each pathway. (B) The dysregulation network of the 42 PCGs. The lncRNA was indicated to 
triangle and PCG was indicated to circle. The color of blue represents Type I (disappearance) pairs and green represents Type II (appearance) 
pairs. (C) The exponential distribution of degree of each node in (B). (D) and (E) were two sub-modules identified from (B).
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4D). THCA can be diagnosed accurately using expression 
levels of these four elements (Figure 4E-4H). These 
analyses showed that these four elements might serve 
as outstanding diagnostic biomarkers for THCA, which 
would be useful in screening biopsies in a histopathologic 
setting. We confirmed the expression pattern of the SDC4 
by other samples (GSE3467 and GSE3678 [43]) from 
GEO datasets (Figure 5A and Supplementary Figure 5A). 
And, we also had experimental data about the expression 
of the remaining three genes between THCA cell lines 
(TT, B-CPAP and BHT101) and normal thyroid cell lines 
(HT-ori3) (Figure 5B-5D and Supplementary Figure 5B 
and 5C).

As shown in (Figure 4E-4H) and (Figure 3D, 3F, 
3H, 3J), LA16c-380H5.2 and SDC4 were up-regulated 
in THCA patients compared to normal samples and also 
tended to be expressed at higher levels in the high-risk 
group compared to the low-risk group. In contrast, MLF1 
was down-regulated in THCA patients when compared 
with normal samples and also tended to be expressed at 
a lower level in the high-risk group compare with the 
low-risk group. RP11-203J24.8 was also differentially 
expressed among the normal sample, the low-risk group 
and the high-risk group. These expression signatures are 
shown in (Figure 4I), suggesting that these four elements 
could diagnose THCA patients from normal individuals. 

Based on the cutoff values of RPKM, they may be divided 
into two groups with LA16c-380H5.2 and SDC4 in Group 
I and MLF1 and RP11-203J24.8 in Group II (Figure 4J). 
Group I could explicitly differentiate the normal, low-risk 
and high-risk groups. For LA16c-380H5.2, an individual 
would be diagnosed as normal with an RPKM value less 
than 0.151, as high-risk with an RPKM value higher than 
0.346, and as low-risk with an RPKM value between 0.151 
and 0.346. For SDC4, an individual would be considered 
healthy with an RPKM value less than 4769.11, as high-
risk with an RPKM value more than 18095.531, and 
as low-risk with an RPKM value between 4769.11 and 
18095.531. The results of Group II seemed ambiguous, 
but they may be an accessory to Group I. MLF1, SDC4, 
LA16c-380H5.2, and RP11-203J24.8 were not in the list 
of pan-cancer (including THCA) biomarkers reported by 
Bogumil Kaczkowski et al. [44]. Likewise, they were not 
expressed differentially in a pan-cancer (not including 
THCA) transcriptome analysis published by Christopher 
R Cabanski et al. [45]. This means that those expression 
signatures (Figure 4J) could be used to develop a novel 
diagnostic panel for THCA patients. In comparison, PAX8 
(paired box 8), which encodes a member of the paired box 
family of transcription factors, was involved in thyroid 
follicular cell development and was thyroid-specifically 
expressed [46]. TTF1 (thyroid transcription factor 1) was 

Figure 3: Four potential biomarkers. Sub-module 1 (A), instead of sub-module 2 (B) could distinguish the high-risk group from 
the low-risk group in THCA patients. Four elements in sub-module 1: LA16c-380H5.2 (C), RP11-203J24.8 (E), MLF1 (G) and SDC4 (I) 
could distinguish the high-risk group from the low-risk group. Comparison of expression levels in the normal, the low-risk and the high-risk 
groups for LA16c-380H5.2 (D), RP11-203J24.8 (F), MLF1 (H) and SDC4 (J).
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considered to be a thyroid transcription factor that encoded 
one homeobox protein [47]. They were identified as two 
potential biomarkers of THCA [48]. In the present study, 
both PAX8 and TTF1 were expressed at lower levels in 
THCA patients than in normal samples; however, they 
were not notable enough to be biomarker candidates, with 
FC values less than two (Supplementary Figure 2C and 
2D).

To further examine whether these four biomarkers 
were THCA-specific or thyroid-specific, we retrieved their 
expression levels from three other independent datasets 
(Genecards [49], cBioPortal [50], and NONCODE [51]) 
in FPKM (fragments per kilobase per millions) values. 
LA16c-380H5.2, which was not found in NONCODE, 
was found at a low expression level (mean FPKM = 0.16) 
in the thyroid (Figure 6A). RP11-203J24.8 matched no 
results in Genecards and cBioPortal, but was expressed 
in low levels (mean FPKM = 0.365) in the thyroid (Figure 
6B). MLF1 was expressed moderately (mean FPKM 
= 14.44) in the thyroid (Figure 6C). SDC4 was highly 
expressed (mean FPKM = 75.69) in the thyroid (Figure 
6D). All four biomarkers were pervasively expressed in 
most major human tissues and did not show a thyroid-
specific expression pattern. MLF1 was moderately 
expressed (mean FPKM = 233.73, Figure 6E), while 

SDC4 was apparently highly expressed (mean FPKM = 
19772.64, Figure 6F) in THCA, among various cancers. 
Although MLF1 and SDC4 were generally highly 
expressed in multiple types of cancers, their expression 
levels varied over a large range. Both MLF1 and SDC4 
were not THCA-specific features.

Potential function of LA16c-380H5.2, RP11-
203J24.8, MLF1 and SDC4

To explore the functional implication of LA16c-
380H5.2 and RP11-203J24.8, both of which were 
uncharacterized previously in thyroid cells, in THCA 
tumorigenesis and development, we predicted lncRNA 
roles by using their targets. Among dysregulation pairs, 
KLF6 was the unique target of RP11-203J24.8, while the 
only two targets of LA16c-380H5.2 were, coincidentally, 
MLF1 and SDC4 (Figure 2B). The duplex structure 
of these two lncRNAs and their targets was predicted 
(Supplementary Figure 6A and 6B), and very low MFE 
(minimum free energy) indicated high accessibility 
for the sequence. The PCC between KLF6 and RP11-
203J24.8 was 0.71 (P = 3.09E-10) in normal samples, but 
showed a sharp decrease (PCC = 0.188, P = 2.15E-5) in 
the cancer group (Supplementary Figure 6C). The PCC 

Figure 4: A panel of biomarker candidates with diagnostic values. ROC curve of LA16c-380H5.2 (A), RP11-203J24.8 (B), 
MLF1 (C) and SDC4 (D) showed high sensitivity and specificity to diagnose THCA patients from normal individuals. Comparison of 
expression levels in normal and cancer samples for LA16c-380H5.2 (E), RP11-203J24.8 (F), MLF1 (G) and SDC4 (H). (I) Comparison 
of expression change trends for four biomarkers in normal and cancer, high-risk and low-risk groups. (J) RPKM cutoff values of LA16c-
380H5.2, RP11-203J24.8, MLF1 and SDC4 to distinguish the normal, the low-risk or the high-risk groups.
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between MLF1 or SDC4 and LA16c-380H5.2 was 0.779 
(P = 3.62E-13) and 0.85 (P = 1.77E-17), respectively, 
from normal samples and 0.058 (P = 0.194) and 0.35 
(P = 5.87E-16) for the cancer group (Supplementary 
Figure 6D and 6E); both PCC values fell considerably. 
These results illustrate that these three dysregulation 
pairs were affiliated with the Type I (Table 2), meaning 
that LA16c-380H5.2 and RP11-203J24.8 lost some 
targets in THCA, which may be partly because of the 
strict criteria of |PCC| > 0.7 and P < 0.001. Therefore, 
we focused on their targets in normal samples. A total 
of 147 PCGs were positively or negatively correlated 
with LA16c-380H5.2 (Supplementary Table 6), and 11 
PCGs were positively or negatively correlated with RP11-
203J24.8 (Supplementary Table 7). The 147 PCGs were 
significantly enriched (P < 0.05 and Fold Enrichment 
> 2) in 67 GO (Gene Ontology) terms and 13 KEGG 
(Kyoto encyclopedia of genes and genomes) pathways 
(Supplementary Table 8), including “negative regulation 
of cell proliferation” (P = 2.41E-4), “negative regulation 
of cell growth” (P = 0.014), “negative regulation of cell 
cycle” (P = 0.03), “negative regulation of apoptotic 
process” (P = 0.009), “activation of MAPK activity” (P 
= 0.009), and “positive regulation of cell migration” (P = 
0.01). Except for those GO functional terms that seemed 
conflicting in function, some important KEGG pathways 
that are involved in cancers were also enriched, such as 
“TNF signaling pathway” (P = 0.003), “p53 signaling 
pathway” (P = 0.003), “MAPK signaling pathway” (P = 
0.028) which was reported by different studies on THCA 
[2, 4, 17, 28], and “PI3K-Akt signaling pathway” (P = 
0.04), showing that the lncRNA LA16c-380H5.2 may 
promote normal growth and development of thyroid cells. 
By detecting expression in 505 THCA and 59 normal 
tissues, we found significantly higher expression of 
LA16c-380H5.2 in patients (Figure 4E), suggesting that 
LA16c-380H5.2 may be considered as an oncogene in the 
thyroid and may be a potential novel therapeutic target for 
THCA patients. For targets of lncRNA RP11-203J24.8, 

we found no KEGG pathways enriched, and only one 
enriched GO term: “intracellular signal transduction” 
(P = 0.023); its target KLF6 was reported as a cancer 
driver gene [52] that also showed importance in thyroid 
normality maintenance.

SDC4 (syndecan 4) encodes a type I 
transmembrane heparan sulfate proteoglycan that is a 
main cell adhesion receptor involved in focal adhesion 
formation, and is required for cell migration [53, 54]. 
SDC4 has been reported as a cancer driver gene [52] 
and was up-regulated in our study (FC=5.12, Figure 
4H), which was in accordance with two previous studies 
using microarrays [4, 25]; Griffith et al. reported a 3.32 
FC [25], and Chung et al. detected a 3.90 FC [4]. These 
results were consistent with the high expression of SDC4 
in other malignances (Figure 6F), indicating the oncogene 
nature of SDC4 in THCA development. MLF1 (myeloid 
leukemia factor 1) encodes an oncoprotein that plays a 
role in the phenotypic determination of hemopoietic cells 
[55]. Translocations between MLF1 and nucleophosmin 
have been associated with myelodysplastic syndrome 
(MDS) and acute myeloid leukemia (AML) [56]. 
Increased MLF1 as an oncogene expression has been 
correlated with a poor prognosis in AML and with 
malignant progression in MDS [57, 58]; however, it 
was significantly down-regulated in THCA (Figure 4G) 
and expressed at a lower level in the high risk group 
than in the low risk group (Figure 3H). MLF1’s lowest 
expression was marvellously in AML among various 
cancers, and its expression level in THCA was obviously 
higher than in AML (Figure 6E). Just like SDC4, MLF1 
also occupied a critical position in the network and had 
more interactions than the average gene (Figure 2D), 
which are common characteristics of cancer driver genes 
[59, 60]. These results suggested that MLF1 may have an 
unknown novel function in THCA as a potential cancer 
driver gene and may maintain the normal cellular growth 
and development of thyroid, as well as suppressed roles 
in THCA tumorigenesis.

Figure 5: Validation of expression pattern of these four genes (A–D).
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DISCUSSION

Successful cancer treatment depends heavily 
on early detection [44]; however, few biomarkers are 
routinely used in clinics [61]. Although THCA is a 
relatively indolent cancer with low mortality [6], it 
frequently (30-90% of patients) metastasizes in the 
lymph node [62]. These often predicts poor prognoses in 
THCA patients in the cervical region [63]. Persistent and 
recurrent disease rates remain significant [64]. Therefore, 
it is becoming increasingly important to find reliable and 
clinically applicable novel biomarkers for diagnosis or 
prediction.

In THCA, some molecular markers (such as 
SDC4, PAX8, TTF1, miR-181b and miR-221) have been 
evaluated to improve preoperative diagnostic or predictive 
accuracy in patients [25, 46, 47, 65, 66]. For example, 
Griffith et al. reported 39 differentially expressed genes 
(23 up-regulated and 16 down-regulated, P < 0.05) in 473 
samples [25], and Chung et al. identified 79 differentially 
expressed genes (70 up-regulated and 9 down-regulated, 
FC > 3 and FDR < 0.01) in 26 samples [4]. Among the 
up-regulated genes, seven genes (MET, TGFA, PROS1, 
PSD3, SDC4, TUSC3, and P4HA2) were detected in 
both reports. Only one gene was selected as a biomarker 
in our study, SDC4 (P=9.03E-88, FC=5.12, Figure 4H), 
showing that SDC4 is robustly up-regulated in various 
THCA populations across different studies. While PAX8 

and TTF1 might not be exclusive enough to be biomarkers 
based on our evaluation (Supplementary Figure 2C and 
2D).

In addition to genetic factors, increasing evidence 
has suggested the implication of lncRNAs in the process 
of cancer occurrence and progression [67, 68]. The 
lncRNA can significantly inhibit/promote proliferation, 
migration and apoptosis of a cell, and it is an attractive 
way to diagnose and cure cancers via the effective control 
of both cell growth and motility through lncRNAs [10, 
69]. However, only a small amount of lncRNAs are known 
to be involved in THCA pathogenesis. For example, 
BANCR (BRAF-activated lncRNA) could increase cell 
proliferation in papillary thyroid cancer (PTC, PTC 
accounts for approximately 80% of all THCA in adults 
[70]), and its levels were significantly higher in PTC 
[18]. PTCSC3 (papillary thyroid carcinoma susceptibility 
candidate 3) is a tumor suppressor, and was down-
regulated in PTC [2, 19, 71]. NAMA (noncoding RNA 
associated with MAP kinase pathway and growth arrest) 
was found to be down-regulated in PTC and associated 
with arresting growth [17]. The expression of PVT1 
(LINC00079), which contributes to tumorigenesis through 
recruiting EZH2 (polycomb enhancer of zeste homolog 
2) and regulating TSHR (thyroid-stimulating hormone 
receptor), was significantly up-regulated in THCA 
[20]. All these reports show that lncRNA expression 
abnormality may be one reason of cancer pathogenesis 

Figure 6: Expression profiles of four biomarker candidates in three public databases. Expression profiles of LA16c-380H5.2 
(A), MLF1 (C) and SDC4 (D) in normal tissues from GeneCards database. Expression profiles of RP11-203J24.8 (B) in normal tissues 
from NONCODE database. Expression profiles of MLF1 (E) and SDC4 (F) in various cancers from cBioPortal database.
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and also suggested its potential as diagnostic biomarkers. 
In our study, the expression levels of PTCSC3 (P = 9.21E-
17, FC = 0.41, Supplementary Figure 2E) and NAMA (P = 
5.37E-16, FC = 0.29, Supplementary Figure 2F) in THCA 
were concordant with those above studies, when compared 
with the normal samples. BANCR was not present in the 
GRCh37 reference. PVT1, with slight down-regulation in 
our study (P = 0.03, FC = 0.746, Supplementary Figure 
2G), was not defined as a differentially expressed lncRNA. 
Which may suggest that different environmental exposures 
may lead to various changes in diverse populations. This 
difference may also come from methods (namely, the 
qRT-PCR method and methods where cancer tissues are 
compared with adjacent normal tissues) and sample size 
(84 patients) in its study. Those above analyses about PCG 
and lncRNA were limited to a small number of samples, 
but the biomarkers we identified were more believable 
because of the advantages of a larger sample size and a 
more advanced platform of NGS. Recently, Qiuying Li 
et al also reported four independent lncRNA biomarkers 
(RP11-536N17.1, RP11-508M8.1, AC026150.8 and 
CTD-2139B15.2), which were different from the four 
biomarkers identified in our study, associated with 
prognosis from the same TCGA-THCA dataset [72]. 
There are many difference between those two researches. 
Qiuying Li et al randomly divided THCA patients into 
two distinct sets of equal size: the 246-patient training 
dataset and the 246-patient testing dataset, they studied 
lncRNAs from the GENCODE Resource (version 19) 
and used TCGA RNA-sequencing data in the BAM file, 
and differentially expressed lncRNAs were identified 
using a paired student t-test, their prognostic biomarkers 
were focused on the survival and recurrence prediction. 
While we used the THCA patients as a whole, we focused 
on cancer PCGs and their regulating lncRNAs from the 
GRCH37 human genome assembly and used TCGA RNA-
sequencing data in the FASTQ format, and differentially 
expressed PCGs and lncRNAs were identified using 
Fisher's exact test or student's t test, biomarkers we 
identified were focused on their diagnostic values.

Furthermore, the number of DNA mutations is 
highly heterogeneous among various types of cancers 
[73]. Eduard Porta-Pardo et al. previously reported 
that THCA had only 11 missense mutations per sample 
(4420 mutations in 401 samples), which was the lowest 
in 23 types of cancer (5989 samples) from TCGA, while 
melanoma had the highest number, with 429 missense 
mutations per sample [52]. Since the relatively small 
number of DNA mutations in THCA patients may restrict 
the consideration of them as biomarkers, aberrantly 
expressed PCGs and lncRNAs of cancers could be a good 
alternative. Herein, we demonstrated the utility of a novel 
panel of diagnostic biomarker candidates including two 
PCGs (MLF1 and SDC4) and two lncRNAs (LA16c-
380H5.2 and RP11-203J24.8) from the dysregulation 
network based on expression signatures (Figure 4J). 

Although the number of samples used for creating this 
panel was limited, the strict criteria used for selecting them 
provides a strong signature for biomarker validation. Fine 
needle aspiration, which is considered a gold standard for 
differential diagnosis, has a diagnostic sensitivity of 0.83-
0.98 and specificity of 0.70-0.92 in THCA [74, 75]. Here, 
we obtained a satisfying result with a sensitivity of 0.677-
0.863 and specificity of 0.780-0.881 (Figure 4A-4D). 
The improved ability to detect RNA, especially by in situ 
hybridization, RT-PCR, and sequencing techniques, will 
make RNA easily accessible to clinical applications and 
will improve the diagnosis or prognosis of THCA.

However, there are some limitations that should be 
acknowledged in our study. It should be emphasized that 
these four identified potential biomarkers were predicted 
by bioinformatic methods, and they were just validated 
in cell lines. Although substantial computational evidence 
for the diagnostic significance had been revealed, the 
underlying mechanisms of these four biomarkers in the 
development of THCA are still unclear. Both tumors 
and normal tissues are complex mixtures that include 
multiple types of cells, such as cancer cells, infiltrating 
lymphocytes and blood vessels, and variations in gene 
expression may thus simply reflect differences in cell 
composition [44]. Sample heterogeneity with respect to 
types of THCA, clinical activity and severity might impair 
the analysis. Random changes that exist in patients may 
be another confounding factor; for example, GAPDH is 
a house-keeping gene and is often used in in vivo disc 
research [76]; however, its expression levels changed 
markedly in both the THCA group and the normal group 
(Supplementary Figure 2H). The catalogue of cancer 
biomarkers is far from complete, and it is difficult to 
extend it by simply increasing the size of samples [77]. 
An alternative approach towards that goal is to integrate 
various types of biological knowledge to increase the 
statistical power of the analysis [52]. Moreover, because 
of extreme complexity and individual diversity, the 
current gene-centric paradigm in cancer biology may not 
be enough to explain the complex genotype-phenotype 
relationships [78–80]. It is expected that the information 
of DNA and epigenetic variation and protein-protein 
interaction profiles of cancer patients will be combined 
with our RNA-centric analysis.

MATERIALS AND METHODS

Sequencing data analysis

The results shown here are in whole based upon 
data generated by the TCGA Research Network: http://
cancergenome.nih.gov/. The downloaded RNA sequencing 
data used in this study are in FASTQ format, including 505 
patients and 59 healthy individuals; those 564 sample IDs 
are provided in Supplementary Table 1. Bowtie software 
[81] with the default parameters was used to align RNA 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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sequencing reads (48 nucleotides length) to the GRCH37 
human genome assembly downloaded from the Ensembl 
database (http://asia.ensembl.org). These uniquely mapped 
reads in the genome were used to identify unambiguous 
transcription. Reads aligned to more than one locus 
were discarded. The expression level of transcripts was 
quantified by calculating the RPKM (reads per kilobase 
per million mapped) value. Genes were categorized as 
“protein coding” and “non-coding” based on an Ensembl 
annotation file in the GTF format. Among non-coding 
genes, rRNAs, tRNAs, miRNAs, snoRNAs and other 
known classes of RNAs were excluded, and lncRNAs 
were defined as all non-coding genes longer than 200 
nucleotides and not belonging to other RNA categories. 
There were 18078 protein coding genes (PCGs) and 12727 
lncRNA in the reference.

Differential expression analysis of cancer and 
normal samples

To identify the difference in PCG or lncRNA 
expression in cancer samples versus normal samples, we 
used the Wilcoxon rank sum test. For each feature (lncRNA 
or PCG), the read count was used as the input expression 
datum; we then calculated the frequency of expression in 
cancer and normal samples. If the ratio of the zero-value 
for the expression level (not detected, read count = 0) was 
more than 30% in cancer or in normal samples, a two-
sided Fisher’s exact test with an adjustment for multiple 
testing by the Benjamini-Hochberg method was used, with 
the thresholds of FDR < 0.01 and |FC| (absolute value of 
the fold change) > 2. Otherwise, Student's t test with the 
same adjustment was applied, with FDR < 0.05 and |FC| 
> 2. The FC was calculated by taking the higher mean 
RPKM value divided by the lower mean RPKM value in 
the THCA or normal samples. Unsupervised hierarchical 
clustering was done by R software (version 3.3.2, http://
www.r-project.org/).

Expression profiles of SDC4 and MLF1 in 
various cancers were queried in the cBioPortal (http://
www.cbioportal.org) [50]. LA16c-380H5.2, SDC4, and 
MLF1 expression values in major normal tissues were 
downloaded from the GeneCards (http://www.genecards.
org) [49]. RP11-203J24.8 expression profiles in major 
normal tissues were retrieved from the NONCODE (http://
www.noncode.org) [51].

Construction of the regulatory network

Pearson’s correlation coefficient (PCC) was 
calculated by in-house R- scripts, and was utilized to 
evaluate the co-expression relationship between lncRNA 
and PCG. Co-expressed pairs were defined with a cutoff 
of |PCC| ≥ 0.7 and P < 0.001. Network interactions 
were graphed using Cytoscape software (version 3.2.1) 
[82]. Two sub-modules were identified by CytoCluster 

[83], with the HC-PIN clustering algorithm and other 
parameters as default, which is a plugin in Cytoscape.

Data visualization

The Kaplan-Meier survival curves of over-all 
survival was obtained using the Survival package [84]. 
The receiver operating characteristic (ROC) and the area 
under the ROC curves (AUC) values were obtained from 
the pROC package [85]. Unless otherwise specified, data 
were analyzed and visualized using R software (version 
3.3.2).

Duplex structure prediction

The duplex structure was predicted by RNAplex 
and RNAduplex in the ViennaRNA package [86], using 
the DNA sequence of the PCG with 2000bp upstream 
and downstream and the RNA sequence of the lncRNA, 
which were retrieved from the GRCH37 human genome 
reference. The range of the predicted duplex structure 
in the two sequences is in the format “from, to : from, 
to”. The minimum free energy (MFE) is in kcal/mol. 
The predicted structure is in the dot-bracket format with 
a “&” separating the two sequences. A dot in the format 
represents an unpaired position, while a base pair (i, j) is 
represented by a pair of matching parentheses at positions 
i and j.

Pathway analysis

For enrichment analysis to explore their biological 
effects, PCGs were submitted to the DAVID (http://david.
abcc.ncifcrf.gov/) [87]. The reporting of the enriched 
results was limited to Gene Ontology (GO) terms and 
Kyoto encyclopedia of genes and genomes (KEGG) 
pathway categories using the functional annotation 
clustering and functional annotation chart options. The GO 
terms and KEGG pathways with P values of < 0.05 were 
considered as significantly enriched function annotations.

Reagents and cell culture

F12K medium (Life, Cat. 21127022), RPMI 1640 
medium (Gibco, Cat. 11875093), DMEM(H) (Gibco, 
Cat. 11965092), NEAA (Invitrogen, Cat. 11140050), 
Glutamax (Invitrogen, Cat. 35050061), Sodium Pyruvate 
(Invitrogen, Cat. 11360070), Fetal bovine serum (Gibco, 
Cat. 10099141), penicillin/streptomycin solution (P/S, Cat. 
0503), TRIzol™ Reagent (Invitrogen, Cat. 15596018), 
reverse transcription kit (Takara Bio Inc, Liaoning, China, 
Cat. RR036B (A × 4)), SYBR Premix Ex Taq kit (Takara 
Bio Inc, Liaoning, China, Cat. RR420B).

The human thyroid medullary carcinoma cell 
line (TT), human papillary thyroid carcinoma cell lines 
(B-CPAP and BHT101) and human normal thyroid cell 
line (HT-ori3) were used in the current study. Those cell 

http://asia.ensembl.org
http://www.r-project.org/
http://www.r-project.org/
http://www.cbioportal.org
http://www.cbioportal.org
http://www.genecards.org
http://www.genecards.org
http://www.noncode.org
http://www.noncode.org
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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lines were purchased from Stem Cell Bank, Chinese 
Academy of Sciences (Shanghai, China). TT cells were 
cultured with F12K medium containing 10% (vol/vol) 
FBS and 1% (vol/vol) P/S at 37°C with 5% CO2. B-CPAP 
cells were cultured with RPMI 1640 medium containing 
10% (vol/vol) FBS, 1% (vol/vol) P/S, 1% NEAA, 1% 
Glutamax and 1% Sodium Pyruvate at 37°C with 5% CO2. 
BHT101 cells were cultured with DMEM(H) medium 
containing 20% (vol/vol) FBS and 1% (vol/vol) P/S. HT-
ori3 cells were cultured with 1640 medium containing 
10% (vol/vol) FBS and 1% (vol/vol) P/S.

RNA isolation

TT cells, B-CPAP cells, BHT101 cells, and HT-ori3 
cells were cultured in the specific medium and harvested at 
80% density. The cell pellets were dissolved in 1 ml Trizol 
solution and isolated according to a stand RNA isolation 
procedure. The RNA concentration in each sample was 
quantified using a spectrophotometer at 260 nm, the purity 
of RNA was assessed by measuring OD260/OD280 ratio 
(range 1.85–2.00).

Real-time PCR

Total RNA of different cell lines was extracted, 
and then the cDNA were synthesized with reverse 
transcription. Real-time PCR reactions were carried out 
in a final volume of 25 ul, using SYBR Premix ExTaq kit, 
0.4 mM of each primer, and 200 ng of cDNA template. 
Each individual sample was run in triplicate wells. 
PCR amplification cycles were performed using iQ™5 
Multicolor Real-Time PCR Detection System (Bio-RAD). 
The reactions were initially denatured at 95°C for 3 min, 
followed by 50 cycles of 95°C for 10s, 55°C for 15s, 72°C 
for 35s. The expression levels were calculated using the 
2-ΔΔCt method and normalized to β-actin. The sequences of 
oligonucleotide primers were showed in Supplementary 
Table 9, primers were designed using NCBI primer-
blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 
Experimental data were presented as the mean ± SD. 
Statistical significance between the groups was calculated 
by a two-tailed Student’s t test.
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