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Independent component analysis (ICA) is a multivariate approach that has been widely
used in analyzing brain imaging data. In the field of functional near-infrared spectroscopy
(fNIRS), its promising effectiveness has been shown in both removing noise and
extracting neuronal activity-related sources. The application of ICA remains challenging
due to its complexity in usage, and an easy-to-use toolbox dedicated to ICA processing
is still lacking in the fNIRS community. In this study, we propose NIRS-ICA, an open-
source MATLAB toolbox to ease the difficulty of ICA application for fNIRS studies.
NIRS-ICA incorporates commonly used ICA algorithms for source separation, user-
friendly GUI, and quantitative evaluation metrics assisting source selection, which
facilitate both removing noise and extracting neuronal activity-related sources. The
options used in the processing can also be reported easily, which promotes using ICA in
a more reproducible way. The proposed toolbox is validated and demonstrated based
on both simulative and real fNIRS datasets. We expect the release of the toolbox will
extent the application for ICA in the fNIRS community.

Keywords: functional near-infrared spectroscopy, data processing, multivariate analysis, independent
component analysis, blind source separation, MATLAB toolbox, software

INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging technology that
has been widely used in studying human brain activity (Boas et al., 2014). It has been utilized to
investigate the task-evoked neuronal response of various cognitive functions as well as spontaneous
neural activity, which is reflected by resting-state functional connectivity (White et al., 2009).
Compared with fMRI, fNIRS is portable, less sensitive to head motion, and has high ecological
validity, which make it very suitable to study human social interactions by hyper-scanning multiple
brains in naturalistic environment, and special populations such as infants, patients, and the
elderly population (Ferrari and Quaresima, 2012; Scholkmann et al., 2013). It also has higher
temporal resolution and a more comprehensive measurement for hemoglobin changes in the
cerebral cortex, which potentially provides a deeper understanding of the neurovascular coupling
process (Steinbrink et al., 2006).

However, besides the sources of neural activity, various physiological and non-physiological
noise components have been found in fNIRS signals (Scholkmann et al., 2014). Since
fNIRS detects brain activity based on the banana-shaped light path traveled through both
extra- and intra-cerebral compartments, the neuronal activity-unrelated physiological changes,
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such as heart rate, respiration, Mayer waves, and blood pressure,
in these compartments can induce changes in optical intensity,
and further included as noise components in fNIRS signals
(Liebert et al., 2004). Moreover, although fNIRS is less sensitive to
head motion than fMRI, motion artifacts, generated from optode
decoupling with the scalp, are still often presented in many fNIRS
studies (Robertson and Douglas, 2010; Brigadoi et al., 2014; Cui
et al., 2015). These latent noise processes are inherent in fNIRS
signals and strongly reduce the quality of the recorded data.
Therefore, the reduction of noises and extraction of neuronal
activity-related components are essential for the fNIRS studies.

The methodology for processing fNIRS data is divided
into two classes, i.e., univariate and multivariate methods by
Scholkmann et al. (2014). Univariate methods independently
process the data of each channel. These approaches include pre-
processing methods such as bandpass or wavelet filtering and
analysis methods like general linear model (GLM) regression,
which have been implemented in public-available software such
as NIRS-SPM and Homer2 (Huppert et al., 2009; Ye et al.,
2009). Multivariate methods, another type of analysis method,
have also been proposed and applied for fNIRS. Instead of
processing data of each fNIRS channel separately, multivariate
methods additionally exploit the correlation between the data
of different channels and have shown better performance in
removing noise or extracting neuronal activity-related sources
compared to univariate methods (Scholkmann et al., 2014).

Independent component analysis (ICA) is a multivariate
approach for processing fNIRS data. Two ways of using ICA
had been presented in fNIRS literature. First, as a preprocessing
method, it has been used to remove noises including both
motion artifacts and physiological noises (Kohno et al., 2007;
Robertson and Douglas, 2010; Virtanen et al., 2011; Chaddad,
2014). Second, ICA has been applied as a data-driven analysis
method for exploring the neuronal activity-related sources, or
sources of interest (SOI), including event-related fast optical
signal, task-evoked hemodynamic response, and resting-state
functional connectivity in typical functional systems (Morren
et al., 2004; Katura et al., 2008; Medvedev et al., 2008; Markham
et al., 2009; Zhang et al., 2010). For task data analysis, it can
extract task-evoked hemodynamic responses without using a
prior-defined hemodynamic response function (HRF), as in the
conventional regression-based method, i.e., GLM. For analyzing
resting-state functional connectivity, compared with the seed-
based correlation analysis, ICA does not have the bias that
originated from the selection of seed channels. Since the noises
have been separated while extracting the SOI, the ICA approach
usually outperforms these traditional methods (Kohno et al.,
2007; Markham et al., 2009; Zhang et al., 2010).

Some of the fNIRS software packages have already included
ICA as a module of their analysis pipeline (Strangman et al.,
2009; Raggam, 2020). However, the usages of ICA in these
toolboxes are limited to certain types of fNIRS devices, or
processing steps (e.g., preprocessing). Therefore, a toolbox that
can fully unveil the potential of ICA analysis in the fNIRS field
is still lacking. In this study, we propose NIRS-ICA, a user-
friendly, systemic integrated, public-available MATLAB toolbox
to ease the ICA application for the fNIRS dataset. NIRS-ICA

integrates commonly used ICA algorithms for source separation
and provides user-friendly GUIs which can be used for both
noise reduction and extracting SOI. In addition, NIRS-ICA
also incorporates quantitative evaluation metrics to evaluate the
separated sources. Therefore, users can speed up the procedure of
source selection by ranking the sources based on the value of the
metrics. The options used in the processing can also be output
as a report easily, which facilitates reproducing the ICA method
in another study.

This manuscript is structured as follows: In Section “Materials
and Methods,” the mathematical model and applications of ICA
used in the NIRS-ICA are first illustrated (sections “Mathematical
Model of ICA” and “Applications”). Then we present the
simulative and real fNIRS dataset used for validating the
functionality of noise reduction and extracting SOI (section
“Validations”). In Section “Implementations and Results,” the
developed GUIs and usages of NIRS-ICA for noise reduction and
extracting SOI are demonstrated based on the simulative and
real fNIRS datasets, respectively. The results of the simulative
and real fNIRS experiments are also compared with conventional
analysis methods. Finally, the proposed approach and toolbox are
discussed in Section “Discussion.”

MATERIALS AND METHODS

Mathematical Model of ICA
The mathematical model of ICA applied in fNIRS data analysis
is briefly introduced as follows: In general, ICA is a data-
driven method that decomposes the data of fNIRS into multiple
source components and their corresponding weights, which is
mathematically expressed as:

X = A · S, (1)

where X is the matrix containing the observed fNIRS data. S and
A are the matrices of source signals and their associated weights,
respectively. SinceA and S are both underdetermined, constraints
must be imposed for the decomposition. In the ICA framework,
it assumes the source signals in S are statistically independent of
each other. This constraint can be imposed either on the temporal
or spatial dimension of the fNIRS data of a subject, namely,
temporal ICA (TICA) or spatial ICA (SICA) (Calhoun et al.,
2001b). The bidimensional decomposition model is schematically
described in Figure 1. In TICA, each channel of the recorded
fNIRS data is considered as a random variable and its values in
different time points are regarded as samples. Therefore, each
time course of the fNIRS data is modeled as a weighted linear
combination of temporally independent source time courses, i.e., x1(t)

...

xn(t)

 =
 a11 · · · a1m

...
. . .

...

an1 · · · anm

 ·
 s1(t)

...

sm(t)

 , (2)

where xi(t) : (i 1, 2, . . . , n, t = 1, 2, . . . ,T) denotes
the observed fNIRS time course of the ith channel.
si(t) : (i = 1, 2, . . . ,m, t = 1, 2, . . . ,T) is the ith source
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FIGURE 1 | Schematic depiction of temporal and spatial ICA for fNIRS data.

time course. The ith column of the mixing matrix, i.e.,
ai = [a1i, a2i, . . . , ani]T ,contains the contributions of si(t)
to the observed signals of n fNIRS channels, which represent
the spatial map of the source. Note that m ≤ n otherwise
Eq. 2 is underdetermined. In SICA, the fNIRS data of different
time points are regarded as different spatial maps, which are
weighted linear combinations of spatially independent source
spatial maps, i.e.,

 x1(s)
...

xT(s)

 =
 a11 · · · a1m

...
. . .

...

aT1 · · · aTm

 ·
 s1(s)

...

sm(s)

 , (3)

where xi(s) : (i = 1, 2, . . . , n, s = 1, 2, . . . , n)
denotes the spatial map at the ith time point. si(t) :
(i = 1, 2, . . . ,m, t = 1, 2, . . . ,T) is the ith source spatial map
and m ≤ T. ai = [a1i, a2i, . . . , aTi]T is the time course of the
ith spatial map. Since the TICA and SICA decompose fNIRS data
in different ways, their results should be interpreted correctly.
TICA is better for finding latent processes such as motion
artifacts and neuronal activity-related hemodynamic responses
which are temporally independent which each other, but their
spatial distributions can be related. In contrast, SICA identifies
sources that happened in independent spatial locations but may
have correlated temporal dynamics. Theoretically, both TICA
and SICA can be applied to fNIRS data. However, in practice,
TICA is more often used than SICA since fNIRS often has few
samples in the spatial dimension, i.e., has a small number of
channels. Performing ICA with a small number of samples may
lead to overfitting problems and result in low reproducibility
(Weihong et al., 2012). Therefore, SICA should be used with
caution especially when the number of channels is small.

Applications
Decomposition Algorithms
Before ICA, a prewhitening step is performed using principal
component analysis (PCA), which means applying a
transformation matrix to the data, i.e.,

X′ = V · X, (4)

where V is an orthogonal matrix obtained by singular value
decomposition of the covariance matrix of X (Huppert et al.,
2009). The prewhitening step limits the transformation matrix
searched in the ICA step as an orthogonal matrix, which can
reduce the computational cost (Hyvarinen et al., 2004). It also
reduces the data dimension so that it prevents the over-fitting
problem of ICA. The number of sources (m) is determined
in this step. By default, NIRS-ICA determines the number of
sources based on retaining 99% of the data variance using
PCA (Zhang et al., 2010). For increasing flexibility, determining
the number of sources based on information-theoretic criteria,
i.e., Akaike’s information criterion (AIC), Bayesian information
criterion (BIC), or users’ input is also implemented. Other
preprocessing steps such as detrend and bandpass filtering may
also be helpful to achieve an ideal decomposition (Vergara et al.,
2017). Therefore, we incorporate commonly used pre-processing
methods in the NIRS-ICA package.

Principal component analysis expresses the raw data using
orthogonal vectors, which may not be able to fully characterize
the true mixing model of sources (McKeown et al., 1998;
Calhoun et al., 2009). After the PCA-based prewhitening step,
the whitened data are further projected to the sources space for
estimation of independent sources, i.e.,

Ŝ = W · X′, (5)
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where W is the unmixing matrix and Ŝ is the estimated
sources time courses. This procedure can be considered as an
optimization problem whose objective function is the statistical
independence between sources in Ŝ. Then the mixing matrix A
is estimated as Â = (W · V)−1. There are mainly two types
of ICA algorithms to achieve independence in previous fNIRS
studies (Adali et al., 2014). The first type of ICA algorithm
involves using high-order statistics (HOS) such as FastICA and
Infomax, which decompose X by maximizing non-Gaussianity
of si(t) or si(s) to achieve independence between source time
courses or spatial maps (Hyvarinen, 1999). The second type
exploits the sample dependence (SOS). For example, second-
order blind identification (SOBI) involves joint diagonalization
of the sample-delayed correlation matrix of X (Belouchrani
et al., 1997). Since FastICA and SOBI are the most commonly
used algorithms in fNIRS literature, we incorporate them in
the current version of NIRS-ICA. The parameters of the above
algorithms are listed in the Supplementary Material. The
ambiguity of order, signs, and scales always remain in the sources
decomposed by ICA (Hyvarinen et al., 2004). However, only
the ambiguity of signs may influence the selection of sources.
Therefore, a button to change the sign of a source is implemented
in the interface of detailed displaying sources.

Source Selection
In the source selection step, the separated sources are manually
selected based on their spatial and temporal features. Taking
the sources of motion artifacts as an example, the spike-shaped
waveforms are often found in their time course, which are
generated by the decoupling of the optode and scalp when
participants move their heads (Cui et al., 2015). Meanwhile,
its corresponding spatial map may present a global pattern
since the head motion causes displacement of the optode holder
which influences the contact of almost all of the optodes. Other
types of noises include heart rate, breath, and Mayer wave,
which can generate sources whose time course usually has a
narrow frequency spectrum, and spatial map depicts global
pattern (Zhang et al., 2010). In NIRS-ICA, we also propose
several quantitative metrics to rank the separated sources, which
can facilitate the manual source selection procedure. Three
metrics are implemented to facilitate identifying noise-related
sources. The spike-shaped metric evaluates sources’ time course
for identifying motion artifacts based on Scholkmann et al.
(2010). Specifically, the moving standard deviation (MSD) is first
calculated using the equation:

MSD(t)

=
1

2k+ 1

 k∑
j = −k

ŝ2(t + j)−
1

2k+ 1

 k∑
j = −k

ŝ(t + j)

2
1
2

, (6)

where t ∈ {k+ 1, k+ 2, . . . ,T − k} and T is the length of the
time course. W = 2k+ 1 is the length of the window for
calculating the MSD(t), which can be specified by users. In
general, it means that when the time course depicts a high
standard deviation, i.e., contains many large spikes, in a time
window W around time point t, it will have high MSD(t).

Therefore, the W should be similar to the period of spikes that
users aimed to identify. Second, the time points whose MSD
are outliers, i.e., greater than the threshold: mean(MSD) ± n ·
std(MSD), are determined as motion artifacts. The default value
of W and n are 2s and 3, respectively. Finally, the value of the
spike-shaped metric of one source is derived using the number of
outliers identified in its time course.

Correlation with external input (CEI) metric evaluates sources
by correlating their time courses with the time course recorded by
external devices such as accelerometer, physiological instruments,
or short channel of fNIRS. Pearson’s correlation coefficient is used
for calculating the correlation.

The spatial homogenous metric quantifies the spatial map of
sources, which is evaluated based on the coefficient of spatial
uniformity (CSU) (Kohno et al., 2007):

CSU(i) =
∣∣∣∣ ci
σ(ci)

∣∣∣∣ , (7)

where ci and σ(ci) represent the mean and standard deviation of
the spatial map of the ith source. Therefore, spatial maps with
high mean and low standard deviation will have high CSU values
and can be regarded as global noises.

Two metrics are proposed to explore neuronal activity-related
sources in an fNIRS dataset. To investigate neuronal activity-
related source evoked by task stimuli, it often involves selecting
SOI using a reference time course, which can be created by
convolving the HRF and a square curve of task design of an
experiment (McKeown et al., 1998). The Pearson correlation
coefficient is used to compare the time course of sources and the
generated reference time course. Task onsets and durations can be
input to generate the reference time course when the user selects
the metric of the reference time course. For RSFC detection,
sources whose spatial map follows the hypothetic RSFC pattern
and time course has prominent low-frequency (around the band
of 0.01–0.1 Hz) spectrum are often selected (Cordes et al., 2001).
The goodness of fit (GOF) metric is implemented to measure the
similarity between the spatial map of the hypothesis and those of
the separated sources:

GOF(i) =
∣∣∣∣ y · ci!y · ci

∣∣∣∣ , (8)

in which y = [y1, y2, . . . , yn] denotes a vector of the Boolean
variable representing the mask of the spatial template and ! is
the logical operator of negation. In other words, users can let
yi = 1 if the ith channel belongs to the region of interest (ROI),
otherwise yi = 0. Spatial maps with high value inside ROI and
low value outside ROI will have a high value of GOF.

Postprocessing
When using ICA to remove noises, the indices of noise sources
are recorded, and the cleaned fNIRS data are reconstructed by
discarding these noise sources using the equation:

Xc =
∑
j∈H

âj ⊗ ŝj, (9)
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FIGURE 2 | The interfaces of input and configuration of ICA processing. (A) The interface of data input and configuration. (B) The interfaces of ICA settings when
users click the button of ICA-Settings in (A). (C) The interface of setting parameters of FastICA.

where H ⊆ {1, . . . ,m} is the set including the indices of non-
noise sources and Xc is the noise-cleaned fNIRS data. The cleaned
fNIRS data can then be analyzed by traditional methods such as
GLM regression using other fNIRS software packages.

Using NIRS-ICA to explore SOI for a group of participants,
the SOI is first selected for each participant based on methods
mentioned in Section “Source Selection.” Then the group-
level ICA results are derived using the selected source of each
individual. Specifically, to view the group spatial map of the SOI,
the individual spatial map is first transformed to z-map (Calhoun
et al., 2001a). Then the group z-map is derived by averaging
individual z-map, and the t-map is calculated by performing
the two-tailed one-sample t-test (against zero) in a channel-wise
manner (Zhang et al., 2010). The group-level time course is
visualized based on the design of the experiment. For experiments
that involve external task stimuli, the group-level time course of
SOI is viewed by averaging individual time courses of SOI based
on the task stimuli (Katura et al., 2008). Note that since the length
of blocks may be different both within and across participants,
the time courses are adjusted to have the minimum length of the
blocks by removing the time points in the middle of the block.
For the RSFC detection, since the sources of RSFC often have
low-frequency spectrums, the group-level frequency spectrum of
sources is shown instead of the time course (White et al., 2009).

Validations
Simulative fNIRS Dataset for Noise Reduction
A simulative dataset is generated for validating the noise
reduction mode of NIRS-ICA. Channels arranged as an 8 × 8
matrix are used for the detection of neuronal activity in an

experiment with block-design tasks. Six sources, including one
neuronal activity-related source and five noise sources, are
generated for reconstructing the recorded fNIRS data using
Eq. 1. Specifically, for the neuronal activity-related source, its
temporal mode is simulated by convoluting a square wave
of the task design (block-design) with HRF and its spatial
mode is set to be locally distributed. For physiological noises,
including heart rate, breath, Mayer wave, and low-frequency
noise, their temporal modes are generated using sinusoidal
waves with noise-specific frequencies (Supplementary Table 1).
Their spatial modes are designed as global distribution. In
addition, we simulate task-related motion artifacts on the edge
of the channel matrix, which can lead to the detection of false-
positive activation. Finally, channel-specific Gaussian noise is
added to the data of each channel. Representative temporal
and spatial modes of the simulated sources are shown in
Supplementary Figure 1. The above simulations are repeated
10 times to produce a dataset acquired from a group of
subjects. The detailed procedure of generating neuronal and
noise sources can be found in the Supplementary Material.
NIRS-ICA is used to remove noises for the generated dataset.
The decomposition parameters of ICA are TICA and SOBI with
100 time-delayed correlation matrices. Ten sources are retained
using PCA. To demonstrate noise reduction performance, both
ICA-processed data and raw data are analyzed using the
conventional GLM method implemented in NIRS-SPM (Ye
et al., 2009). Preprocessing procedures, including a DCT-based
detrending and HRF-based high-pass filtering implemented in
NIRS-SPM, are used before GLM regression. Group-level β-
map is calculated by averaging individuals’ β-maps and t-map
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FIGURE 3 | The interface of sources selection according to their time courses. (A) Sources displaying panel in which time courses of sources are depicted in a grid
manner. (B) Displaying control panel for changing features, modes, or orders of displayed time courses. (C) A representative spike-shaped source is marked as a
noise-related source.

is derived by performing a two-tailed one-sample t-test in a
channel-wise manner.

Real fNIRS Dataset for Extracting Sources of Interest
We use previously conducted finger-tapping experiments to
demonstrate the usages of extracting SOI (Zhao et al., 2020).
Nine participants were recruited in the experiment and informed
consent was obtained from all of them. The experiment consists
of eight blocks of rest and task periods, each last 15 s. In the
task period, participants performed a finger-tapping task, in
which they alternatively pressed their index and ring finger on
a keyboard. Eight sources and seven detectors were automatically
arranged according to the transcranial brain atlas (TBA) to cover
the pre- and post-central gyrus (see Supplementary Figure 2)
(Zhao et al., 2020). LABNIRS (Shimadzu) system was used to
record the brain activity of participants during the experiment.
The recorded dataset is first preprocessed using DCT-based
detrending and HRF-based high-pass filtering with NIRS-SPM.
Then the preprocessed data are analyzed using conventional
GLM regression and ICA implemented in NIRS-SPM and NIRS-
ICA, respectively. The decomposition parameters of ICA are
TICA and SOBI with 100 time-delayed correlation matrices.
The number of sources is determined by retaining 99% of data
variance using PCA (Zhang et al., 2010).

IMPLEMENTATIONS AND RESULTS

General Requirements and Main
Interfaces
NIRS-ICA is developed using MATLAB 2012a (The MathWorks
Inc., Natick, MA, United States), and had been tested in multiple
platforms including Windows, MacOS, and Linux. To use NIRS-
ICA, users need first install the MATLAB and add the NIRS-ICA
folder to the search path, then tap “NIRS_ICA” in the MATLAB
command line to open the main interface.

The data input interface is implemented for inputting the
fNIRS dataset and configuring the process of decomposition
(Figure 2A). In the Data input and configuration panel, one
can specify the input data, hemoglobin type to be processed,
and the number of sources to be retained. The input data
format supported by NIRS-ICA currently is the format converted
using NIRS-KIT, which is a MATLAB toolbox for conducting
conventional data analysis for fNIRS data developed by our group
(Hou et al., 2021). NIRS-KIT provides a data conversion module
for converting data recorded from various fNIRS devices. It also
enables input probe montage information with the TopoMaker
module, which is useful to visualize the spatial map of separated
sources. The generation of probe montage used in the real fNIRS
dataset (section “Real fNIRS Dataset for Extracting Sources of
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FIGURE 4 | The interfaces of sources selection according to their spatial maps (A) and frequency spectrums of the time course (B).

Interest”) is demonstrated in Supplementary Figure 3. If NIRS-
ICA detects there is probe montage information in the input
data structure, the spatial maps of the separated sources are
displayed according to the probe montage. Otherwise, the spatial
maps of the sources will be displayed as a matrix ordered by
channel number.

Users can click the ICA settings button to specify the
parameters of ICA processing (Figure 2B). NIRS-ICA provides
commonly used preprocessing steps, including data crop,
detrend, band-passed filtering, and subsampling, which can
be selected before ICA. By clicking the aimed ICA algorithm
in the Algorithm panel, one can select an ICA algorithm
and set its associated parameters (Figure 2C). An example
of parameters of preprocessing and the ICA algorithm is
shown in Figure 2B. The Source evaluation metrics panel
includes metrics for evaluating the separated sources based
on the feature of their spatial maps or time courses. As
discussed in Section “Source Selection,” three metrics for noise
reduction and two metrics for selecting neuronal activity-
related sources are implemented to evaluate the separated
sources after ICA. Note that multiple evaluation metrics can be
simultaneously selected.

After input data and configuration for ICA processing, NIRS-
ICA processes the input data using the selected preprocessing
methods, decomposes the filtered data using the selected ICA
algorithm and calculates the evaluation metrics of the separated
sources, and opens the interface of source selection (Figure 3).
User-friendly interfaces for selecting sources of noise or SOI
are provided by NIRS-ICA. Users can switch between the mode
of noise reduction and source extraction by clicking the radio
button of Feature in the Display control panel (Figure 3B).
The selection of the different modes of using NIRS-ICA will
trigger different interfaces of detailed displaying the sources and
results output, which will be demonstrated in later sections.

The time courses of the separated sources are overviewed in a
grid manner as shown in Figure 3. Users can choose to view
source spatial maps or frequency spectrums of the time course
by clicking the pop-up menu of the Features in the Displaying
control panel (Figure 4). If evaluation metrics have been selected,
separated sources are displayed according to the value of metrics
in descending order; otherwise, they are shown by the output
order of the selected ICA algorithm. If multiple metrics are
chosen, the order is determined by averaging the normalized
value of the selected metrics. Users can also choose whether
to incorporate a metric by clicking its corresponding checkbox
in the Display control panel. For each source, if the value of
selected metrics surpasses a certain threshold, the top bar will
be highlighted with a different color (instead of gray). Users can
mark target sources by clicking the checkbox on the left of the top
bar of each source. Sources can be displayed in detail by pressing
the small magnifier on the right corner of the top bar. After the
selection of sources, users can press the save icon in the menu bar
to output the processed ICA results.

Noise Reduction for the Simulative
Dataset
A representative separation result of the simulative dataset is
shown in Figure 3. It can be seen from the separation result that
one source of spike-shaped and four sources of global noise are
automatically labeled (top bars are highlighted in red and purple).
Spike-shaped motion artifacts can be visually identified from the
grid displaying the time courses (Figure 3C). From the spatial
maps of sources, noises showing a global pattern (the sources with
purple top bar) can be easily identified (Figure 4A). The time
courses of the global noises also have narrow frequency bands as
the generated true sources (Figure 4B).
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FIGURE 5 | The interface of detailed displaying sources for noise reduction. A representative source of motion artifacts is depicted using the interface.

In the noise reduction mode, users can press the small
magnifier on the top bar of the source to enter the interface
of detailed displaying of a source (Figure 5). The detailed
information of a separated source, including its time course,
the frequency spectrum of the time course, and spatial map, is
displayed in the left panel. To facilitate inspecting the relationship
between the time course of the current source and the original
signal of each fNIRS channel, the fNIRS time course is displayed
in the right panel. Users can examine the contribution of the
current source to the time course of each fNIRS channel by
pressing the channel buttons on the right panel. To enable users
to preview the performance of removing the current source, the
cleaned fNIRS time course, i.e., reconstructed without the current
source using Eq. 9, can be overlaid with the raw fNIRS time course
by selecting the checkbox at the bottom of the left panel. The
fNIRS time course or baseline time course displayed can also
be the time course without the already-selected noise sources by
selecting User-defined Baseline NIRS Data at the bottom of the
left panel. The periods of motion artifact, i.e., MSD is larger than
a threshold, in the time course of the source can be highlighted
by pressing the button in the bottom left corner of the source
time course. A representative source of motion artifact is shown
in Figure 5. Its time course showed a spike-shaped waveform,
and the spatial map has high values on the edge of the channel
matrix, which are the same as the simulated true source. It can
be seen that the spike-shaped waveform is greatly reduced after
this source is removed in fNIRS data as shown in the right panel.
After the selection of noise sources, users can press the preview
button in the main interface to examine the data quality after the
noise sources are removed (Figure 3B). Users are able to press
the save button on the top menu of the main interface to save the
cleaned fNIRS data, which is derived using Eq. 9. The saved fNIRS

data has the same format as the input file, i.e., NIRS-KIT format,
which facilitates further processing using other methods such as
conventional GLM regression.

The group-level GLM results of both with and without ICA
preprocessing are depicted in Figure 6. False-positive value can
be found in β-map, T-map, and significance map (p < 0.05)
due to the noise contamination using only conventional GLM
analysis. With ICA preprocessing, the false-positive values are
reduced and the resultant spatial maps of GLM are localized to
the position of the simulated true sources.

Extracting Neuronal Activity-Related
Sources in the Real fNIRS Dataset
To facilitate extracting neuronal activity-related sources (SOI),
NIRS-ICA provides interfaces to input reference time courses or
spatial templates. Users can press the corresponding checkboxes
in the Source evaluation metrics of Data input and configuration
interfaces (Figure 2A), which enable creating reference time
courses and spatial templates, respectively (Figure 7). By
inputting or loading the onset times and durations of the task
stimuli, the reference time course is generated as described in
Section “Source Selection” (Figure 7A). The spatial template
is created by selecting the channels within ROI in the user
interface (Figure 7B). Users can generate multiple reference
time courses or spatial templates since several task conditions
or ROIs may be of interest in a study. The created reference
time courses or spatial templates can also be saved as a
MATLAB file and reloaded by pressing the load button on their
respective interfaces.

A representative source of the task-evoked hemodynamic
response of real fNIRS data is shown in the interface of the
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FIGURE 6 | Group-level activation results of the simulated dataset. (A) The results of activation maps using conventional GLM analysis. (B) The results of activation
maps using ICA preprocessing and conventional GLM analysis.

FIGURE 7 | The interfaces of input reference time course and spatial template for extracting sources of interest (SOI). (A) The interface of creating a reference time
course. (B) The interface of input a spatial template.

detailed displaying of SOI (Figure 8). By clicking the buttons on
the bottom panel, the reference time course and spatial template
are overlaid with the time course and spatial map of the current
source, which enables users to examine the correlations between
them in detail. It can be seen the time course of the representative
source follows the reference time course consistently with a high
correlation coefficient (r = 0.81). Its spatial map also depicts high
value in channels within ROI (blue circle). After the selection
of SOI for an individual participant, the selected source can be

saved by pressing the save button on the top menu in the main
interface (Figure 3).

After the source of interest has been chosen for each
participant, group-level SOI can be derived using the method
described in Section “Postprocessing.” The averaged spatial map
of SOI in brain space is visualized using a module inherited
from NIRS-KIT (Figure 9). Note that users need to additionally
input fiducial makers and channel locations recorded on a head
model (or representative subject) using a 3D-digitizer, which is

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2021 | Volume 15 | Article 683735

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-683735 July 8, 2021 Time: 20:0 # 10

Zhao et al. NIRS-ICA Toolbox

FIGURE 8 | The interface of detailed displaying for extracting sources of interest.

necessary to estimate brain locations measured by the channels
(Hou et al., 2021). It can be seen the spatial map derived
by ICA (z-map) is similar to the β-map of GLM, and both
methods derive peak value at hand knob area, which is consistent
with literature studies (Figures 9A,B). The block-averaged time
course of ICA also depicts the hemodynamic response curve,
which indicates that the current SOI is a task-evoked neuronal
source (Figure 9C).

Outputs
For both removing noise and extracting SOI, NIRS-ICA saves the
parameters of the ICA process, the value of evaluation metrics, as
well as the separation results in the output data structure. This

output file can be reloaded to NIRS-ICA, which enables users
to reproduce the ICA process and correct the source selection.
The saved file can also be used to generate a document that
includes the options used in the ICA processing. A representative
document of the ICA processing used in analyzing the real fNIRS
data is shown in Table 1. This document can be further reported
in an fNIRS study that involves the ICA processing.

DISCUSSION

In this study, we propose NIRS-ICA, a MATLAB toolbox for the
applications of ICA for fNIRS studies. NIRS-ICA incorporates
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FIGURE 9 | Group-level results of GLM and ICA. (A) β -map of conventional GLM analysis. (B) Group-level spatial map of ICA (z-map). (C) Group-level
block-averaged time course (bold red line) and individual time courses (thin lines). Gray rectangle denotes the period of the task.

commonly used ICA algorithms for source separation, user-
friendly GUIs, and quantitative evaluation metrics for source
selection. It also supports two applications: noise reduction and
exploration of neuronal activity-related sources in fNIRS signals.
These functionalities are validated based on simulative and real
fNIRS datasets. The GUIs and usages are also demonstrated based
on the used datasets.

It should be noted that although ICA has been successfully
applied in fNIRS studies, the interpretation of ICA results should
be made with caution. ICA decomposes fNIRS data relying on the
assumption of either temporal or spatial independence between
sources of noise and sources of neuronal activity. Therefore,
whether ideal decomposition can be achieved depends on how
well these assumptions are satisfied in the fNIRS data to be
processed. For example, fNIRS studies have shown that there is
task-evoked physiological noise, which can temporally correlate
with task-evoked hemodynamic response (Kirilina et al., 2012).
In that case, TICA may fail to separate noise and neuronal
activity-related sources. For SICA, since fNIRS often has a limited
number of channels in the spatial dimension, how many channels
are enough to obtain a reliable and reproducible decomposition
needs to be investigated in future studies. The decomposition can

TABLE 1 | Options of ICA processing generated by NIRS-ICA.

General information Usage: Extract sources of interest

Hb type: OXY

Task or RSFC: Task

Number of participants: 9

ICA parameters Number of sources: PCA, 99%

Algorithm: SOBI

Number of correlation
matrices to be
diagonalized:

100

Evaluation metrics Similarity to the reference
time course (R)

0.60 ± 0.16

R for each participant 1(0.60), 2(0.40), 3(0.41),
4(0.66), 5(0.82), 6(0.70),
7(0.74), 8(0.67), 9(0.41)

be also influenced by the preprocessing parameters, the number
of sources retained, and the separation algorithm used, which
is still an open problem in the fNIRS field. Since the above
factors will influence the ICA results, it is important to report
these options for the reproducibility of an fNIRS study. With the
assistant of NIRS-ICA, researchers can report the parameters for
the decomposition, as well as the criterion for source selection,
i.e., source evaluation metrics, thus improving the reproducibility
of ICA applications for an fNIRS dataset, and further promoting
the standardization of using ICA by the fNIRS community.

Several fNIRS toolboxes have already included ICA as a
processing step of their analysis pipeline. For example, for data
recorded by the NIRx system, one can use NICA and NAVI to
denoise the fNIRS data or extracting features from the fNIRS
data (Raggam, 2020). FastICA is also implemented in NyPin
as a preprocessing step for noise reduction (Strangman et al.,
2009). However, since these toolboxes are not dedicated to
ICA processing, they have limitations such as availability for
only certain types of devices, lack of decomposition algorithms,
and methods facilitating source selection. Using the data
conversion module provided by NIRS-KTI, NIRS-ICA supports
various fNIRS devices such as ETG-4000/7000 (Hitachi Medical
Company), LABNIRS (Shimadzu), or NIRx (Hou et al., 2021). It
also includes two commonly used ICA algorithms and metrics
facilitating source selection, which makes it more flexible and
user-friendly than previously proposed toolboxes.

The future updates of NIRS-ICA will be focused on the
following aspects: First, in the decomposition step, the current
version of NIRS-ICA included two algorithms for source
separation since they are commonly used and validated in
fNIRS literature. Since the source separation performance may
depend on the data quality, other algorithms such as infomax
and JADE, which are widely used in other imaging modalities,
may still be useful for fNIRS data (Correa et al., 2007). The
decomposition performance can also be increased by adding
external information, which can be acquired by additional
devices. For example, multi-distance channels have been used to
discriminate deep and shallow components in the ICA process
(Funane et al., 2014). von Lühmann et al. (2019) also combined a
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3D accelerometer with ICA to achieve a better noise reduction
result. More preprocessing methods, such as excluding bad
channels and data segmentation, will also be added. Second,
in the source selection step, more evaluation metrics can be
developed and included in the source selection step such as
mean inter-block cross-correlation (MITC), which is used to
select task-related sources (Katura et al., 2008). These metrics
may potentially lead to automatic source selection, which will
further reduce the subjectiveness in the source selection step.
Third, since the current version of NIRS-ICA adopts manual
source selection, the sources are manually matched between
different subjects in the postprocessing step. Other automatic
approaches of matching sources such as clustering and group-
ICA will be included in the toolbox (Calhoun et al., 2001a;
Spadone et al., 2012). Fourth, since ICA has been utilized in the
domain of fNIRS hyper-scanning, it is hopeful to make NIRS-
ICA supporting the analysis of multi-brain dataset so that it can
be used for fNIRS hyper-scanning studies (Zhao et al., 2017).
Finally, NIRS-ICA will soon be integrated into NIRS-KIT1, which
is a toolbox for analyzing both task-related and resting-state
fNIRS data using conventional methods developed by our group
(Hou et al., 2021).
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