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Abstract

Phylogenetic codon models are routinely used to characterize selective regimes in coding sequences. Their parametric
design, however, is still a matter of debate, in particular concerning the question of how to account for differing
nucleotide frequencies and substitution rates. This problem relates to the fact that nucleotide composition in
protein-coding sequences is the result of the interactions between mutation and selection. In particular, because of
the structure of the genetic code, the nucleotide composition differs between the three coding positions, with the third
position showing a more extreme composition. Yet, phylogenetic codon models do not correctly capture this phenom-
enon and instead predict that the nucleotide composition should be the same for all three positions. Alternatively, some
models allow for different nucleotide rates at the three positions, an approach conflating the effects of mutation and
selection on nucleotide composition. In practice, it results in inaccurate estimation of the strength of selection.
Conceptually, the problem comes from the fact that phylogenetic codon models do not correctly capture the fixation
bias acting against the mutational pressure at the mutation-selection equilibrium. To address this problem and to more
accurately identify mutation rates and selection strength, we present an improved codon modeling approach where the
fixation rate is not seen as a scalar, but as a tensor. This approach gives an accurate representation of how mutation and
selection oppose each other at equilibrium and yields a reliable estimate of the mutational process, while disentangling

the mean fixation probabilities prevailing in different mutational directions.
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Introduction

Phylogenetic codon models are now routinely used in many
domains of bioinformatics and molecular evolutionary stud-
ies. One of their main applications has been to characterize
the genes, sites (Nielsen and Yang 1998; Yang et al. 2005;
Murrell et al. 2012), or lineages (Zhang et al. 2005;
Kosakovsky Pond et al. 2011) having experienced positive
selection (Murrell et al. 2015; Enard et al. 2016). More gener-
ally, these models highlight the respective contributions of
mutation, selection, genetic drift (Teufel et al. 2018), and bi-
ased gene conversion (Kosiol and Anisimova 2019; Pouyet
and Gilbert 2021), and the causes of their variation between
genes (Zhang and Yang 2015) or across species (Seo et al.
2004; Popadin et al. 2007; Lartillot and Poujol 2011).
Conceptually, codon models take advantage of the fact
that synonymous and nonsynonymous substitutions are dif-
ferentially impacted by selection. Assuming synonymous
mutations are neutral, the synonymous substitution rate is
equal to the underlying mutation rate (Kimura 1983).
Nonsynonymous substitutions, on the other hand, reflect
the combined effect of mutation and selection (Ohta
1995). Phenomenological codon models formalize this idea

by invoking a parameter o, acting multiplicatively on non-
synonymous substitutions rates (Goldman and Yang 1994;
Muse and Gaut 1994). Using a parametric model automati-
cally corrects for the multiplicity issues created by the com-
plex structure of the genetic code and by uneven mutation
rates between nucleotides. As a result, @ captures the net, or
aggregate, effect of selection on nonsynonymous mutations,
also called dy /ds (Dos Reis 2015; Spielman and Wilke 2015).

In reality, the selective effects associated with nonsynon-
ymous mutations depends on the context (site-specificity)
and the amino acids involved in the transition (Kosiol et al.
2007). Attempts at an explicit modeling of these complex
selective landscapes have also been done, leading to mecha-
nistic codon models, based on the mutation-selection for-
malism (Halpern and Bruno 1998). These models, further
developed in multiple inference frameworks (Rodrigue et al.
2010; Tamuri et al. 2012), sometimes using empirically in-
formed fitness landscapes (Bloom 2014), could have many
interesting applications, such as inferring the distribution of
fitness effects (Tamuri et al. 2012) or detecting genes under
adaptation (Rodrigue and Lartillot 2017; Rodrigue et al. 2021),
or even phylogenetic inference (Ren et al. 2005). However,
they are computationally complex and potentially sensitive
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to the violation of their assumptions about the fitness land-
scape (such as site independence). For these reasons, phe-
nomenological codon models remain an attractive,
potentially more robust, although still perfectible approach.

The parametric design of phenomenological codon mod-
els, relying on a single aggregate parameter  (or site-specific
), raises the question whether they accurately estimate the
underlying selective and mutational process. First, simulations
under a mutation—selection formalism have shown that the
strength of selection is estimated reliably by phenomenolog-
ical codon models (Spielman and Wilke 2015). More specif-
ically, the model originally proposed by Muse and Gaut
(1994), hereafter called MG, gives an accurate estimate of
the underlying . However, several observations suggest
that the mutational process is not accurately estimated. For
instance, in their simplest form (Goldman and Yang 1994;
Muse and Gaut 1994), codon models predict that the nucle-
otide composition should be the same for all three positions
of the codons, and should be equal to the nucleotide equi-
librium frequencies implied by the underlying nucleotide sub-
stitution rate matrix. In reality, the nucleotide composition
differs: the third position shows more extreme GC composi-
tion, reflecting the underlying mutation bias, compared with
the first and second positions, which are typically closer to
50% GC (Singer and Hickey 2000).

These modulations across the three coding positions have
been accommodated using the so-called 3x4 formalism
(Goldman and Yang 1994; Pond and Muse 2005), allowing
for different nucleotide rate matrices at the three coding
positions. However, this is also problematic. For instance, it
has the consequence that synonymous substitutions, say
from A to C, occur at different rates at the first and third
positions. Yet, although modulations of the mutation process
along the sequence cannot be excluded, most of the empir-
ically observed compositional differences between positions
are likely the consequence of selection, which is stronger at
the first and second than at the third position. In principle,
these selective effects should not directly impact synonymous
rates. Thus, although the mutational process might be more
complex, there is no reason to model it in terms of a 3x4
structure which conflates two levels of mechanisms that are
not supposed to play together. Simulation experiments sug-
gest that the 3x4 formalism indeed leads to less accurate
estimation of o (Spielman and Wilke 2015).

The mutation matrix (1x4) or matrices (3x4) estimated
by codon models are thus not correctly reflecting the muta-
tion rates between nucleotides (Rodrigue et al. 2008;
Kosakovsky Pond et al. 2010). Instead, what these matrices
are capturing is the result of the compromise between mu-
tation and selection at the level of the realized nucleotide
frequencies. Conceptually, it is a clear symptom that muta-
tion rates and fixation probabilities are not correctly teased
apart by current codon models.

Practically, this misconception could have important con-
sequences in the current interest in investigating the variation
between species in GC content, and its effect on the evolution
of protein-coding sequences. An important factor here is bi-
ased gene conversion toward GC (called gBGC), which can
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confound the tests for detecting positive selection and, more
generally, the estimation of  (Galtier et al. 2009; Ratnakumar
et al. 2010; Lartillot et al. 2013; Figuet et al. 2014; Bolivar et al.
2019). Even in the absence of gBGC, however, uneven muta-
tion rates varying across species can have an important im-
pact on the estimation of the strength of selection (Guéguen
and Duret 2018). All this suggests that, even before introduc-
ing gBGC in codon models, correctly formalizing the interplay
between mutation and selection in current codon models
would be an important first step, which is the focus of this
manuscript.

In this direction, the key point that needs to be correctly
formalized is the following. If the nucleotide’s realized fre-
quencies are the result of a compromise between mutation
and selection, then this implies that the strength of selection
is not the same between all nucleotide or amino acid pairs.
For instance, if the mutation process is AT-biased, then, be-
cause of selection, the realized nucleotide frequencies at equi-
librium will be less AT-biased than expected under the pure
mutation process. However, this implies that, at equilibrium,
there will be a net mutation pressure toward AT, which has to
be compensated for by a net selection differential toward GC.

In order for a codon model to correctly formalize this
subtle interplay between mutation and selection, the param-
eter responsible for absorbing the net effect of selection (i.e,,
) should not be a scalar, but an array of w values (i.e, a
tensor) unfolding along multiple directions. In the present
work, we address the question of whether we can derive a
model which is able to correctly tease apart mutation rates
and selection without having to explicitly model the under-
lying fitness landscape. In order to derive a codon model
along those lines, our strategy is to first assume a true site-
specific evolutionary process, following the mutation—
selection formalism. Then, we derive the mean substitution
process implied across all sites by this mechanistic model and
identify the mean fixation probabilities appearing in this
mean-field (MF) process with the array of @ tensor to be
estimated. Based on this approach, we show that the simplest
model that correctly teases apart mutation and selection
requires a different value of w for each distinct pair of amino
acids. Similar multirate models have been introduced previ-
ously (Delport et al. 2010), although never in connection with
the question of how to separately infer mutation rates and
the mean effect of selection.

Results

To illustrate the problem, we first conduct simulation experi-
ments under a simple mutation—selection substitution model
assuming site-specific amino acid preferences. We use these
simulation experiments to explore through summary statis-
tics the intricate interplay between mutation and selection.
Then, we explore how codon models with different parame-
terizations are able to infer the mutation rates and the
strength of selection on these simulated alignments. Finally,
these alternative models are applied to empirical data.
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Simulation Experiments

Simulations of protein-coding DNA sequences were con-
ducted under an origination—fixation substitution process
(McCandlish and Stoltzfus 2014) at the level of codons (see
Simulation Model). We assume a simple mutation process
with a global parameter controlling the mutational bias to-
ward AT, denoted 4 = (oa + o7)/(0c + 0¢), where g, is
the equilibrium frequency of nucleotide x. This mutational
process is shared by all sites of the sequence. With regards to
selection, synonymous mutations are considered neutral,
such that the synonymous substitution rate equal to the
underlying mutation rate. At the protein level, selection is
modeled by introducing site-specific amino acid fitness pro-
files (i.e, a vector of 20 fitnesses for each coding site), which
are scaled by a relative effective population size N,. A high N,
induces site-specific profiles having a large variance, with
some amino acids with a high-scaled fitness, whereas all other
have a low-scaled fitness. Conversely, a low value for N, indu-
ces more even amino acid fitness profiles (i.e, neutral) at each
site. Thus, ultimately, the stringency of selection increases
with N,. Altogether, the two parameters of the model tune
the mutation bias (4) and the stringency of selection (N,),
respectively. All simulations presented in the main manu-
script are obtained using the same underlying tree topology
and branch lengths of 61 primates from Perelman et al.
(2011), along with the same 4,980 codon sites with amino
acid fitness profiles resampled from experimentally deter-
mined profiles in Bloom (2017).

Simulation under this origination—fixation process along a
species tree results in a multiple sequence alignment of cod-
ing sequences for the extant species, from which summary
statistics can then be computed. One such straightforward
summary statistic is the frequency of the different nucleoti-
des, and the resulting nucleotide bias AT /GC observed in the
alignment. This observed nucleotide bias can be computed
separately for each coding position (first, second, and third)
and compared with the true underlying mutational bias 4. As
can be seen from figure 1, the third position of codons
(fig. 1C) reflects the underlying mutational bias quite faith-
fully, whereas the first and second positions (fig. 1A and B) are
impacted by the strength of selection and display nucleotide
biases that are less extreme than the one implied by the
mutational process. This differential effect across the three
coding positions is explained by nucleotide mutations at the
third codon position being more often synonymous, whereas
mutations at the first and second positions are more often
changing the amino acid and are thus more often under
purifying selection.

Apart from the nucleotide bias observed in the alignment,
a statistic directly relevant for measuring the intrinsic effect
of selection is the mean-scaled fixation probability of non-
synonymous mutations, called (2N.Pg). This summary sta-
tistic (2N.Pg) can be quantified from the substitutions
recorded along the simulation trajectory (see Mean-Scaled
Fixation Probability). For very long trajectories, it identifies
with the ratio of nonsynonymous over synonymous substitu-
tion rates (dy /ds or @) induced by the underlying mutation—
selection model (Dos Reis 2015; Spielman and Wilke 2015;

Jones et al. 2017). As expected, (2N.Pg,) is always lower
than 1 for simulations at equilibrium, under a time-
independent fitness landscape (Spielman and Wilke 2015).
Quite expectedly (2NPg) decreases with the N, (fig. 1D).
On the other hand, (2N.Ps,) depends weakly on the muta-
tional bias (4).

The proxy of selection represented by (2N.[Pg) concerns
all nonsynonymous mutations, but we can also consider the
mean-scaled fixation probability only for the subset of non-
synonymous mutations from weak nucleotides (A or T)
to strong nucleotides (G or C), called (2N.PL°).
Interestingly, (2NeP}y°) increases with the strength of the
mutational bias toward AT (fig. 1E). This distortion of the
selective effects toward GC is stronger under an increased
stringency of selection, under a higher N,. Likewise, the non-
synonymous mutations could also be restricted from strong
(GC) to weak nucleotides (AT). This ratio decreases with the
strength of the mutational bias toward AT (not shown). As a
result, the ratio between (2N.P{'°) and (2N.P}°) is higher
than 1 under a mutational bias toward AT (and lower than 1
respectively for a bias toward GC). It is monotonously increas-
ing with the mutational bias toward AT (fig. 1F). Altogether,
fixation probabilities are opposed to mutational bias, and the
realized equilibrium frequencies are thus at an equilibrium
point between these two opposing forces.

Parameter Inference on Simulated Data

From an alignment of protein-coding DNA sequences, with-
out knowing the specific history of substitutions, can one
estimate the mutational bias (1) and the mean-scaled fixation
probability (2N.Pg)? In other words, can we tease apart
mutation and selection?

To address this question, here we consider two codon
models for inference, differing only by their parametrization
of the codon matrix Q which we first test against simulated
data (see fig. 2). Both are homogeneous along the sequence
(i.e, not site-specific). The first is based on Muse and Gaut
(1994) formalism and uses a scalar «» parameter, whereas the
second is based on a tensor representation of .

w As a Scalar: The Muse and Gaut Formalism

This model is defined in terms of a generalized time-reversible
nucleotide rate matrix R and a scalar parameter . The matrix
R is a function of the nucleotide frequencies ¢ and the sym-
metric exchangeability rates p (Tavaré 1986):

Ra,b = Pap0b- (1)

At the level of codons, the substitution rate between the
source (i) and target codons (j) depends on the underlying
nucleotide change between the codons M(i,j) (eg,
M(AAT, AAG) = TG), and whether or not the change is
nonsynonymous. Altogether, the substitution rates between
codons Q;;, formalized by Muse and Gaut (1994) are defined
as follows:
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Fic. 1. Simulations of 61 primates taxa, 4,980 codon sites, with 100 replicates. Solid lines represent the mean value over the replicates, and the colored
area the 95% interquantile range. Top row (A-C): observed AT /GC composition of simulated alignment (first, second, and third coding positions), as
a function the underlying mutational bias toward AT (), under different stringencies of selection (different values of relative effective population size
N, ). Bottom row (D, E): mean-scaled fixation probability of nonsynonymous mutations along simulations, (2Ne[Ps), for all mutations (D) and for AT-
to-GC mutations only (E), as a function of the mutational bias (1), under different relative effective population sizes (N,). (F) Ratio of mean-scaled
fixation probability for AT-to-GC over GC-to-AT mutations, as a function of the mutational bias and under different stringencies of selection (N,).
Mutational bias is balanced by selection in the opposite direction, where this effect increases with the stringency of selection.

Species Amino-acid site-specific
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Fic. 2. Overall procedure for simulation under a site-specific mutation-selection codon model and inference using a homogeneous codon models.
The value of the mutational bias (1) used for simulations can be compared with the value estimated by the codon models (1) once fitted to the
simulated alignment. The mean-scaled fixation probability of nonsynonymous mutations ((2N.Pg)) is recorded along the simulation trajectory,
and is directly comparable with @ such as estimated by codon models.

Qij =0 if codons i and j are more than one mutation away, /):MG — (5.; + O’.\T)/(EE + EE) 3)

Qj =Ry, if codons i and j are synonymous, As for the mean strength of selection (2N.Pgy), a direct es-
Qij = ®R ) if codons i and j are nonsynonymous. timate is given by (.

(2) As shown in figure 3A, estimate of the mutational bias is

halfway between the nucleotide bias observed in the align-

The model can be fitted by maximum likelihood. Then, ment and the true mutational bias used during the simula-

from the estimate of R, one can derive a nucleotide bias tion. Thus, the MG model cannot reliably infer the mutational

toward AT as: bias. On the other hand, @ is close to the underlying mean-
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Fic. 3. Simulations with 61 primates taxa and 4,980 codon sites. Estimated versus true mutational bias, using a codon model in which @ is modeled
as a scalar (MG formalism, MG, panel A) or as a tensor (MF approach, panel B), or by applying a GTR nucleotide model to the 4-fold degenerate

third-coding positions only (panel C).

scaled fixation probability (2N.Ps) computed during the
simulation (61 primates taxa, 4,980 codon sites, 100 repli-
cates), with a precision of 97.2%. Thus, the failure to correctly
estimate the mutation process does not seem to have a
strong impact on the estimation of the overall strength of
selection, at least in the present case.

w As a Tensor: MF Derivation
We would like to derive a codon model that would be more
accurate than the MG model concerning the estimation of
the mutation bias, but that would still be site-homogeneous.
However, the true process is site-specific. The link between
the two can be formalized by projecting the site-specific pro-
cesses onto a gene-wise process, using what can be seen as a
MF approximation (Goldstein and Pollock 2016). The gene-
wise process obtained by this procedure is expressed in terms
of mutation rates and mean-scaled fixation probabilities.
Finally, the mean-scaled fixation probabilities can be identi-
fied with the w-tensor.

Specifically, at each site z, the underlying codon process is:

Ql.(;) =0 if codons i and j are more than one mutation away,
Qf;) = R if codons i and j are synonymous,
Qf;) = RM<,-J)2NeIP’§;) (i,j) if codons i and j are nonsynonymous.

(4)
Where ZNEIP’gz) (i,j) is the scaled fixation probability of codon

1X
j against codon i, at site z. At equilibrium of the process,

averaging over sites under the equilibrium distribution gives
the MF gene-level process:
(Qj)
(Qj)
(Qj)

=0 if codons i and j are more than one mutation away,

= Ry if codons i and j are synonymous,

(5)

However, because selection between codons reduces to se-
lection between pairs of amino acids, (2NPg(i,j)) only
depends on the amino acids encoded by i and j (see
Derivation of MF Model in Materials and Methods). Thus,
by identification, the inference model should be

= Ru(ij) (2NePc(i,j)) if codons i and j are nonsynonymous.

parameterized by a set of @ values for all pairs of amino acids,
denoted . For 20 amino acids, the total number of pairs of
amino acids is 190, hence 380 parameters by counting in
both directions. However, because of the structure of the
genetic code, there are 75 pairs that are one nucleotide
away, since some amino acids are not directly accessible
through a single nonsynonymous mutation. As a result,
the number of parameters necessary to determine all non-
zero entries of the tensor (wy,) in both directions is 150.
Finally, under the assumption of a reversible process, the
number of parameters can be reduced to 75 symmetric
exchangeabilities (ﬁx,y) and 20 stationary effects (¢,):

.By,x' (6)

Altogether, the substitution rates between codons Q;; are
defined as:

Wyy = eyﬁx‘y, where ﬂxy =

Qij =0 if codons i and j are nonneighbors,
Qij = Ry if codons i and j are synonymous,
Qj = Rum(ij®A(),.A() if codons i and j are nonsynonymous,

)

where A(i) is the amino acid encoded by codon i and wy, is
given by equation (6).

This MF model is fitted by maximum likelihood, giving an
estimate for its parameters, R /3 and €. Then, from the esti-
mate of the GTR nucleotide matrix (R) a mutation bias /IMF
can be estimated as previously (eq. 3 above).

As shown in figure 3B, and under a variety of scenarios
(number of sites, branch lengths, tree topology) in
Supplementary Material online, Apme under the MF model
provides an accurate estimate of the true mutational bias.
In other words, the MF model can tease out the observed AT
/GC bias of the alignment and the underlying mutational bias
Interestingly, in spite of invoking a single mutation bias across
all nucleotide sites, the MF model predicts distinct nucleotide
frequencies at the three coding positions (Supplementary
Material online). These predicted frequencies match the fre-
quencies that are observed on the alignment. In other words,
the MF model is able to explain how a site-homogeneous
mutational process combined with a selective pressure acting
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at the amino acid level can in the end produce a 3x 4 pattern
of nucleotide frequencies.

The mean-scaled fixation probability of nonsynonymous
mutations (2N.[Pg) can also be computed. It is ‘now a com-
pound parameter, expressed as a function of ﬁ, B and € (see
Mean-Scaled Fixation Probability (2N.Pg) under the MF
Model). Under this model, (2N Pg) is close to the true
mean-scaled fixation probability (2N.Ps) computed during
the simulation, with a precision of 96.9% (61 primates taxa,
4,980 codon sites, 100 replicates). Moreover, as shown in fig-
ure 4, the estimated rates @y, between pairs of amino acids is
congruent with the predicted mean-scaled fixation probabil-
ity computed analytically as a function of the underlying
site-specific fitness profiles and the mutation matrix as in
equation (26).

More analyses are shown in Supplementary Material on-
line, with different sequence length (498, 996, 2,490, 4,980 and
9,960 codon sites), different branch lengths (decreased by a
factor 2 and increased by a factor 2, 4, 8), and a different
topology (90 mammals). These analyses suggest that the
number of sites does not influence the estimator’s accuracy
for mutational bias (1), nor for selection pressure (). Finally,
for large sequence divergence (Supplementary Material on-
line), saturation of sequences (multiple substitutions at the
same site) leads to less accurate estimation: both the MG and
MF models fail to give an accurate estimator of . The mu-
tation bias A, on the other hand, is still correctly estimated
under the MF model.

Estimation on Empirical Sequence Data

The two alternative models of inference just considered,
namely the Muse and Gaut (MG) and the MF codon mod-
els, were then applied to empirical protein-coding sequence
alignments. Several examples were analyzed: the nucleopro-
tein in Influenza Virus (as human host) assembled in Bloom
(2017), the f-lactamase in bacteria gathered in Bloom
(2014), as well as orthologous AT-rich genes (such as to
prevent the confounding effect of gBGC) in primates
extracted from the OrthoMam database (Scornavacca
et al. 2019) as shown in table 1.

For alignments globally biased toward AT (nucleoprotein
and AT-rich concatenate in primates), similarly to what was
observed in the simulation experiments presented above, the
mutational bias estimates under the two codon models are
greater than the observed nucleotide bias (ie,
1 < AT/GC < 2). This effect is, as previously, probably
due to selection at the level of amino acids, partially opposing
the mutational bias. More importantly, the mutational bias
estimated by the MF model is more extreme than the MG
estimate (ie, 1 < Amg < Ame). These examples behave
identically to the observations made with simulated align-
ments, where, compared with MG, the MF model estimates
a stronger mutational bias, which was also closer to the real
value. Thus, a reasonable interpretation is that MG is also
underestimating the underlying mutational bias in the present
case, and that the estimate of the MF model is more accurate.

Concerning selection, the estimated mean-scaled fixation
probability of nonsynonymous mutations, is similarly
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estimated in the MF and MG models ((2N.Ps) >~ ®).
Additionally, in the MF model, (2N.Ps,) can be restricted
to mutations from weak nucleotides (AT) to strong (GC), or
vice versa (see Mean-Scaled Fixation Probability (2NPgy)
under the MF Model). We observe that under a mutational
bias favoring AT (i.e, 4 > 1), the mean fixation probability of
nonsynonymous mutations is higher toward GC than toward
AT, (2N PI®) > (2N P2V, as expected under a AT-biased
mutation process.

Reciprocally, for alignment globally biased toward GC (f3-
lactamase), the estimated mutation bias is stronger (toward
GC) than the bias observed on the alignment (ie,
me < AT/GC < 1). Curiously, in f-lactamase, the MG
model estimates a weaker underlying mutational bias than
the observed bias (i.e, AT/GC < Awg < 1). This effect
could be due to the first, second, and third positions having
compositional biases in different directions, which is harder to
disentangle (table 1). Concerning selection, we observe that
the fixation probability of nonsynonymous mutations is
higher on average toward AT than toward GC,
(2N P2Y) > (2N L), as expected under a GC-biased mu-
tation process.

The results obtained on empirical data are globally in
agreement with the observations gathered from the simula-
tion experiments, namely that the presence of a mutational
bias results in a selection differential, taking the form of a
slightly higher mean fixation probability of nonsynonymous
mutations opposing the mutational bias. Moreover, by set-
tinge = 1and f = @ X 1 in our MF model, we retrieve the
nested MG model, hence, both models are directly
comparable.

The empirical fit to the data between the nested models,
using AIC and Likelihood ratio tests (Posada and Buckley
2004) favor the MF model compared with the MG model
(table 1). Of note, owing to its unreasonable assumption that
(2NPgy) is the same across all amino acid pairs, the MG
model is in fact very easy to improve upon (Delport et al.
2010), and thus the higher fit of MF compared with MG is not
in itself a very strong argument in favor of the use of MF.
However, our simulations suggest that, in spite of the larger
estimation error on the individual rates between all pairs of
amino acids on smaller alignments, the estimate of the mu-
tation bias is always reasonably accurate, even on small align-
ments (Supplementary Material online).

In another simulation analysis, it has also been shown that
better fitting models could sometimes lead to less accurate
inference (Spielman and Wilke 2015). This point was more
specifically made concerning models such as 3x 4. We concur
with this argument, which is particularly relevant in the pre-
sent context. The 3x4 model is typically better fitting than
the 1x4 model (which is the default considered here through
the MG model). Yet, and this is precisely one of the main
points of the present work, 3x4 does not represent the cor-
rect way to model the processes that are creating the varia-
tion in nucleotide frequencies across the three coding
positions and, for that reason should not be used, in spite
of its higher fit. The MF model, on the other hand, gives the
correct logical solution to this problem and our simulation
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Fic. 4. True versus estimated values of w,, between pairs of amino acids under our MF model. The true values are given by equation (26).
Simulations on 61 primates taxa with 4,980 codon sites over 100 replicates. Vertical bars are the 95% confidence intervals for the mean value.

Table 1. Mutational Bias (1) and Mean-Scaled Fixation Probability ((2NP¢y)) Estimated under the MG and MF Models on Distinct Concatenated

DNA Alignments of Orthologous Genes.

p-Lactamase

Nucleoprotein Primates AT-Rich

Data Set Bloom
Number of taxa 85
Number of sites 263
AT/GC 0.792
AT/GC at first position 0.583
AT/GC at second position 1.177
AT/GC at third position 0.714
MG mutational bias (Amc) 0.853
MF mutational bias (Amf) 0.690
MG o 0.332
MF (2N Psy) 0.336
MF (2N Ppe) 0.297
MF (2N.P3Y) 0.412
AAIC 37.6

P(13—o3>LRT) 9.2x107 "

Bloom Scornavacca et al.

180 22

498 4,877
1.154 2.028
1.057 1.303
1.221 2.541
1.192 2.648
1.447 2.073
1.748 2.419
0.114 0.526
0.116 0.525
0.141 0.594
0.092 0.487
165.2 1,527.0

1.2%x107% 3.9%1072%

Note.—The MF model contains 95 parameters with 75 amino acid exchangeabilities and 20 amino acid equilibrium frequencies. However, we have two constrains that reduce
the degree of freedom; the sum of all 20 amino acid equilibrium frequencies equals 1 and the sum of all 61 codon frequencies equals 1.

experiments confirm that this leads to accurate estimation of
the mutation bias. In summary, this is the conjunction of the
higher fit observed here on empirical data with the logical
arguments and the simulation experiments presented above
that together justify the use of the MF model. Based on
these justifications, we can thus interpret the estimate of
Ame as reflecting the mutation bias, and the difference be-
tween (2NP2V) and (2N.P}*) as suggesting that the fixa-
tion biases are different in the two directions also in the case
of empirical data.

Altogether, our MF model is favored by empirical data sets,
and simultaneously estimates more extreme (and probably
more accurate) mutational biases compared with the MG
model.

Discussion

In protein-coding DNA sequences, the nucleotide composi-
tion results from a subtle interplay between mutation at the

level of nucleotides and selection at the protein level. As a
result, the nucleotide bias observed in the alignment is differ-
ent from the underlying mutational bias. However, current
parametric codon models predict that the observed and un-
derlying mutational biases should be equal. For that reason,
they are inherently misspecified and are unable to tease apart
opposing effects of mutation and selection correctly. As
shown in our work, the misspecification of these models
does not strongly impact the estimation of the net effect of
selection on nonsynonymous mutations (). This novel re-
sult is important, as it is reassuring for a certain number of
previously published analyses, in particular correlating @ with
life-history traits, in a context where GC content also corre-
lates with life-history traits (Figuet et al. 2016; Bolivar et al.
2019). However, current parametric models do not estimate
the mutational process accurately.

In this work, we sought to find the simplest parametric
codon model able to correctly tease apart mutation rates on

7
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one hand, and net mean fixation probabilities on the other
hand, and this, without having to explicitly model the under-
lying fitness landscape. In order to derive a codon model
along those lines, our strategy is to first assume an underlying
microscopic model of sequence evolution (here, a mutation—
selection model based on a site-specific, time-independent
fitness landscape). Then, we derive the gene-wise mean fixa-
tion probabilities between all pairs of codons, implied by the
underlying microscopic process. Finally, we observe that this
MEF process should in fact invoke as many distinct @ param-
eters as there are pairs of amino acids that are nearest neigh-
bors in the genetic code. There are reversibility conditions,
reducing the dimensionality and allowing for a GTR-like pa-
rameterization of this tensor (95 parameters for selection).

Inferring parameters on simulated alignments, we show
that the model derived using this MF argument correctly
estimates the underlying mutational bias and selective pres-
sure. In this respect, our work gives the first clear explanation
of how to correctly disentangle the underlying mutational
bias and the observed nucleotide frequencies. Our model
can predict the accurate nucleotide composition at first, sec-
ond, and third codon positions, whereas current parametric
models fail to predict them. We argue that parametric codon
models using three different mutational processes at the first,
second, and third coding positions (3x4 formalism) to ac-
commodate for variation in observed nucleotide frequencies
is not a theoretically sound modeling. Indeed this variation is
an emerging property of the balance between mutation and
selection as shown in our work. The 3x4 formalism has pre-
viously been shown to lead to inaccurate inference of @
(Spielman and Wilke 2015). Altogether, we concur in this
direction that 3x4 formalism is inaccurate and not mecha-
nistically sound, and as a result should not be used to esti-
mate (.

Applying our model to empirical alignments, we also ob-
serve that there is a selection differential opposing the muta-
tional bias. This observation also points to a fundamental
property of natural genetic sequences, namely that they are
not optimized but are the result of interactions between
evolutionary forces (Sella and Hirsh 2005). In the specific
case highlighted in this work, the mutational bias at the
nucleotide-level results in suboptimal amino acids being over-
represented in the sequence, compared with what would be
expected based on their fitness alone. For example, under a
mutational bias toward AT, AT-rich amino acids might not
necessarily be the fittest but are excessively generated by the
mutational process, resulting in a stronger purifying selection
against AT-rich amino acids. This was pointed out previously
(Singer and Hickey 2000), although never directly formalized
in a phylogenetic codon model. One important consequence
of this tradeoff between mutation and selection is that the
observed higher mean fixation probability toward GC is mim-
icking the effect of biased gene conversion toward GC
(gBGC), although unlike gBGC, the phenomenon described
here corresponds to a genuine selective effect. Although we
did not explore the consequences of this at the level of in-
traspecific polymorphism, the selection differential uncovered
here also implies that the distribution of fitness effects is not

8

the same in the two directions, either toward AT or toward
GC. Specifically, in the presence of an AT-biased mutation
process, the nonsynonymous GC polymorphisms are
expected to segregate at higher frequencies, compared with
nonsynonymous AT polymorphisms.

These observations have some practical implications: for
instance, experiments observing a fixation (or segregation)
bias toward GC at the nonsynonymous level must also rule
out that this fixation bias is not a simple consequence of the
tradeoff between mutation and selection. More generally, our
observations and modeling principles offer a useful prelimi-
nary basis to better understand how mutation and selection
will work together with GC-biased gene conversion (gBGC),
and therefore will help better understand how gBGC will
impact both nucleotide composition and @. It is worth men-
tioning that in our result, we focused on the fixation proba-
bility from AT to GC, (2N.P}*), because of the relationship
to gBGC. However, in practice, the same analysis and meth-
ods can be applied to any subset of nucleotides or codons.

Our MF parametric model uses gene-level parameters (in
the form of a tensor) that is meant to capture the mean-
scaled fixation probabilities. This derivation, and its validation
on simulated data, shows that, even though the underlying
selective landscape is site-specific, a gene-level approximation
can nonetheless accurately disentangle mutation and selec-
tion. As a result, this study demonstrates that phenomeno-
logical models derived out of mechanistic models are more
compact (i.e, not site-specific), and in certain cases are suffi-
cient to extract the relevant parameters.

The methodology proposed here for deriving inference
models consists in proceeding in two steps, first assuming
an underlying mechanistic model of sequence evolution, pa-
rameterized by variables that are derived from first principles
(fitness landscape, mutation rates, ...). Subsequently, the
phenomenological inference model is obtained by matching
its parameters (here, the entries of the @ tensor) with the
aggregate parameters derived from the application of the MF
procedure to the mechanistic model. Altogether, we believe
that the approach used here could be applied more generally:
inference models can be phenomenological in practice, but
should nonetheless be derived from an underlying mechanis-
tic model, so as to correctly formalize the interplay between
mutation, selection, drift, and other evolutionary forces.

Our phylogenetic codon model is not the first to model &
as a tensor. Thus, Yang et al. (1998) introduced a codon
model in which @ depends on the distance between amino
acids, measured in terms of the Grantham (1974) distance.
Additionally, Tang and Wu (2006) leveraged  tensors in
order to detect positively selected genes. The novelty of the
present work is to formalize the articulation between the
nucleotide composition, the mutational bias, and selection
between different amino acids. Finally, this work is still pre-
liminary since the MF model should be tested against a more
diverse range of empirical data, in terms of phylogenetic
depth, strength of selection, and codon usage bias to assert
the validity of our empirical results. In addition, several other
parametrization of codon models as listed in Rodrigue et al.
(2008) and Kosakovsky Pond et al. (2020) should be included
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in a broader comparison of the accuracy of the estimation of
the underlying mutational bias and strength of selection on
protein-coding DNA sequences.

Materials and Methods

Simulation Model

We seek to simulate the evolution of protein-coding sequen-
ces along a specie tree. Starting with one sequence at the root
of the tree, the sequences evolve independently along the
different branches of the tree by point substitutions, until
they reach the leaves. At the end of the simulation, we get
one sequence for each leaf of the tree, meaning one sequence
per species. The substitution is modeled using the origination—
fixation approximation, that is, substitution rates are the prod-
uct of the mutation rate at the nucleotide level, and fixation
probabilities, based on selection at the amino acid level.

The mutation process is assumed homogeneous across
sites. On the other hand, selection is assumed to be varying
along the sequence. During the simulation, given the current
sequence, the substitution rates toward all possible mutants
(one nucleotide change) are computed and the next substi-
tution event is drawn randomly based on Gillespie’s algo-
rithm (Gillespie 1977).

Mutational Bias at the Nucleotide Level

The mutation rate between nucleotides is always propor-
tional to u. Moreover, mutations from any nucleotide to
another weak nucleotide are increased by the factor 4 com-
pared with mutations to another strong nucleotide. The mu-
tation rate matrix is thus:

A C G T
—u(2+2) It It A
A
R C . —u(1+22) It A
G U2 u —u(1+24) A
-
i I It —u(2+42)
(8)
Which has the following stationary distribution:
o=1, 9)

A 1 1 A (10)
24222424724 24724224)°

—a—(

As a result, the ratio of weak over strong nucleotide fre-
quencies at stationarity is equal to A:

1

oat+or  AM2+22) 7 +A2+24)
octoc  (2+42) '+ (2+2)"

, from equation (10), (11)

W is constrained such the expected flow (— Za 04Rg4) Of
mutation equals to 1.

Selection at the Amino Acid Level

The substitution rate is considered null between any two
codons differing by more than one nucleotide. Otherwise,
the mutation rate between a pair of codons is given by the
mutation rate of the underlying single nucleotide change.
Selection is modeled at the amino acid level, that is, we as-
sume that all codons encoding for one particular amino acid
are selectively equivalent.

To take into account the heterogeneity of selection be-
tween different sites of the protein, we assume that each site z
of the sequence is independently evolving under a site-
specific fitness landscape, characterized by a 20D frequency
vector of scaled (Wrightian) fitness parameters
Yo = {lpffﬁ 1 < a < 20}. The fitness vectors Y9 used
in this study are extracted from Bloom (2017), which were
experimentally determined by deep mutational scanning for
498 codon sites of the nucleoprotein in Influenza Virus strains
(as human host). For each codon site z of our simulation, we
assign randomly one the 498 fitness profile (sampling with
replacement) experimentally determined, which altogether
determines the (Wrigthian) fitness vectors across sites. The
malthusian fitness (or log-fitness) of amino acid a, denoted
Fc(,z), is scaled by the relative effective population size (N,)
accordingly:

o) — ern(npg”), ze{1,...,2},ac{1,...,20}  (13)

At site z, the substitution rate between nonsynonymous
codons i and j is given by the product of the mutation rate
and the probability of fixation:

@) @
Fag ~ Faw

)
1 — efaiFag

Q;(JZ-) = Rumij) (14)
where A(i) denotes the amino acid encoded by codon i. At
the root of the tree, for each site z, the sequence is drawn
from the stationary distribution of the process specified by
7®, which is given by:

(2)
TC,-(Z> = Z(Z) H ik eFA('>, (15)
ke{1,2,3}

where i[k] denotes the nucleotide at position k € {1,2,3} of
codon j, and 2% is the normalizing constant at site z:

-1
61 @

z@ — z H jik] eFAU) (16)

Jj=1 | ke{1,2,3}

The substitution process is reversible and fulfills detailed bal-
ance conditions at each site z and between each pair of
codons (i, j):

n?Q? = n?Q¥ (17)

i

Of note, by modeling fitness at the amino acid level, we
assume that all codons encoding for one particular amino
acid are selectively equivalent. In addition, in this modeling

9
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framework, the genetic code is of particular importance since
the number of codons encoding for a particular amino acid
varies greatly. As an example, tryptophan is encoded by one
codon, whereas leucine is encoded by six codons. Intuitively,
this variation makes the mutation bias more pronounced
among codons encoding for the same amino acid, since there
are more mutations possible that are selectively neutral (i.e,,
synonymous). On the other hand, the mutation bias is more
constrained if the amino acid is encoded by few codons.

Mean-Scaled Fixation Probability

The sequence at time t is denoted S(t) and the codon pre-
sent at site z is denoted S,(t). For a given sequence, the
mean-scaled fixation probability over mutations away from
S(t), weighted by their probability of occurrence, is given by
the ratio:

Z
; Zjej\/ <Sz(t)> QSZ(t) !
(2NPex(t)) = — ;o (18)

z; Zje/\/ (Sz(t)) Hsu(—i

where N/ (i) is the set of nonsynonymous codons neighbors
of codon i and Q i are defined as in equation (14). Averaged
over all branches of the tree, the mean-scaled fixation prob-
ability is:

<2NePﬁx> = J <2NePﬁx(t)>dt7 (19)
t
where the integral is taken over all branches of the tree,
whereas the integrand (2N.Pg(t)) is a piece-wise function
changing after every point substitution event. The mean-
scaled fixation probability from weak (AT) to strong (GC)
nucleotides, denoted (2N.P}'*), is obtained similarly by
restricting the sums (in the numerator and the denominator)
from weak to strong mutations. A similar computation can
be done from strong to weak.

Derivation of MF Model

The MF codon model (Q) is defined such that (Q;;) is the
average rate of substitution to codon j, conditional on cur-
rently being on codon i, the average being taken across sites.
Importantly, sites differ in their probability of being currently
in state i. The average should therefore be weighted by this
probability.

Assuming an underlying site-specific mutation—selection
process at equilibrium, given we know that a mutation is
from codon i, the probability that this mutation is occurring
at site z is:

P(zli) = - (20)

The site-averaged (MF) substitution rate from codon i to j is
as result given as:
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Z
QIJ :Z]P) QIJ (21)

If codon i and codon j are synonymous, this equation sim-
plifies to the underlying mutation rate R (). Otherwise, if
codon i and codon j are nonsynonymous, the MF substitution
rate is:

<Qij> = <RM(fj)2NePﬁx(iaj)>7 (22)
= Ru(ij) (2NePsiy (i ) ) » (23)
Z o O g
21 775:‘( : o j(z)
= —e Al Aj)
= Rum(ij) 21—, (24)

(25)

As a result, (2NPg(i,j)) is dependent on the source and
target codon solely through the source amino acid (x) and
target amino acid (y), hence the parameter w,, identifies
with the average fixation probability (2N.Pg, (x — y)):

Z 2 )y RI-R
F(z }(/ 2)
(NP (x — y)) = =5—"—=".  (26)
S ZW@eF v

z=1

Mean-Scaled Fixation Probability (2N.Pg,) under the
MF Model

The MF model is parameterized by a GTR mutation matrix
R(a, p) and the selection coefficient »(f, €). As a result, the
mean-scaled fixation probability of nonsynonymous muta-
tions is:

61
Yomo Y. Qi

(2NPy) = SN0 (27)
Z“i > Hij
=1 jeN(i)

61

2T awlean 2jeniRumanean Bagy.ag)
=1 ke{1,2,3}
- 61 ’

; [er{1.2,3} Tifkg] €A Zje/\/(i) Rmii)

(28)

where ik] denotes the nucleotide at position k€{1,2,3} of
codon i.

Similarly, the mean-scaled fixation probability from weak
(AT) to strong (GC) nucleotides denoted (2NP}°) is
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obtained similarly by restricting the sums (in the numerator
and the denominator) to one nucleotide mutations only
from weak to strong. Conversely, by restricting the sum
from strong (GC) to weak (AT), we obtain (2NP3V).

Inference Method with Hyphy

Maximum likelihood estimation has been performed with the
software Hyphy (Pond et al. 2005). The Python scripts gener-
ating the Hyphy batch files (for both MG and MF), as well as
scripts necessary to replicate the experiments are available at
https://github.com/ThibaultLatrille/NucleotideBias (last
accessed January 31, 2021).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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