
The Studies in Constructing Yeast Cell
Factories for the Production of Fatty
Acid Alkyl Esters
Yang Zhang1,2, Xiao Guo1, Huaiyi Yang2* and Shuobo Shi1*

1Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing
University of Chemical Technology, Beijing, China, 2CAS Key Laboratory of Microbial Physiological and Metabolic Engineering,
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Fatty acid alkyl esters have broad applications in biofuels, lubricant formulas, paints,
coatings, and cosmetics. Traditionally, these esters are mostly produced through
unsustainable and energy-intensive processes. In contrast, microbial production of
esters from renewable and sustainable feedstocks may provide a promising alternative
and has attracted widespread attention in recent years. At present, yeasts are used as
ideal hosts for producing such esters, due to their availability for high-density fermentation,
resistance to phage infection, and tolerance against toxic inhibitors. Here, we summarize
recent development on the biosynthesis of alkyl esters, including fatty acid ethyl esters
(FAEEs), fatty acid short-branched chain alkyl esters (FASBEs), and wax esters (WEs) by
various yeast cell factories. We focus mainly on the enzyme engineering strategies of
critical wax ester synthases, and the pathway engineering strategies employed for the
biosynthesis of various ester products. The bottlenecks that limit productivity and their
potential solutions are also discussed in this review.
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INTRODUCTION

Fatty acid alkyl esters are produced from (fatty) alcohols and (fatty) acids via esterification (Cruz
et al., 2020). These esters are structurally diverse according to the chain length of the fatty acid moiety
and the alcohol moiety (Menendez-Bravo et al., 2017). Some fatty acid alkyl esters, such as FAEEs
and FASBEs, consist of a long-chain acyl moiety with a short-chain alkyl moiety, and these esters are
suitable for use as biofuel molecules. FAEE is considered as one of the main components of biodiesel,
which provides an environmentally attractive alternative to fossil diesel (Hill et al., 2006; Kuan et al.,
2019); FASBE possesses a methyl branch in the alcohol portion, which affords a lower cloud point
than FAEE, thus enabling superior use for energy applications in cold-climates (Wang et al., 2012).
Traditionally, bio-esters with the short-chain alkyl moieties mentioned above are industrially
produced from plants, animals, or waste cooking oils by transesterification with alcohols (Leung
et al., 2010) in the presence of a base, an acid, or an enzyme catalyst. However, the high cost and low
availability of edible oils limit the large-scale application of bio-esters, and more sustainable ways
need to be explored to address this problem (Jetter and Kunst, 2008; Santori et al., 2012; Chen et al.,
2018).

Wax esters (WEs) are long-chain fatty acid alkyl esters composed of a long-chain acyl moiety and
a long-chain alkyl moiety, commonly used in the cosmetic, lubricant, and food industries. For
example, a jojoba-likeWE is a high-value ester of a long-chain fatty acid (C20-C24) and fatty alcohol
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(C20-C24), and is widely used in cosmetic products [e.g.,
moisturizers, shampoos, and conditioners] (Kalscheuer et al.,
2006; Grand View Research, 2020). Commercial WEs from
different sources have different applications. In general, WEs
with longer chains are more valuable, since quantities are limited,
and in the main are extracted from a few species of plants or
animals [e.g., desert shrub jojoba and sperm whale] (Soong et al.,
2021).

For the past few decades, microbial production routes have
offered new opportunities for producing various fatty acid alkyl
esters with different chain length distribution and considerable
progress has been made (Steen et al., 2010; Soong et al., 2021).
Within these cell factories, yeast cells are promising alternative
hosts for the production of such esters due to their robust growth
under harsh fermentation conditions such as low pH levels, and a
high tolerance against phage contamination and various toxic
inhibitors (Krivoruchko et al., 2011). On the other hand, a
plentiful of researches in reprogramming yeast metabolism
have been reported for production of many kinds of fatty acid
derived compounds (Gajewski et al., 2017; Li et al., 2020; Wu
et al., 2021; Yu et al., 2018). In this review, we summarize recent
development on the biosynthesis of FAEEs, FASBEs, and WEs by
yeasts, and focus on the efforts that researchers have made on
pathway design, pathway optimization, and enzyme engineering
for improving the productivity of these esters.

PATHWAY DESIGN AND OPTIMIZATION

Generally, the synthetic pathways of fatty acid alkyl esters include
an alcohol-producing module and a fatty acid synthetic module,
which can be esterized by wax ester synthase (WS) (Figure 1). A

great deal of effort has been made to construct such pathways for
producing tailored esters. Various metabolic engineering
strategies such as eliminating competing pathways and
overexpressing the key enzymes involved in the biosynthetic
pathways have been utilized to boost the production of such
esters.

Constructing Yeast Cell Factories for the
Production of FAEEs
In S. cerevisiae, ethanol can be produced through an endogenous
pathway that includes a pyruvate decarboxylase (PDC) and an
alcohol dehydrogenase (ADH). Taking advantage of this
property, several research groups initialized the microbial
production of FAEE by introducing only a WS to S. cerevisiae.
Shi et al. (2012) heterogenously expressed five WSs derived from
different organisms and achieved 8.2 mg/L FAEEs using the
endogenous ethanol and fatty acid substrates, providing a
proof-of-concept in FAEE production through yeast-based
fermentation. Later, the same group applied a chromosome
engineering method based on delta integration to produce
FAEE, and further overexpressed genes encoding an
endogenous acyl-CoA binding protein (ACB1) and an
NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase
(gapN) to increase the production. The strategies led to a final
titer of more than 40 mg/L (Shi et al., 2014). In addition,
Thompson et al. combined metabolic engineering strategies for
increasing cytosolic acyl-CoA pools with modification of culture
conditions to push lipid production, which led to an FAEE titer of
25 mg/L (Thompson and Trinh, 2014). In doing so, the authors
found several limiting factors in fatty acid synthesis, and also
pointed out that side reactions of the AtfA acyltransferase should

FIGURE 1 | Schematic of the synthetic pathway of various bio-esters. KDC, α-ketoacid decarboxylase; ADH, ethanol dehydrogenase; FAR, fatty acyl-CoA
reductase; PDC, pyruvate decarboxylase; KCS, fatty acid elongase.
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be eliminated (Thompson and Trinh, 2014). In parallel, Lian et al.
constructed a reversal β-oxidation cycle in S. cerevisiae, which led
to the synthesis of medium-chain FAEEs (MCFAEEs) (Lian and
Zhao, 2014). This work showed the flexibility to produce FAEEs
with different carbon chain lengths, demonstrating a broad
application platform for the synthesis of fatty acid alkyl esters
in S. cerevisiae.On the other hand, Yu et al. (2012) minimized the
glycerol synthesis pathway and produced 520 mg/L FAEEs from
glycerol with additional exogenous fatty acids. This is to date the
highest titer in S. cerevisiae, but exogenous fatty acids were
required in the research.

The above work on FAEE production indicated that an
insufficient supply of fatty acid precursors in S. cerevisiae may
limit FAEE production. For this reason, oleaginous yeasts were
considered better hosts for FAEE production due to their ability
to produce abundant fatty acid precursors, e.g., Yarrowia
lipolytica and Rhodosporidium toruloides. Xu et al. (2016)
introduced and targeted WS to the endoplasmic reticulum of
the well-studied Y. lipolytica, and achieved 142.5 mg/L FAEEs.
Interestingly, this work also found that targeting enzymes to
different cellular compartments gave distinct FAEE product
profiles, e.g., ER targeting WS led to longer chain-length.
Later, Gao et al. (2018) developed an engineered strain with a
fine-tuned expression level of WS, and obtained 1.18 g/L FAEEs
when adding exogenous ethanol. Recently, Zhang et al. (2021)
engineered R. toruloides for FAEE production, and the maximum
titer reached 10 g/L with additional exogenous ethanol. The study
showed a high capacity for FAEEs production of R. toruloides,
implicating its abundant metabolic ability to produce fatty acid
derivates. To avoid supplying exogenous ethanol, Yu et al.
constructed an ethanol-producing pathway in Y. lipolytica by
introducing a PDC and an ADH from S. cerevisiae. However, the
FAEE titer was less than 1 mg/L. When 2% ethanol was added to
the culture medium, the titer of FAEE reached 360 mg/L (Yu
et al., 2020). The result indicates ethanol insufficiency is a major
bottleneck in the development of Y. lipolytica as an efficient FAEE
producer.

Constructing Yeast Cell Factories for the
Production of FASBEs
Although FASBEs have better properties than biodiesels, there is
little research on the biosynthesis of FASBEs. Teo et al. firstly
reported the production of FASBEs in S. cerevisiae, and
overexpressed Ilv2, Ilv5, and Ilv3, the key genes in the 2-keto
acid synthetic pathway, to increase the supply of branched-chain
alcohol. A maximum titer of 230 mg/L FASBEs was achieved in
the recombinant strain, including ethyl, isobutyl, isoamyl, and
active amyl esters (Teo et al., 2015). Meanwhile, Tao et al. (2015)
tried to produce FASBEs in Pichia pastoris by introducing a
similar pathway which led to a titer of 169 mg/L.

Learning from previous attempts at FAEE production, there is
great potential to develop oleaginous yeasts to construct FASBE
cell factories in the future, although more metabolic engineering
strategies are required to improve the supply of alcohols for the
production of FASBEs. For example, Avalos et al. (2013) greatly
improved the production of branched-chain alcohols through

mitochondria localization, which may provide guidance for
engineering the alcohol-producing module to enhance
subsequent FASBE production.

Constructing Yeast Cell Factories for the
Production of WEs
Wax esters, especially the jojoba-like wax esters (mainly esters
with carbon chain length between C40 and C42), are hard to
obtain from natural sources (Jetter and Kunst, 2008). There
have been several instances of research relating to engineering
yeasts to produce wax esters with tailored chain lengths.
Wenning et al. (2017) heterologously expressed FAR (fatty
acyl-CoA reductase) and WS derived from different
organisms and achieved medium-chain WEs. In the same
report, they also enabled the synthesis of jojoba-like WEs up
to a chain length of C42 by introducing a fatty acid elongase,
Elo2p, from S. cerevisiae. A further study reported by the same
group co-expressed a fatty acid elongase from Crambe
abyssinica (CaKCS) and a yeast-derived fatty acid
desaturase (FAD), Ole1p, that led to the production of
diunsaturated WEs (up to C46:2-WE) (Wenning et al., 2019).

After the demonstration of WE production in S. cerevisiae,
similar strategies and techniques were also extended to oleaginous
yeasts. Gao et al. engineered Y. lipolytica for very long chain WEs
(C32-C42) production by introducing various elongases together
withWS and FAR. TheWE titer was then improved by impairing
the efficiency of the β-oxidation pathway and overexpressing
genes related to the accumulation of fatty acyl-CoA. Through
scaled-up fermentation, the titer ofWEs increased to 2.0 g/L (Gao
et al., 2020). Soong et al. (2021) used waste cooking oil as the
carbon substrate of an engineered Y. lipolytica cell factory
containing WS and FAR, and enabled the production of
medium-chain WEs with a titer of 7.6 g/L. These strategies
may enable large-scale biomanufacturing of jojoba-like WEs in
the future and potentially lay a solid foundation to produce other
WEs containing very-long-chain FAs.

ENZYME DISCOVERY AND ENGINEERING

WS has long been the widely used enzyme for fatty acid alkyl ester
production. Thus, we mainly focused on the development of WS
or its variants. The discovery of different WSs with diverse
specificities for alcohol and acyl-CoA substrates enabled the
biosynthesis of tailored bio-esters (Xu et al., 2021; Holtzapple
and Schmidt-Dannert, 2007). Further enzyme engineering
strategies enhanced the properties of WS and improved the
production of target products (Barney et al., 2013; Barney
et al., 2015).

Enzyme Discovery and Characterization
Until now, many WSs have been identified and characterized
from various organisms, e.g., AtfA from A. baylyi (Kalscheuer
and Steinbuchel, 2003), HaWS from sunflower (Shalini and
Martin, 2020), EgWS from Euglena gracilis (Teerawanichpan
and Qiu, 2010), CzWS1 from Chromochloris zofingiensis (Xu
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et al., 2021), and MhWS2 from Marinobacter
hydrocarbonoclasticus (Miklaszewska et al., 2018). In brief, the
discovery of these WSs were usually performed by the use of
sequence alignment and phylogenetic analysis, including BLAST
(http://www.ncbi.nlm.nih.gov/BLAST), CLUSTALW (Kohli and
Bachhawat, 2003), and PASTA (Collins and Warnow, 2018). In
recent years, the advances in biosynthetic knowledge and
predictive bioinformatics tools may greatly facilitate the
discovery of new WSs, such as omics-based metabolic data
mining platforms (Liu et al., 2020; Medema et al., 2021;
Schorn et al., 2021) and Predictor (https://github.com/ccdmb/
predector) (Jones et al., 2021).

Most of the reported WSs belong to a class of bifunctional
enzymes, which exhibit both WS and diacylglycerol (DAG):
acyl-coenzyme A (CoA) acyltransferase (DGAT) activities.
Table 1 summarizes the properties of the reported WSs, and
the sequence phylogenetic analysis was shown in
Supplementary Figure S1. The functional characterization
of WSs opened the possibility of producing tailored bio-esters.
e. g., CzWS1 with 18:1-CoA preference may represent a
promising target for producing 18:1-enriched WE, which
has favorable properties for lubrication (Xu et al., 2021).
The isoprenoid WS (WS1/WS2 from Marinobacter
hydrocarbonoclasticus DSM 8798) has been identified as a
way to produce isoprenoid WEs, which would provide energy
storage and serve as a biochemical marker in Marinobacter
species (Holtzapple and Schmidt-Dannert, 2007).

Enzyme Engineering
WS is a large family of enzymes that are generally considered
promiscuous and will catalyze the production of various esters
from a broad range of different substrates. Therefore, it is of great
significance to enhance its properties through enzyme
engineering to produce tailored bio-esters.

Random mutagenesis has become a valuable tool in
engineering the properties of enzymes as biocatalysts. Rottig
et al. obtained several AtfA mutations (Glu15Lys, Trp67Gly,
Ala126Asp, Ser374Pro, or Gly378Ser/Asp) with diminished
lipid accumulation through random mutagenesis by a mutator
strain E. coli XL-1 Red (Rottig and Steinbüchel, 2013). Santín
evolved a bifunctional WS/DGAT enzyme, tDGAT from
Thermomonospora curvata towards improved WS activity but
weakened DGAT activity through the error-prone PCR method
(Santin et al., 2019).

Now a series of approaches learned from rational protein
engineering can be implemented to reprogram WS with the
desired functions. For example, there have been studies of
rational active site modifications to alter alcohol selectivity in
WS by using the crystal structure of the phthiocerol
dimycocerosyl transferase (PapA5) from Mycobacterium
tuberculosis (Barney et al., 2013; Barney et al., 2015). In
particular, a substitution at the residue of 360 from alanine to
isoleucine in MaWS1, a WS from Marinobacter aquaeolei VT8
(also named Ma1), resulted in shifted selectivity toward short-
chain alcohols (Barney et al., 2013). Furthermore, a

TABLE 1 | The overview of the properties of reported WSs.

Name Source Acyl-CoA preference Alcohol preference DGAT
activity

References

HaWS Sunflower (Helianthus annuus) 16:0- and 18:0-CoA C16 and C18 alcohols Y Shalini and Martin, (2020)
Ma1 Marinobacter aquaeolei 14:0-CoA C10 and C11 alcohols Y Barney et al. (2012)

VT8
CzWS1 C. zofingiensis 18:1-CoA C16 and C18 alcohols Y Xu et al. (2021)
MhWS2 M. hydrocarbonoclasticus 14:0-, 18:1-, 18:0-, 12:0- and 16:

0-CoA
C10 to C16 alcohols N Miklaszewska et al. (2018)

PhWS1 Solanaceae Saturated very long chain acyl-
CoA (C20 and C22)

Medium chain alcohols
(C8-C12)

N King et al. (2007)

ScWS Simmondsia chinensis 14:0-CoA/18:0-CoA C20:1 alcohols/C14 alcohol Y Miklaszewska and Banas,
(2016)

EgWS Euglena gracilis 14:0-CoA C16 alcohol N Teerawanichpan and Qiu,
(2010)

AtfA A. baylyi 12:0-, 14:0-, 16:0-, 18:0-, 18:1-,
and 20:0-CoA

C12, C14, C16, C16:1, C18:0,
C18:1 alcohol

Y Kalscheuer and Steinbuchel,
(2003)

EguWS Elaeis guineensis Saturated very long chain
acyl-CoA

Medium chain alcohol Y Yuan et al. (2020)

TrWSD4/
TrWSD5

Thraustochytrium roseum C12-CoA/C10-CoA Medium and long chain alcohol Y Zhang et al. (2017)

AWAT1/
AWAT2

Human Saturated acyl-CoA/unsaturated
acyl-CoA

C10 alcohol/C16 and C18
alcohol

Y Turkish et al. (2005)

WSD1 Arabidopsis 16:0-CoA C26 and C28 alcohols N Patwari et al. (2019)

AtfG25 Streptomyces sp.G25 12:0- or 16:0-CoA C12 to C18 alcohol Y Rottig et al. (2016)
Atf1/Atf2 Rhodococcus opacus N.Aa N.Aa Y Alvarez et al. (2008)
PtWS Phaeodactylum tricornutum 14:0-, 16:0- and 18:0- CoA Very long chain alcohols Y Cui et al. (2018)
WS2 M. hydrocarbonoclasticus DSM

8798
Long-chain acyl-CoA isoprenoid alcohol Y Holtzapple and

Schmidt-Dannert, (2007)

aN.A.: not available.
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corresponding mutation of Ac1 (Ac1-G355I), also known as
AtfA, resulted in a similar shift in the substrate profile. The
same research group also engineered Ma1 at residues 356 and
405, and found that substitutions of L356A, L356F, L356V, and
M405W showed increased selectivity to ethanol, and substitution
of M405F showed increased selectivity to isoamyl alcohol. The
evolved enzymes may provide the potential to improve the yield
of FAEEs or branched alcohol-based esters (Barney et al., 2015).

Later, Zhang et al. (2021) heterogeneously expressed AtfA-
G355I in R. toruloides, and confirmed that the engineered enzyme
increased FAEE production by 20% compared with the wild type
AtfA. In parallel, based on two predicted transmembrane
domains, Kawelke et al. identified and demonstrated an
AWAT2 N36R variant of mouse AWAT2, which led to higher
efficiency toward very long-chain acyl-CoA than the wild type
(Kawelke and Feussner, 2015). Recent advances in computational
techniques have greatly facilitated the process of enzyme
engineering that can be learned for future WS engineering.
For example, the quantum mechanics-cluster approach is a
popular technique for elucidating the enzymatic reaction
mechanisms (Himo, 2017); Caver Web is a commonly used
tool for identification of access pathway and analysis of ligand
transport (Stourac et al., 2019); SoluProt (Hon et al., 2021) and
DeepSol (Khurana et al., 2018) are widely used tools for
predicting protein solubility. Virtual screening is an ideal tool
to assess which proteins amongst a library of variants can better
accommodate and catalyze a given substrate of interest (Zhang
et al., 2019).

Although there are some successful rational modifications of
WS, efficiency was still hindered by limited structural
information. In 2018, Petronikolou et al. reported the first
structure of the WS/DGAT superfamily the MaWS1 from M.
aquaeolei VT8 (Petronikolou and Nair, 2018). Guided by the
crystal structure, a mutant MaWS1-A144V was generated with
∼3 times more efficiency toward a shorter acyl-CoA (C6-CoA).
This work provided guidance for further engineering studies.

CHALLENGES AND OPPORTUNITIES

So far, microbial production of fatty acid alkyl esters has been
considered a promising alternative and sustainable source that is
widely used in industry in solvents, plasticizers, biodiesel,
coatings, and fuel additives. On the other hand, the metabolic
engineering strategies may direct the production of the ester with
tailored chain length, which might otherwise require complex
processes through chemical methods. Nevertheless, the
production of bio-esters through microbial fermentation still
faces the following challenges.

1) The unbalanced carbon flux between alcohol and fatty acyl-
CoA is one of the main problems in bio-ester production. For
example, in S. cerevisiae, the FAEE production was limited by
the supply of fatty acid precursors (Shi et al., 2012). However,
when adding exogenous fatty acid, the production of FAEE
was greatly improved (Yu et al., 2012). To date, efforts have
been made to enhance the equilibrium of carbon flux between

alcohol and fatty acyl-CoA substrates. However, most of the
metabolic engineering strategies were based on static control
(Shi et al., 2012; Thompson and Trinh, 2014; Valle-Rodriguez
et al., 2014; Eriksen et al., 2015; de Jong et al., 2015). Further
improvement in production calls for more efficient
approaches that could intelligently control the alcohol or
fatty acid metabolism. A prominent study constructed
FAEE cell factory by employing an acyl-CoA dynamic
sensor-regulator system (DSRS) in E. coli. The introduced
feedback reduced toxic ethanol accumulation and enhanced
the stability of the recombinant strain, thereby improving the
FAEE production by 3-fold (Zhang et al., 2012). Later,
Dabirian et al. (2019) established a fatty acyl-CoA sensor
based on FadR in S. cerevisiae, identified novel targets
enhancing acyl-CoA levels. These sensor-based studies
provided perspectives in controlling substrate pools for
further constructing ester cell factories. In addition, the
recent development on constructing synthetic consortia
systems by distributing complex pathways in different cells
may provide an efficient strategy to solve the problem of an
unbalanced carbon flow. Yu et al. (2020) constructed a
synthetic consortium by an ethanol-producing yeast S.
cerevisiae and an oleaginous yeast Y. lipolytica, and this
synthetic consortium produced 4.8 mg/L FAEE. The
coculture system is expected to be further optimized to
result in a significant improvement in FAEE production.

2) The low specificity of WS is another challenge to the
production of tailored bio-esters, especially fatty acid short-
chain esters. As shown in Table 1, the reported WSs have a
low affinity towards short-chain alcohols. Gao et al. (2018),
Zhang et al. (2021) reported ethanol concentration as a key
factor for FAEE production, and the optimum concentration
of exogenous ethanol for FAEE production was 5% (∼40 g/L).
So far, several enzyme engineering strategies have been
employed to increase selectivity towards short-chain
alcohols; however, the effect was not significant (Rottig
et al., 2015). Therefore, extensive research on the rational
design and engineering of WS is urgently required to further
improve activity, stability, and specificity. The fast-growing
artificial intelligence algorithms such as Alphafold may
provide higher predictability for enzyme engineering
(Jumper et al., 2021). In addition, more WSs with different
properties are expected to be discovered for tailored bio-esters
production.

3) The lack of a high throughput screening method limited
enzyme discovery and engineering, and made cell factory
construction more tedious. Lobs et al. developed a method
for high throughput analysis of microbial short-chain volatile
ester biosynthesis through a hydroxylamine/ferric iron
reaction (Lobs et al., 2016). The assay was depended on the
reaction of esters with hydroxylamine, which produced
hydroxamic acid. When ferric iron was added, it reacted
with hydroxamic acid, and an iron complex with strong
absorbance between 500 and 550 nm was detected. Using
the same method, Lee et al. developed a high throughput
screening approach for alcohol acyltransferases (AATs)
identification. This platform could investigate the alcohol
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substrate specificity of AATs and recognize the beneficial
mutations in the engineered AATs for enhanced ester
synthesis (Lee et al., 2021). Lin et al. developed a novel
assay method for AATase activity. The method relied on
the conversion of acyl-CoA to CoA-SH by AATase, and a
subsequent reaction produced CoA-SH to succinyl-CoA by
α-KGDH. The coupled α-KGDH reaction reduced NAD+ to
NADH, thus enabling the spectrophotometric measurement
of AATase activity (Lin et al., 2016). Santin et al. (2019)
demonstrated a Nile red-based high throughput screening
method, which provided an evolution platform for WS/
DGAT-like enzymes. Guo et al. (2016) demonstrated a
high throughput single cell screening method for lipid
production with fluorescence-assisted optofluidic time-
stretch microscopy. These studies may provide guidance
for the high throughput screening of WSs and ester cell
factories. Meanwhile, the identification of the mutations
from the high throughput screening will clarify new
mechanisms that contribute to the engineering of enzymes.

4) Due to the complexity of metabolic and regulatory networks
of the microbial chassis, currently it is difficult to obtain
robust phenotypes through rational design and gene
perturbation strategies described above. In contrast, the
development of adaptive laboratory evolution (ALE) has
greatly accelerated the efficiency of chassis engineering, and
has been widely used in improving the production of various
targeted products. Blount et al. reported an improved S.
cerevisiae strain with genetic backgrounds favorable to
diverse heterologous pathways, such as those for violacein
and penicillin biosynthesis through the in vivo SCRaMbLE
system (Blount et al., 2018). This study demonstrated the in
vivo rearrangement approach can be used as a valuable
approach for strain evolution. Yu et al. (2018) evolved
genetic mutations toward fatty acid biosynthesis through
ALE under high selection pressure, which fine-tuned the
carbon flux and restored cell growth. Li et al. (2021)
reprogrammed Escherichia coli metabolism using ALE to
establish a strain that can efficiently utilize waste cooking
oil (WCO) as the sole carbon source to produce medium-
chain α,ω-dicarboxylic acids (MCDCAs), namely, monomers
of bioplastics. Recently, several noted technologies to target
nucleotide diversification have been reported to accelerate the
ALE. e. g., Bao et al. (2018) developed a CRISPR-Cas9-and
homology-directed-repair-assisted genome-scale engineering

method named CHAnGE, which can produce a genome-wide
set of yeast mutants with single-nucleotide precision. With the
development of synthetic biology and the combination of
continuous evolution technology with artificial intelligence
technology, the metabolic engineering process will be greatly
facilitated, and the production of fatty acid-derived
biochemicals will be significantly improved.

In general, fatty acid alkyl esters have broad applications in
industries including biofuels, cosmetics, lubricants, etc.
Production of such esters through microbial fermentation
provides a sustainable route and has achieved much progress
in various yeast cells. Nevertheless, there are still many problems
to be solved. Understanding the mechanistic detail of carbon flux
distribution in microbial chassis and the catalytic mechanism of
WS is of great significance for the efficient microbial production
of such esters. In recent years, the rapid development of synthetic
biology and structural biology will provide new perspectives and
revolutions in how we build and engineer new biological systems
for human purposes, such as the production of fatty acid alkyl
esters.
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