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Abstract

Background—Carnitine Palmitoyl Transferase 1 (CPT1) is the rate-limiting enzyme governing

long-chain fatty acid entry into mitochondria. CPT1 inhibitors have been developed and exhibited

beneficial effects against type II diabetes in short-term preclinical animal studies. However, the

long-term effects of treatment remain unclear and potential non-specific effects of these CPT1

inhibitors hamper in-depth understanding of the potential molecular mechanisms involved.

Methods—We investigated the effects of restricting the activity of the muscle isoform CPT1b in

mice using heterozygous CPT1b deficient (Cpt1b+/−) and Wild Type (WT) mice fed with a High

Fat Diet (HFD) for 22 weeks. Insulin sensitivity was assessed using Glucose Tolerance Test

(GTT), insulin tolerance test and hyperinsulinemic euglycemic clamps. We also examined body

weight/composition, tissue and systemic metabolism/energetic status, lipid profile, transcript

analysis, and changes in insulin signaling pathways.

Results—We found that Cpt1b+/− mice were protected from HFD-induced insulin resistance

compared to WT littermates. Cpt1b+/− mice exhibited elevated whole body glucose disposal rate

and skeletal muscle glucose uptake. Furthermore, Cpt1b+/− skeletal muscle showed diminished ex

vivo palmitate oxidative capacity by ~40% and augmented glucose oxidation capacity by ~50%
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without overt change in whole body energy metabolism. HFD feeding Cpt1b+/− but not WT mice

exhibited well-maintained insulin signaling in skeletal muscle, heart, and liver.

Conclusion—The present study on a genetic model of CPT1b restriction supports the concept

that partial CPT1b inhibition is a potential therapeutic strategy.
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Introduction

Increased fatty acid availability and the concomitantly augmented mitochondrial fatty acid

oxidation (FAO) capacity in skeletal muscle is a common feature in insulin resistant subjects

[1,2]. Interfering with excessive fatty acid availability and oxidation hence may be a

potential therapeutic strategy. Accumulated evidence has emerged that inhibiting FAO may

sensitize insulin signaling in animals with insulin resistance [3–7] and in diabetic patients

[7–9]. Carnitine Palmitoyl Transferase 1 (CPT1) on the mitochondrial outer membrane is a

rate limiting enzyme that converts long-chain acyl CoA into long chain acylcarnitine, thus

being one of the most studied therapeutic targets for FAO inhibition.

There are three isoforms of CPT1 (a, b and c). While CPT1a is expressed ubiquitously but

most abundantly in the liver, CPT1b is expressed in skeletal muscle, heart, and adipose

tissues, and CPT1c is expressed in the brain and testes (reviewed in [10]). HFD-fed mice

show increased capacity of fatty acid oxidation in skeletal muscle homogenate and

mitochondrial respiration with concomitantly increased CPT1 activity [11]. The expression

of CPT1bis inversely related to insulin sensitivity among quartiles of metabolic syndrome

patients [12]. Repressing the capacity of fatty acid oxidation may ameliorate insulin

resistance. In supporting this hypothesis, several groups reported that CPT1 inhibitors

improve insulin resistance in relatively short-term preclinical animal studies [5–8,13,14],

even with increased intracellular lipid content. CPT1 inhibition in molecular genetic models

due to the deletion of Malonyl-CoA-Decarboxylase (MCD) shows similar effects. The MCD

null (Mcd−/−) mice are protected from HFD-induced insulin resistance by substantially

increased Malonyl-CoA-Mediated repression of CPT1, consequently decreasing fatty acid

oxidation and increasing glucose oxidation [3]. On the other hand, a 20% electroporation-

mediated transient upregulation of CPT1b in the distal hind limb muscles is sufficient to

improve HFD-induced insulin resistance in rats via attenuating triacylglycerol content, the

membrane-to-cytosolic ratio of diacylglycerol, and protein kinase Cθactivation [15].

Therefore, further studies on the in vivo roles of specific CPT1 isoform using the more

specific gene manipulating approach are essential to resolve these seemingly contradictory

observations. The goal of the present study is to elucidate the effects of restricting fatty acid

oxidation on diet-induced insulin resistancein the heterozygous Cpt1b knockout mice. This

is the first study using a preclinical mouse model with Cpt1b-specific knockdown to

investigate the long-term effects of CPT1b repression on HFD-induced insulin resistance

and the underlying metabolic mechanisms.
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Materials and Methods

Animals

The heterozygous Cpt1b+/− knockout mice [16] and wild-type (WT) littermates in C57BL/6J

background were used. While the homozygous CPT1b knockout is lethal, Cpt1b+/− mice

show no overt abnormal phenotype and whole body metabolic changes [16]. All mice were

kept on 12-hour/12-hour light/dark cycle (light on at 06:00 hours) at 22.0 ±1.0°C and had ad

libitum access to water and standard rodent diet (Harlan Laboratories 7017 NIH-31

Mouse/Rat Sterilizable Diet, 14% kcal% fat). Mice (4 – 5 week old, male) of high fat diet

(HFD) feeding groups were given ad libitumaccess to HFD (60% kcal% fat) (Research

DIETS D12492) and water. Body weights were recorded every other week. All experimental

procedures were conducted in accordance with the Guide for Care and Use of Laboratory

Animals and were approved by the Institutional Animal Care and Use Committee of the

University of Alabama at Birmingham (UAB).

Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT)

Mice were fasted overnight for OGTT (18:00 – 08:00) or 5 hours for ITT (08:00–13:00).

Blood glucose levels were measured on blood samples from tail tip-snip using Contour

glucometer (Bayer) after glucose administration (gavage 1.5 mg/kg b.w.) or insulin injection

(Humulin® R, Eli Lilly & Co, i.p. 0.5 U/kg b.w.).

Hyperinsulinemiceuglycemic clamp

The procedures of hyperinsulinemiceuglycemic clamp (insulin clamp) in mice were adapted

from Dr. Pessin’s group[17] with minor modifications based on reports from other groups

[18,19]. Briefly, mice were anesthetized by Isoflurane via a Vaporizer-MiniVentmouse

ventilator system (HUGO SACHS ELECTRONIK, Harvard Apparatus GmbH, Hugstetten,

Germany). A catheter was surgically implanted into the right jugular vein and threaded

under the dorsal skin of mice. Three days after surgery, the mouse was fasted 5 hrs (08:00–

13:00) and then placed in a rat-size restrainer with its tail taped. The catheter was connected

to a CMA 402 syringe pump (CMA Microdialysis, Stockholm, Sweden). [6-3H]-glucose

was infused at 0.5 μCi/min for 2 hrs without insulin and then infused at 1μCi/min with

insulin (Humulin R, Eli Lilly 2.5 mU kg−1 min−1) for 2 hrs, by which time the blood glucose

was maintained at 7.8 – 8.9 mmol/L by adjusting 20% glucose infusion rate in the mouse

under the conscious condition. 10 μCi 2-[14C]-deoxy-D-glucose was infused 40 min before

the end of the 120 min euglycemic clamp. The blood glucose level was measured from tail

tip snipped blood samples using a Contour glucometer (Bayer). At the end of the clamp

study, tissues were harvested and snapped frozen in liquid nitrogen after the mouse was

euthanized. The plasma glucose level was measured using an Analox GM7 Micro-Stat

Analyzer (Analox Instruments, London, UK). The specific activity of plasma glucose, the

glucose infusion rate (GIR), the whole body glucose disposal rate (Gd), and the tissue-

specific glucose uptake were measured and calculated as previously described [20].
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Serum analysis

Tissues and sera were collected from sacrificed mice after overnight fasting (18:00 – 08:00).

Insulin level was measured using a RIA kits (Millipore Co. SRI-13K, ML-82K). The content

of Non-Esterified Fatty Acids (NEFA) was measured using a NEFA-HR Kit (Wako),

respectively.

Lipid measurements

Frozen gastrocnemius muscles were pulverized using a pulverizor (Bio Spec Products Inc.)

in liquid nitrogen and weighed in small tubes as previously described [21]. For the non-

esterified fatty acids (NEFA), lipids were extracted using the Bligh & Dyer method [22].

NEFA and TAG were measured using a NEFA-HR Kit (Wako) and a Triglyceride

Quantification Kit (BioVision K622-100). For the acylcarnitine assay, 6 volume of 80 %

acetonitrile was added to pulverized tissue weight (about 50 mg). Tissue mixtures were

sonicated 10 times, centrifuged at 12,000 rpm 10 min at 4 °C, and supernatants were

transferred to new tubes. The supernatants were dried under a stream of nitrogen at 40 °C

and resuspended in 100 μl of 50% acetonitrile. The acylcarnitine content was measured by

using Electrospray Ionization Tandem Mass Spectrometry [23].

Ex vivo oxidation assay

Intact muscle oxidation assay was performed as previously described [24]. Extensor

digitorumlongus (EDL) muscles were excised from euthanized mice and incubated with 700

μl of Krebs-Ringer Phosphate buffer containing 0.1 μCi/ml of BSA-conjugated [14C]-

palmitateor [14C]-glucose in sealed 14 ml tubes with center wells containing 1N NaOH at

37°C for 1 hour with 200 rpm shaking. After incubation, 400 μl of 3.5 M HClO4 was

injected into the media and incubated at 50°C for 3 hours to capture oxidized substrates to

NaOH and the radioactivity was measured by scintillation counter [24].

Oxidation assays in isolated mitochondria

The procedures of mitochondrial oxidation assay were adapted from Dr. Kove’s group as

previously described [3]. Gastrocnemius muscle (one hind limb from one mouse) was

homogenized by using hand-held drill with Potter-Elvehjem homogenizer. Supernatants

were kept following a low speed (1,000 xg) centrifugation, and subsequently centrifuged

again at 12,000 xg to isolate mitochondria. Mitochondrial protein concentration was

measured by Lowry method and 100 μg of mitochondria was incubated with 0.1 μCi/ml of

[14C]-palmitate including reaction buffer for 2 hrs. The oxidation reaction was stopped by

injecting perchloric acid. Oxidized substrates were metabolized as 14CO2 and captured by

NaOH in the central well and the radioactivity was measured by scintillation counter.

Incompletely oxidized substrates (acid soluble metabolites-ASM) remained in the reaction

mixture were centrifuged. Then the supernatants were used to detect 14C by liquid

scintillation counter.

Real-time qPCR

Total RNA extraction and cDNA synthesis were done by using RNeasy® Mini kit

(QIAGEN), Advantage® RT-for PCR kit (Clontech), Power SYBR® Green PCR master
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mix. The real-time PCR was performed by using Step One Real-Time PCR System (Applied

Biosystems) with standard curve for the transcript quantification. The primer sequences are

listed in Supplementary Table 1.

Western blot analysis

Frozen gastrocnemius muscles, liver, and hearts were homogenized using a pestle pellet

mini homogenizer in homogenization buffer (50 mM TrisHCl pH 6.8, 1% SDS, 2.5 mM

DTT, 10% glycerol). The protein concentration of supernatant was measured by using

Modified Lowry Protein Assay Kit (Pierce #23240). Primary antibodies were purchased

from Cell Signaling; pIRS1 Ser302 (#2491), IRS1 (#2390), pAKT Ser473 (#9271), AKT

(#9272), pERK1/2 (p44/42 MAPK) Thr202/Tyr204 (#9101), and ERK1/2 (#9102). HRP-

conjugated secondary antibodies were from Santa Cruz Biotechnology. Western blot images

were taken and quantified by using Kodak Image Station 4000R (Molecular Imaging

System, Carestream Health Inc., Rochester, NY, USA).

Body composition analysis

Fat and lean mass were measured in vivo using a quantitative magnetic resonance imaging

system (QMR, EchoMRI™ 3-in-1, Echo Medical System, Houston, TX, USA) at UAB

Small Animal Physiology Core as previously described and validated [25].

Comprehensive Lab Animal Monitoring System (CLAMS) analysis

Respiration rate, food intake, energy expenditure, and physical activity were accurately

quantified as previously described using the CLAMS (Columbus Instruments Inc., OH,

USA) [26]. Mice were individually kept in CLAMS chambers with ad libitum access to food

and water for 6 days and the data sets for the last 3 days were averaged for the analysis.

Respiratory exchange ratio (RER) was calculated as CO2 generation/O2 consumption.

Energy expenditure was expressed as (kcal/hr).

Indirect calorimetry analysis

Energy expenditure, RER, and activity were also measured with another set of mice using an

8-cage indirect calorimetry system (CaloSys, TSE Systems, Bad Homburg, Germany) as

previously described [27]. Mice were individually kept in airtight plastic cages with ad

libitum access to food and water and a continuous flow of air was maintained through all

cages. Mice were acclimated to the cages for 48 hours prior to the measurement period of 22

hours. Total energy expenditure was calculated over the 22 hours, and presented as per 24-

hours. Resting energy expenditure was calculated as the average of the 3 lowest 18 minute

periods during the measurement.

Rectal temperature measurement

Body temperatures of mice were measured using rectal probe provided from

Echocardiogram (Vevo770, Visualsonics Inc., Toronto, Ontario, Canada) under isoflurane-

induced anesthesia at around 13:00.
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Statistical analysis

GraphPad Prism5 software was used to conduct Two-tailed Student’s t-test and One-Way

ANOVA with Tukey post hoc test. The ANCOVA was done using SAS9.1 software.

Differences between groups were regarded significant at p<0.05 probability level. Data are

expressed as means ± SE.

Results

Mice with CPT1b deficiency are protected against HFD-induced insulin resistance

We investigated whether partial CPT1b deficiency determines insulin sensitivity in mice

under CHD and HFD feeding conditions using OGTT and ITT. At baseline (CHD 4 weeks),

CHD-fed Cpt1b+/− and WT littermates showed no difference in OGTT and ITT (Figure 1A

and 1B). After 8 weeks of HFD feeding, Cpt1b+/− mice showed attenuated blood glucose

levels at 60 minutes time point during OGTT (Figure 1C). The blood glucose levels during

ITT were not changed at the 30 minute time point, but were lower in Cpt1b+/− than in WT

mice at 60 and 120 minute time points (Figure 1D). At 22 weeks after HFD feeding,

Cpt1b+/− mice showed substantially improved glucose tolerance compared with WT

littermates. The area under curve (AUC) of OGTT in Cpt1b+/− mice was decreased about 45

% compared with WT (Figure 1E). The blood glucose levels during ITT were not changed at

the 30 minute time point but lower in Cpt1b+/− than in WT mice at the later time points

(Figure 1F). These results indicate that CPT1b deficiency improves glucose and insulin

tolerance under a HFD condition. Cpt1b+/− mice showed no difference in ITT and OGTT

until 32 weeks of their age (Supplemental Figure 1) suggesting that CPT1b deficiency does

not alter insulin sensitivity and glucose tolerance under a normal diet condition.

To gain insights into the tissue-specific insulin sensitivities, we further assessed HFD

feeding mice using the hyperinsulinemiceuglycemic clamp at 22 weeks after HFD feeding.

A much higher glucose infusion rate (GIR) in Cpt1b+/− mice than in WT mice was required

to maintain blood glucose levels (7.8 – 8.9 mmol/L) in response to the constant insulin

infusion (Figure 1G). Consistently, whole body glucose disposal rate (Gd) was higher in

Cpt1b+/− than in WT mice (Figure 1H), indicating improved systemic insulin sensitivity in

the Cpt1b+/−mice compared with WT mice. Insulin-stimulated glucose uptake was increased

by about 2-fold in Cpt1b+/− relative to WT skeletal muscle (Figure 1), whereas there was no

difference between two groups in Gonadal White Adipose Tissue (GWAT)(Figure 1H). The

plasma glucose level was significantly lower in Cpt1b+/− mice than in WT littermates at 8

weeks and 22 weeks of HFD feeding. No changes could be detected in plasma NEFA

throughout the observation period in both groups. On the other hand, plasma insulin

(p<0.01) and leptin levels surged after 22 weeks of HFD in WT from 8 weeks, while insulin

levels in Cpt1b+/− mice were substantially lower than their WT controls at 22 weeks. The

plasma insulin level during insulin clamp was not different between two groups, while

plasma NEFA level was substantially decreased in Cpt1b+/− mice (Table 1).

Kim et al. Page 6

J Diabetes Metab. Author manuscript; available in PMC 2014 October 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



CPT1b deficiency in mice leads to repressed fatty acid oxidation and enhanced glucose
oxidation in the skeletal muscle under a HFD condition

We further investigated whether changes in substrate metabolism correlated with different

insulin sensitivity in Cpt1b+/− vs. WT mice. CPT1b deficient muscle did not show decreased

palmitate oxidation capacity compared to WT muscle under a CHD condition (Figure 2A).

The rate of ex vivo palmitate oxidation in skeletal muscle of Cpt1b+/− mice after 22 weeks of

HFD feeding was 40 % lower than in WT mice (p<0.05) (Figure 2A), whereas the rate of ex

vivo glucose oxidation was 50 % higher in Cpt1b+/− than in WT muscles (Figure 2B). Other

tissues such as heart, brown adipose tissue, and liver showed no difference in the ex vivo

oxidation capacity between two groups (data not shown) under a HFD condition. The

palmitate oxidation rate in isolated mitochondria was also decreased in CPT1b+/− compared

with WT muscle (Figure 2C) with no change in incomplete oxidation (Figure 2D). To assess

whether the decreased fatty acid oxidation capacity would result in intramyocellular lipid

accumulation, skeletal muscle lipid contents were assessed after 22 weeks of HFD feeding.

There was no difference in TAG and NEFA levels between Cpt1b+/− and WT muscle

(Figure 2E and 2F). Notably, acylcarnitine profile in skeletal muscle of HFD-feeding

Cpt1b+/− mice was also not different from WT (Figure 2G). In the transcript analysis, Cpt2

(p<0.01), Cpt1a, Acs (acyl-CoA synthase long-chain family member 1), Dgat

(diacylglycerol O-acyltransferase 2), Gpam (glycerol-3-phosphate acyltransferase,

mitochondrial), and Mlycd (malonyl-CoA decarboxylase) were significantly decreased in

Cpt1b+/− muscle (P<0.05) (Supplemental Figure 2) supporting that lipid was not

accumulated in Cpt1b+/− muscle. Therefore, the above results implicate that modest

repression of FAO in skeletal muscle could increase glucose oxidation without overt

intramuscular lipid accumulation.

Insulin signal transduction is well maintained in Cpt1b+/− mice skeletal muscles

To confirm the improved insulin sensitivity of Cpt1b+/− mice under a long-term HFD

condition on insulin signaling, we subjected tissue samples from

hyperinsulinemiceuglycemic clamp study to Western blot analysis of key insulin signaling

proteins. The phosphorylation of IRS1 at Ser302 was substantially lower in Cpt1b+/− than in

WT muscles (p<0.01) (Figure 3A), but there was no difference in the heart (Figure 3B). No

signals of phosphorylation of IRS1 at Ser302 were detected in liver and GWAT (data not

shown). The phosphorylation of AKT at Ser473 was substantially elevated in muscle

(p<0.01) (Figure 3A), heart (p<0.01) (Figure 3B), and liver (p<0.01) (Figure 3C), but

decreased in GWAT (Figure 3D) (p<0.05) of Cpt1b+/−mice. The phosphorylation of

ERK1/2 at Thr202/Tyr204 was maintained in muscle (p<0.05) (Figure 3A), liver (p<0.01)

(Figure 3C), but had no difference in heart (Figure 3B) and decreased in GWAT (Figure 3D)

of Cpt1b+/− mice. These results demonstrate that Cpt1b+/− mice are protected from HFD-

induced impaired insulin signaling in muscle, heart, and liver, but not in GWAT.

Mice with CPT1b deficiency are smaller than control mice subjected to HFD

We found no difference in body weight and body composition between Cpt1b+/− and WT

mice under a CHD condition throughout life-time (data not shown). However, Cpt1b+/−mice

showed a smaller increase of body weight than WT mice after 4 weeks of HFD feeding
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(Figure 4A and 4B). At 8 weeks after HFD feeding, Cpt1b+/− mice exhibited 50 % less body

fat mass and 14% less lean mass than WT mice (Figure 4C). However, ANCOVA analysis

revealed that these changes were proportional to the total body mass, suggesting that the

improved insulin sensitivity of Cpt1b+/− mice is independent of changes in body fat mass.

CPT1b deficiency does not influence whole body energy balance in response to HFD
feeding

We next determined whether the altered substrate oxidation capacity of skeletal muscle in

Cpt1b+/− mice under a HFD condition affects the whole body energy balance. We measured

respiratory exchange rate (RER), energy expenditure, activity, and food intake using

CLAMS at 22 weeks after HFD feeding. Interestingly, none of these parameters were

different between two groups (Figure 5A–5D). We confirmed the RER assessment of

CLAMS analysis by using indirect calorimeter with another set of mice at 22 weeks after

HFD feeding. Cpt1b+/− mice showed no difference in energy expenditure (Figure 5E) with

very subtle decreased RER (Figure 5F), accompanied with weight loss compared to WT

during the 2 day measurement period (Figure 5G). Consistently, the HFD-fed WT, but not

Cpt1b+/− mice, showed higher rectal temperature (Figure 5H), suggesting that the whole

body energy metabolism of Cpt1b+/− mice was not substantially altered. Analysis of fecal

energy content revealed no differences between the two groups (data not shown). Therefore,

reduced fatty acid oxidation and increased glucose oxidation in skeletal muscle appear to be

in a balanced state that does not substantially alter whole body metabolism and energy

balance in mice subjected to HFD.

Discussion

In the current study, we provide evidence supporting the beneficial effects of CPT1b

ablation related fatty acid oxidation restriction against insulin resistance induced by HFD.

We investigated a genetic mouse model with Cpt1b+/− deficiency subjected to 22 weeks of

HFD feeding. We illustrate that CPT1b mediated fatty acid oxidation in skeletal muscle is a

crucial site for the maintenance of insulin sensitivity via adjusting the balance of local fatty

acid and glucose oxidation rates.

Pharmacological CPT1 inhibition has been suggested as an effective therapy to improve

insulin sensitivity in type 2 diabetes patients for nearly two decades [28–30]. A CPT1

inhibitor, etomoxir, improves glucose homeostasis in patients by repressing fatty acid

oxidation and elevating glucose oxidation, presumably by the Randle cycle mechanism,

despite the subsequent intramyocellular lipid accumulation [7]. Nevertheless, opposite

results have also been reported, in which etomoxir is associated with exacerbated insulin

resistance with concomitantly increased intracellular lipid accumulation in rodents [31].

Oxfenicine, another CPT1 inhibitor, increases glucose oxidation in HFD-fed mice with

increased respiratory exchange ratio (RER), but no intramyocellular lipid accumulation [4].

The inconsistent outcomes from the CPT1 inhibitor studies are most likely derived from the

different experimental approaches and the different degrees/subtype specificities of these

CPT1 inhibitors. While pharmacological studies provide highly clinical relevant insights

into the effects of a specific CPT1 inhibitor, this approach does not target specific CPT1
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isoforms with inherent non-CPT1 inhibition effects (e.g., etomoxir has been shown to be a

PPARα activator [32]). Moreover, most of previous etomoxir studies were performed with

high dosages and relatively short-term assessments on the acute effects of etomoxir, which

mostly acts on CPT1a, the liver isoform of CPT1 [33]. Oxfenicine, which inhibits more

CPT1b than CPT1a [34], seems to be a promising anti-diabetic drug, since it improves

insulin sensitivity without intramuscular lipid accumulation in mice [4]. It remains

challenging to exclude the potential off-target effects in pharmacological studies. Additional

studies on animal models with genetic manipulations should help overcome the related

difficulties. Our current study using the genetic mouse model with CPT1b deficiency

provides specific insights and clarifies the effect of CPT1b deficiency on HFD-induced

insulin resistance.

Despite the encouraging support of CPT1b inhibition as a potential therapy for insulin

resistance as reported here, many other studies using various CPT1 inhibitors have shown

adverse effects [31,35] due to intramyocellular fatty acid-related metabolites (e.g., DAGs,

acylcarnitines, ceramides) accumulation. In this study we prove that repressed fatty acid

oxidation due to heterozygous CPT1b deficiency in skeletal muscle did not lead to

accumulation of lipid metabolites, which is consistent with the Oxfenicine study [34].

Previous study showed increased fatty acid oxidation in ex vivo muscle tissues of HFD-fed

WT mice [11]. Zucker diabetic fatty (ZDF) rats showed increased fatty acid oxidation-

related gene expression in their muscle with increased muscle acylcarnitine accumulation

[3]. In contrast, a human study showed that palmitate oxidation was significantly decreased,

but only in extremely obese patients [36]. Additional studies also demonstrated opposite

results either with reduced or elevated fatty acid oxidation in obese human skeletal muscle

[37,38]. However, the current study did not detect substantial change at least in the EDL

muscle before and after HFD. These different results may be derived from many factors,

such as the degrees of obesity and the measurement methods. Decreased palmitate oxidation

of the HFD-fed Mcd−/− mice improved insulin sensitivity with reduced incomplete fatty acid

oxidation [3], supporting the hypothesis that increased incomplete fatty acid oxidation is one

of the potential mechanisms of HFD-induced insulin resistance. Unexpectedly, our

experiment using the same protocol did not detected any difference of incomplete fatty acid

oxidation in isolated mitochondria between Cpt1b+/− and WT muscle under a HFD

condition. While the reasons for this discrepancy remain incompletely understood, we

suspect that blocking the entry of long chain fatty acids into the mitochondria of Cpt1b+/−

muscle may not be robust enough to cause incomplete fatty acid oxidation, yet is sufficient

to repress fatty acid oxidation and upregulating glucose oxidation in skeletal muscle.

Therefore, it is probable that partial CPT1b repression protects mice from HFD-induced

insulin resistance by attenuating HFD-induced upregulation of fatty acid oxidation and

upregulating glucose oxidation in skeletal muscle. Since it has been extensively proposed

that intramyocellular lipid accumulation may be one of the main causes of insulin resistance,

a potential detrimental effect after prolonged intramyocellular lipid accumulation is still

likely. It is possible that the suppressed FAO in Cpt1b+/− mice did not reach the threshold

that leads to the mismatch of lipid supply and degradation and subsequent intramyocellular

lipid accumulation.
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The insulin sensitizing effect of CPT1b deficiency is also evident by the remarkable

difference in the insulin-stimulated phosphorylation of Ser302 of insulin receptor substrate 1

(IRS1) in the skeletal muscle. Ser302 in rat/mouse IRS-1 (corresponding to Ser307 of

human IRS-1) is one of the molecular mechanisms proposed as an indicator of cellular

energy status underpinning the development of insulin resistance [39,40]. Transgenic mice

with muscle-specific IRS-1 serine to alanine are protected from fat-induced insulin

resistance in skeletal muscle [41]. Since the phosphorylation of IRS1 at Ser302 is

substantially induced by hyperinsulinemia [40], the lower insulin level (Table 1) may also

contribute to the less phosphorylation of IRS1 at Ser302 in Cpt1b+/− mouse muscle. The

change in IRS1 phosphorylation could only be detected in skeletal muscle but not in other

tissues, supporting that skeletal muscle is the main tissue responsible for the improved

insulin sensitivity in Cpt1b+/− mice under a HFD condition. Therefore, our results support

that CPT1b repression sensitizes insulin action via increased glucose oxidation and insulin

signaling in skeletal muscle. It is not clear why the insulin signal transduction in GWAT was

suppressed at this point, but it appears that was not sufficient to offset the insulin sensitizing

effect of partial CPT1b repression in skeletal muscle.

The insulin sensitizing effect of partial CPT1b deficiency appears to be unrelated to a

decrease of relative body fat, since the fat mass was not correlated with mouse genotype

assessed by ANCOVA. Despite the matched fat/lean mass ratio between the Cpt1b+/− and

WT mice, serum level of leptin was markedly higher in WT than in Cpt1b+/− mice (Table 1).

It is plausible that the greater total body fat in the HFD-fed WT mice may contribute to the

higher serum level of leptin. It is intriguing that the Cpt1b+/− mice showed a slower growth

rate than their WT counterparts in response to HFD with proportional decreases of fat and

lean mass. Albeit the exact mechanism underpinning this phenomenon is not clear, it is

plausible that a potentially less energy production rate from glucose oxidation may play

certain roles. Because of the lack of neurohumoral responses, the ex vivo oxidation assays

using isolated muscle, isolated mitochondria, and homogenate may not reflect what exactly

happens under the in vivo condition. This may explain why the CPT1b deficient mice

showed repressed fatty acid oxidation and increased glucose oxidation in skeletal muscle,

yet without major shift in whole body metabolism [42,43].

Interestingly, the effects of CPT1 deficiencies on growth and insulin resistance are subtype-

dependent. One study found that Cpt1c+/− mice are smaller than WT mice even under a

CHD condition and they are susceptible to insulin resistance, obesity, and hepatosteatosis

under a HFD condition [44]. Previously we reported that the Cpt1a+/− mice were resistant

against HFD-induced insulin resistance, but showed hepatosteatosis with increased hepatic

CPT1b expression [45]. We also found that Cpt1b+/− mice showed 40% decreased CPT1

activity in muscle and there were no significant changes in body weight, tissue histology,

serum free fatty acid [16], and normal cardiac function and heart weight compared to WT

littermates [46]. In this study we found that Cpt1b+/− mice showed no difference in glucose

and insulin tolerance under a CHD condition at least up to 32 weeks of age. Insulin

sensitivity of Cpt1b+/− mice is well maintained under a HFD condition. Therefore, it appears

that CPT1b is a better specific CPT1 target for the treatment of insulin resistance.
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Taken together, the current investigation confirmed the beneficial effects of CPT1b

repression on diet-induced insulin resistance. Further studies will be required to identify

CPT1b-specific inhibitors, and to confirm the effectiveness and safety of prolonged

inhibition of CPT1b in animals and in patients with insulin resistance and type II diabetes.
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Figure 1. Cpt1b+/− mice are insulin sensitive under a HFD condition
Insulin sensitivity was assessed by OGTT, ITT, and Insulin clamp study at different time

points. (A) OGTT in mice with 8 weeks of HFD. (B) ITT in mice with 8 weeks of HFD. (C)

OGTT in mice with 22 weeks of HFD. (D) ITT in mice with 22 weeks of HFD. Bar graphs

are the area under curve (AUC) of OGTT calculated from the original graph. (E) Glucose

infusion rate (GIR) during last 40 minutes of insulin-stimulated condition in mice with 22

weeks of HFD. (F) Whole body glucose disposal rate (Gd) in mice with 22 weeks of HFD.

(G) Glucose uptake into gastrocnemius muscle in mice with 22 weeks of HFD. (H) Glucose

uptake into GWAT in mice with 22 weeks of HFD. n=4–6, *p<0.05, **p<0.01, ***p<0.001.
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Figure 2. CPT1b deficiency leads to suppressed fatty acid oxidation and increased glucose
oxidation without lipid accumulation in the skeletal muscle
Substrate oxidation rate and lipid contents in the skeletal muscle of mice were assessed after

22 weeks of HFD feeding. (A) Ex vivo [14C]-palmitate oxidation in EDL muscle. (B) Ex

vivo [14C]-D-glucose oxidation in EDL muscle. (C) [14C]-palmitate complete oxidation in

isolated mitochondria from gastrocnemius muscle. (D) [14C]-palmitate incomplete oxidation

in isolated mitochondria from gastrocnemius muscle. (E) Triglyceride content in

gastrocnemius muscle. (F) Non-esterified free fatty acid (NEFA) content in gastrocnemius

muscle. (G) Acylcarnitine content in gastrocnemius muscle. n=5–6, *p<0.05, **p<0.01,

***p<0.001.
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Figure 3. Insulin signaling is well maintained in the skeletal muscle of Cpt1b+/− mice
Tissue samples from Insulin clamp study after 22 weeks of HFD feeding were subjected to

Western blot analysis for the phosphorylation of Ser 302 IRS1, Ser473 AKT, Thr 202/Tyr

204 ERK1/2 and total protein of each target. (A) Gastrocnemius muscle. (B) Heart. (C)

Liver. (D) GWAT. n=4, *p<0.05, **p<0.01.
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Figure 4. Cpt1b+/− mice gain less body weight under a HFD condition
(A) Body weight trend in HFD. (B) Body composition (QMR) at 2 weeks of HFD feeding.

(C) Body composition (QMR) after 8 weeks of HFD feeding. n=6, *p<0.05, ***p<0.001.
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Figure 5. CPT1b deficiency does not alter whole body energy balance under a HFD condition
In vivo whole body metabolism was assessed at 22 weeks of HFD feeding using

comprehensive Lab Animal Monitoring System (CLAMS) with the average of the last 3

days (A–D), n=5–6. (A) Respiratory exchange rate (RER). (B) Energy expenditure. (C)

Activity. (D) Food intake. Indirect calorimeter analysis (E–G), n=3–5. (E) Energy

expenditure. (F) Respiratory exchange rate (RER). (G) Correlation between body weights

change and RER. (H) Rectal temperature. n=4–5, *p<0.05.
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