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Abstract

Members of the bacterial phylum Acidobacteria are widespread in soils and sediments worldwide, and are abundant in
many soils. Acidobacteria are challenging to culture in vitro, and many basic features of their biology and functional roles in
the soil have not been determined. Candidatus Solibacter usitatus strain Ellin6076 has a 9.9 Mb genome that is
approximately 2–5 times as large as the other sequenced Acidobacteria genomes. Bacterial genome sizes typically range
from 0.5 to 10 Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary
processes. Our comparative genome analyses indicate that the Ellin6076 large genome has arisen by horizontal gene
transfer via ancient bacteriophage and/or plasmid-mediated transduction, and widespread small-scale gene duplications,
resulting in an increased number of paralogs. Low amino acid sequence identities among functional group members, and
lack of conserved gene order and orientation in regions containing similar groups of paralogs, suggest that most of the
paralogs are not the result of recent duplication events. The genome sizes of additional cultured Acidobacteria strains were
estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum.
Members of subdivision 3 had larger genomes than those of subdivision 1, but none were as large as the Ellin6076 genome.
The large genome of Ellin6076 may not be typical of the phylum, and encodes traits that could provide a selective
metabolic, defensive and regulatory advantage in the soil environment.
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Introduction

Soils contain an abundant and diverse array of bacteria that are

critical for plant life and nutrient cycling in terrestrial ecosystems.

Acidobacteria, one of the most widespread and abundant phyla found in

soils and sediments worldwide [1,2,3], comprise up to 50% of the

rRNA gene sequences from bacterial clone libraries in some soils [4].

They have also been found in a variety of other environments,

including aquatic [5,6], extreme [7,8], and polluted environments

[9], and wastewater systems [10,11]. Their phylogenetic diversity,

common occurrence and widespread abundance suggest that

Acidobacteria may be important contributors in a variety of ecosystems.

The Acidobacteria phylum is defined by a large collection of 16S

rRNA gene sequences (.8,000 in the ARB_SILVA Database

(August 2011) [12]) that fall into 26 major subdivisions [9].

However members of this phylum have been difficult to isolate in

vitro. Cultured isolates are slow growing and difficult to maintain,

which has hampered their biological and physiological character-

ization [8,13,14,15,16,17,18,19,20,21]. Despite their widespread

occurrence in nature, much about Acidobacteria biology and

potential ecological roles in soil remain unknown.

Comparative analysis of three sequenced Acidobacteria genomes

from subdivisions 1 and 3 revealed that the genome of the

subdivision 3 member, Candidatus Solibacter usitatus Ellin6076

(hereafter termed Ellin6076), is 9.9 Mb in size whereas the

genomes of subdivision 1 strains, Candidatus Korebacter versatilis

Ellin345 (hereafter termed Ellin345) and Acidobacterium capsulatum

are about half the size (5.7 Mb and 4.1Mb, respectively) [22].

Variations in genome size, structure and gene arrangement

impact bacterial phenotype and contribute to genome evolution

[23]. Genome size can differ dramatically within the same genus

or family, and is not associated with specific bacterial lineages or

phenotypes. Large genomes (defined here as .7 Mb) are found in

many diverse species across the Domain Bacteria [24,25]. In

contrast, obligatory host-associated bacterial pathogens, insect

symbionts and extremophiles have lost genes during specialization

for their environments, typically harboring reduced genomes

compared to facultative pathogens and free-living bacteria [26,27].

Free living soil and marine species tend to have larger genomes

[25,28], presumably providing a selective advantage in highly

variable, changing environments [29].

The mechanisms that influence genome size, structure and

evolution include horizontal gene transfer events, and large and

small scale sequence duplications [30,31]. Horizontal transfer is a

mechanism for homolog acquisition, and gene duplication can

often lead to paralogs, which are redundant copies of genes that
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can undergo mutations leading to functional diversification

[30,31,32,33]. We hypothesized that identifying the mechanisms

that shaped the large genome of Ellin6076, and its distinctive

physiological features, would provide information about its

potential biological and ecological roles in the soil. In this study,

the genomic features of the Ellin6076 genome were examined to

identify potential past horizontal transfer events, and to catalogue

the metabolic and regulatory traits encoded in paralogs.

Results

Genomic features
Repeat sequences. Repeat sequence analysis indicated that

numerous short repeat sequences in the Ellin6076 genome

contribute to its large size. The total number of repeats

identified in Ellin6076 was 8.7-fold greater than in Ellin345

(Table S1). However, most of the repeats identified in both

genomes were less than 50–100 nucleotides long. Consistent with

this finding, comparison of the Ellin6076 genome sequence against

itself using nucmer [34] (Figure S1) shows only the identity line,

demonstrating that long repeat regions and/or whole genome

duplication are not present in the large genome of Ellin6076. If

there had been long repeat regions, they would have shown up in

the plot as shorter parallel lines next to the center identity line.

GC content. The circular maps of the Ellin6076 and Ellin345

genomes depicted in Figure 1 illustrate their overall organization,

including forward and reverse coding sequences, RNA genes,

mobile elements, GC content, and GC skew. The cumulative GC

skew (Figure S2), and output from IslandPath [35] (data not

shown), support our finding that the Ellin6076 genome does not

contain any large regions with GC content that differ significantly

from the average content of the genome.

Mobile genetic elements. The Ellin6076 genome contained

123 mobile genetic element genes encoding phage integrases,

transposases and IS elements, compared to 29 mobile element

genes in Ellin345 (Figure 1). When compared via BLAST,

numerous integrase, transposase and IS element protein

sequences had high (97–100%) amino acid sequence identities,

and we classified them into identity groups (Table S2). Given the

high sequence similarity among the genes comprising each mobile

element group, it appears that these genes may have recently

duplicated and dispersed throughout the genome. Although we

identified numerous phage integrase genes in the Ellin6076 genome,

no intact prophage regions were found [22]. Although the presence

of phage integrase genes indicates that bacteriophage-mediated

transduction contributed to the genome of Ellin6076, the absence of

intact prophage regions suggests that phage integration events did

not occur recently. To further investigate whether past phage

infection played a significant role in shaping the Ellin6076 genome,

we looked for degenerate prophage regions using the criteria

reported in [36]. We also tried to locate clustered, regularly

interspaced, short palindromic repeats (CRISPRs), which can

indicate past phage integrations [37,38]. We did not find any

degenerate prophages or CRISPRs in the genome, but we did

Figure 1. Circular map of the Ellin6076 (Panel A) and Ellin345 (Panel B) genomes obtained from the IMG system (http://img.doe.
gov). From outside to the center: Circles 1 and 2: forward and reverse strand genes colored by COG categories; Circles 3 and 4: RNA genes (tRNAs
green, sRNAs red, other RNAs black); Circles 5 and 6: mobile elements; Circle 7: GC content; Circle 8: GC skew. Colors representing the COG category
codes and function definitions: cyan, [A] RNA processing and modification; light lime, [B] Chromatin structure and dynamics; light aqua, [C] Energy
production and conversion; pale lavender, [D] Cell cycle control, cell division, chromosome partitioning; light crimson, [E] Amino acid transport and
metabolism; light blue green, [F] Nucleotide transport and metabolism; dark pink, [G] Carbohydrate transport and metabolism; teal, [H] Coenzyme
transport and metabolism; violet blue, [I] Lipid transport and metabolism; violet, [J] Translation, ribosomal structure and biogenesis; light olive, [K]
Transcription; yellow, [L] Replication, recombination and repair; light brown, [M] Cell wall/membrane/envelope biogenesis; light pink, [N] Cell motility;
light green, [O] Posttranslational modification, protein turnover, chaperones; orange, [P] Inorganic ion transport and metabolism; lime, [Q] Secondary
metabolites biosynthesis, transport and catabolism; purple, [R] General function prediction only; aqua, [S] Function unknown; brown, [T] Signal
transduction mechanisms; light blue, [U] Intracellular trafficking, secretion and vesicular transport; baby blue, [V] Defense mechanisms; lavender, [W]
Extracellular structures; light red, [Y] Nuclear structure; lime green, [Z] Cytoskeleton.
doi:10.1371/journal.pone.0024882.g001
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identify three CRISPR-associated (Cas) protein genes (Acid_0892,

Acid_0893 and Acid_0895), which are normally located adjacent to

CRISPR regions [39]. Since CRISPRs do not persist in the host

genome over time [40], these observations suggest that CRISPR

acquisition event(s) occurred in the past, and the Cas genes were left

in the genome. This adds further support to our conjecture that any

phage transduction events that brought genes into the Ellin6076

genome were not recent.

Genomic islands. A genomic island (GI) is a previously

motile region of a genome, which has become fixed. GIs are

frequently inserted near tRNA genes and flanking repeat

sequences, and often contain genes encoding mobile elements

[41] and may also include niche-specific functions, such as

virulence or metabolic traits. Since the Ellin6076 genome

contained many mobile element genes, we examined these

regions for candidate GIs using the output from IslandPath [35].

We identified sixteen candidate GIs encompassing small groups

of genes with aberrant GC content, along with numerous tRNA

genes and mobile genetic elements. The most notable candidate

GI regions (III, XI, XIII and XV) (Table S3) had a below-average

GC content, dinucleotide bias that covered nearly the entire

region, tRNA genes, and mobile elements. In addition to

abundant phage integrase genes, some putative GIs contained

fragments of genes annotated as either phage or plasmid-related.

All of the putative GIs included multiple genes annotated as

hypothetical, with no similarity to any known sequences,

suggesting that degeneration of the regions had already occurred,

similar to the degeneration seen in prophage regions over time

following insertion into a host genome [36].

Gene duplication and paralogs. There was striking

evidence of gene duplication in the Ellin6076 genome,

corresponding to an increased number of paralogs. After

correcting for genome size, Ellin6076 contained a higher

percentage of paralogs (67.8%, 5426 paralogs in 1103 paralog

groups) than Ellin345 (52.6%, 2543 paralogs in 677 paralog

groups, Table 1). The number of paralogs in many categories was

4-fold or greater (Tables 2 and S5), and included the mobile

elements described above, along with genes involved in cell wall/

membrane biogenesis, signal transduction, intracellular trafficking

and secretion, defense mechanisms and metabolism. Paralogous

sequences with the same functional definition (e.g. serine/

theronine protein kinases) in Ellin6076, generally showed less

than 50% amino acid identity in full-length alignments (data not

shown). The COG functional categories of the paralogs in the

large Ellin6076 genome compared to the more average sized

Ellin345 and other representative larger-smaller genome pairs are

shown in Tables S4, S5. The sizes of the larger genomes ranged

from 6.99 to 9.97 Mb, while the smaller genome sizes were in the

range 3.27 to 5.90 (Table S4). For all but one pair (Ralstonia

eutrophia H16 vs. Ralstonia solanacearum UW551), the smaller

genome was approximately half the size of the larger one. The

functional categories described above may represent increased

metabolic and regulatory redundancy and diversity encoded in the

Ellin6076 genome compared to Ellin345 (Table 2). Increased

numbers of paralogs with annotated functions related to metabolic

breadth, cellular defense, and gene regulation were common. The

full list is presented in Table S5.

Phylogenetic and dN/dS analysis of paralogs
Phylogenetic analysis was performed on 27 representative

groups of paralogs that encompassed a variety of functions,

including drug resistance, metabolism, protein binding, regulation

and transport. In keeping with the low amino acid sequence

identities revealed through BLAST analysis, nearly all of the

paralogs within a particular group showed divergent evolutionary

relationships in the phylogenetic tree (some examples are shown in

Figures S3, S4). The mobile element paralogs were much more

closely related in terms of sequence identities, and in two cases all

of the sequences were identical. These results led to the question:

Why would the Ellin6076 genome maintain so many paralogs with

divergent sequences? To answer this, we performed a codon-based

Z-test of positive selection (Table 3). The evolutionary pressures on

protein coding sequences can be quantified by determining the

ratio of substitution rates at synonymous and non-synonymous

nucleotide sites [42]. The analysis was conducted for each pair of

sequences, and as an overall average for all pairwise comparisons

(Table 3). Three paralog groups, phage tail collar domain protein,

CnaB-type protein and one phage integrase family protein group,

had an average value of the test statistic Z above one, indicating

positive values for selection among some of the sequences. Two

paralog groups, the serine/threonine protein kinases and the two-

component transcriptional regulator, winged helix family mem-

bers, had no sequences showing positive selection. Some of the

paralogs in the carboxylesterase type B group, and those with

functions involved in transport, drug resistance and receptors,

showed positive selection when compared to each other. Data for

Table 1. Paralogs in larger-smaller genome pairs#.

Classification Large genome Size (Mb) # genes
# paralogs
(% of genes) Small genome Size (Mb) # genes

# paralogs
(% of genes)

Acidobacteria Ellin6076 9.97 8002 5426 (67.8%) Ellin345 5.65 4834 2543 (52.6%)

Alpha proteobacteria Magnetospirillum
magnetotacticum MS-1*

9.21 10334 6113 (59.2%) Magnetospirillum
magneticum AMB-1

4.97 4667 2428 (52.0%)

Alpha proteobacteria Mesorhizobium loti
MAFF303099

7.6 7352 4396 (59.8%) Mesorhizobium sp. BNC1 4.94 4686 2606 (55.6%)

Beta proteobacteria Ralstonia eutropha H16 7.42 6702 4395 (65.6%) Ralstonia solanacearum
UW551*

5.9 4418 2267 (51.3%)

Gamma
proteobacteria

Hahella chejuensis
KCTC 2396

7.22 6862 3242 (47.2%) Oceanospirillum
sp. MED92*

3.87 3735 1721 (46.1%)

Actinobacteria Mycobacterium
smegmatis MC2 155

6.99 6925 4535 (65.5%) Mycobacterium leprae TN 3.27 2752 490 (17.8%)

#Data from the Integrated Microbial Genomes (IMG) System; http://img.jgi.doe.gov.
*Draft genome data.
doi:10.1371/journal.pone.0024882.t001
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Table 2. Distribution of genes in COG categories for Acidobacteria strains Ellin6076 and Ellin345.

COG CATEGORY Strain Ellin 6076 Strain Ellin 345 Fold Increase+

Information storage and processing

(L) Replication, recombination, repair

Site-specific recombinase XerD 32 6 5.3

Transposase and inactivated derivatives 64 10 6.4

Cellular processes

(M) Cell wall/membrane biogenesis

4-amino-4-deoxy-L-arabinose transferase and related 26 7 3.7

L-alanine-DL-glutamate epimerase and related 25 4 6.3

Periplasmic protease 13 2 6.5

Endopolygalacturonase 11 0 .11.0

Dihydropicolinate synthase/N-acetylneuraminate lyase 9 2 4.5

ABC-type polysaccharide/polyol phosphate export system, permease 6 0 .6.0

ABC-type polysaccharide/polyol phosphate export system, ATPase 6 0 .6.0

Membrane proteins related to metalloendopeptidases 5 1 5.0

Sortase 6 1 6.0

(T) Signal transduction mechanisms

Antirepressor regulating drug resistance, signal transduction comp. 12 3 4.0

Bacteriophytochrome 9 2 4.5

(U) Intracellular trafficking, secretion

Flp pilus assembly protein, ATPase CpaE 4 0 .4.0

Flp pilus assembly protein, ATPase CpaF 4 0 .4.0

(C) Energy production, conversion

FAD/FMN-containing dehydrogenases 8 2 4.0

Carbon dioxide conc. mechanism/carboxysome shell proteins 9 0 .9.0

FOG:HEAT repeat 6 0 .6.0

Rieske Fe-S protein 5 0 .5.0

Predicted acetamidase/formamidase 4 0 .4.0

Cytochrome b subunit 4 0 .4.0

(E) Amino acid transport, metabolism

Lysophospholipase L1 and related esterases 16 1 16.0

Dihydropicolinate synthase/N-acetylneuraminate lyase 9 2 4.5

Choliine dehydrogenase and related 8 2 4.0

Spermidine synthase 5 0 .5.0

Asparagine synthase (glutamate hydrolyzing) 4 0 .4.0

(G) Carbohydrate transport, metabolism

Sugar phosphate isomerases/epimerases 41 6 6.8

Glucose dehydrogenase 26 0 .26.0

Gluconolactonase 13 2 6.5

Alpha-L-arabinofuranosidase 8 2 4.0

Alpha-L-fucosidase 7 1 7.0

Glucose/sorbosone dehydrogenases 6 1 6.0

ABC-type polysaccharide/polyol phosphate export system, permease 6 0 .6.0

ABC-type polysaccharide/polyol phosphate export system, ATPase 6 0 .6.0

2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase 5 0 .5.0

Beta-xylosidase 4 0 .4.0

Beta-galactosidase 4 1 4.0

(H) Coenzyme transport, metabolism

2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol methylase 18 4 4.5

Demethylmenaquinone methyltransferase 7 0 .7.0

(I) Lipid transport, metabolism

Large Genome of Candidatus Solibacter usitatus
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the pairwise comparisons of individual sequences in representative

paralog groups are shown in Figures S5, S6, S7. Results of the

substitution saturation tests performed on each paralog group are

shown in Table 4. These results indicate that, while four paralog

groups showed little substitution saturation (serine/threonine

protein kinase, carboxylesterase, acetolactate synthase and one

phage integrase family protein group), the sequences in the rest of

the paralog groups did show substitution saturation and are

therefore too divergent to be useful for further phylogenetic

analyses.

Acidobacteria genome size survey
Few named and described strains exist to represent the phylum

Acidobacteria, and most soil isolates represent only two of the

twenty-six recognized subdivisions in the phylum [9]. Pulsed-field

gel electrophoresis was used to estimate the genome size of other

Acidobacteria strains from subdivisions 1 and 3 to determine if the

large genome trait was specific to Ellin6076 or more widely

distributed among the cultured isolates. The pulse field gel sizing

of seven Acidobacteria strains illustrated that members of subdivision

1 had smaller genomes ranging from 2.0 to 5.7 Mb, and members

of subdivision 3 had genomes of 5.8 and 9.9 Mb. (Figure 2, Table

S6). In addition, three newly sequenced draft genomes of

subdivision 1 strains have estimated genome sizes ranging from

5.1 to 6.2 Mb (Terriglobus saanensis, strain SP1PR4, 5.1 Mb;

Acidobacteriaceae sp., strain MP5ACTX8, 6.2 Mb; Acidobacteriaceae

sp., strain MP5ACTX9, 5.4 Mb) (http://www.img.jgi.doe.gov).

Discussion

Our results indicate that multiple mechanisms likely contributed

to the large genome of Ellin6076. The lack of strand bias,

increased number of repeats, and distribution pattern of the 126

mobile genetic elements throughout the genome of Ellin6076

suggest that horizontal transfer, followed by gene duplication,

repeat-mediated recombination and intra-genome transposition

may have acted to shape the structure of this genome.

The presence of various phage- and plasmid-related sequences

in the Ellin6076 genome indicate that phage- and plasmid-

mediated horizontal transfer events did occur, either in this

genome or in an ancestral genome. Soils contain abundant and

diverse bacteriophage populations [43], so it is reasonable to

speculate that soil phage integration contributed to the genome of

Ellin6076. However, the genome did not contain intact identifi-

able prophage regions, but did have numerous mobile genetic

elements (i.e. transposases, phage integrases, and IS elements),

repeat sequences and scattered phage-related genes. Therefore,

while phage integration events likely shaped the Ellin6076

genome, these events were not recent, having been obscured by

more recent gene duplications and rearrangements mediated by

the abundant mobile elements and repeats. Collectively these

events resulted in multiple, divergent paralogs, which provide

Ellin6076 with the potential for broader and more differentially

regulated metabolic and defensive functions. Adding to the

increasing genomic evidence from other bacterial species, our

results support the conjecture that large bacterial genomes may

result from ancient horizontal transfer events and gene duplication

processes [44]. However, proof of this conjecture will require

analysis of additional genomes from soil-dwelling bacteria to

provide a more detailed understanding of how particular genes

and DNA fragments become stabilized in bacterial genomes, and

their relationship to an organism’s overall fitness with respect to

the environment.

Paralogs in the same functional group had relatively low

sequence similarities to each other, suggesting that the paralogs in

the Ellin6076 genome were produced by ancient horizontal

transfer and/or duplication events, followed by mutations that

resulted in sequence divergence. To quantify the evolutionary

pressures that acted on the paralogous sequences, we performed a

codon-based test of positive selection on each of 27 representative

paralog groups. Results (Table 3) demonstrated that, while some

paralogs within a functional group showed evidence of positive

selection, others were either neutral or showed evidence of

purifying selection. However, substitution saturation analysis

revealed that many of the paralog sequences had experienced

saturation, and are therefore too divergent to compare phyloge-

netically. This further supports our hypothesis that ancient events

contributed to the size and structure of the Ellin6076 genome.

Although the specific functions of the paralogs in these groups are

not known, we can postulate certain activities for these paralogs.

For example, bacterial esterases cleave ester bonds of short chain

fatty acids [45], and may have diverse functions in the hydrolysis

of compounds like beta-lactam antibiotic para-nitrobenzyl esters

[46]. CnaB is a repeat-containing domain found in collagen-

binding proteins [47], indicating that the CnaB-type protein

paralogs may function in binding. It is conceivable that the

COG CATEGORY Strain Ellin 6076 Strain Ellin 345 Fold Increase+

Carboxylesterase type B 9 0 .9.0

(P) Inorganic ion transport, metabolism

Arylsulfatase A and related enzymes 18 0 .18.0

Enterochelin esterase and related enzymes 16 2 8.0

Cytochrome c peroxidase 6 0 .6.0

(Q) Secondary metabolites

Dienelactone hydrolase and related enzymes 8 1 8.0

Carbon dioxide conc. mechanism/carboxysome shell proteins 9 0 .9.0

Protein involved in biosynthesis of mitomycin antibiotics/fumonisin 4 0 .4.0

Predicted enzyme involved in methoxymalonyl-ACP biosynthesis 4 1 4.0

+ Not normalized for genome size.
Only categories with four-fold or greater differences are shown.
doi:10.1371/journal.pone.0024882.t002

Table 2. Cont.
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transporter protein paralogs may have slightly different specificities

for the compounds that they transport, adding diversity to the

repertoire of drugs that Ellin6076 is able to pump out, or nutrients

that it is able to take up via the ABC family of transporters.

Most of the integrase and transposase genes were either

identical or nearly identical in sequence, and only one group

showed evidence of positive selection (Table 3). Many of the

paralog groups contained sequences showing negative values of the

Z statistic, and some of these had significant probability values,

indicating that they were under purifying selection. This supports

our conjecture that at least some of the paralogs may have

experienced positive selection, while others are likely in the process

of being eliminated through purifying selection.

Examination of the gene neighborhoods surrounding the

divergent paralogs revealed the presence of one or more mobile

elements (Table S2), indicating the potential for movement within

the genome. This observation is consistent with results from studies

in cyanobacteria and archaea [48] and Sulfolobus solfataricus P2,

indicating that IS elements facilitate genomic changes by

transposase-mediated transposition and by increases in copy

number through repeat-mediated homologous recombination

[49] and self-replicating behavior [50]. The number of recently

active IS elements increases along with genome size, and the

regions adjacent to these IS elements are enriched in genes

encoding regulatory and metabolic functions [48]. Consistent with

these previous results, we found that COG categories representing

regulatory and metabolic functions were expanded in the large

genome of Ellin6076 (Table S5), and at least some of them

appeared to be stable in the genome. We also identified several

groups of related mobile element genes with high sequence

similarity (90–100%) to each other (Table S2), located in the

vicinity of regulatory and metabolic genes (data not shown),

indicating that they may have recently duplicated and moved

throughout the genome.

The abundant Ellin6076 paralogs involved in metabolism,

defense and regulation, suggest an increased functional diversity in

this bacterium. Soil bacteria must cope with extremes of moisture,

temperature, and geochemical conditions, and compete success-

Table 3. Results of codon-based test of positive selection, averaging over all sequence pairs.

Functional definition
Identifier of first
sequence

dN-dS Stat from test of
dN.dS (positive selection) Probability

serine/threonine protein kinase YP_821325 26.478 1.000

two-component transcriptional regulator, winged helix family YP_821372 26.116 1.000

ABC transporter-related YP_821380 0.218* 0.414

Carboxylesterase, type B YP_821393 0.215* 0.415

Transcriptional repressor, CopY family YP_821398 0.225* 0.411

Drug resistance transporter, EmrB/QacA subfamily YP_821403 0.217* 0.414

TonB-dependent receptor, plug 1 YP_821405 21.960* 1.000

TonB-dependent receptor, plug 2 YP_821493 20.614* 1.000

anti-sigma factor antagonist YP_821407 21.275* 1.000

RNA polymerase, sigma-24 subunit, ECF subfamily YP_821437 20.670 1.000

phage tail collar domain protein YP_821449 3.703* 0.000

oxidoreductase domain protein YP_821473 20.898 1.000

von Willebrand factor, type A YP_821474 20.583* 1.000

acetolactate synthase, large subunit, biosynthetic type YP_821479 21.024 1.00

CnaB-type protein YP_821495 1.083* 0.140

ASPIC UnbV domain protein YP_821513 22.277* 1.000

glycosyl transferase, family 2 YP_821582 21.069 1.000

NAD-dependent epimerase/dehydratase YP_821583 21.561 1.000

aldo/keto reductase YP_821684 0.914* 0.181

phage integrase family YP_821644 21.395* 1.000

phage integrase family YP_821919 1.873* 0.032

phage integrase family YP_821920 20.293 1.000

phage integrase family YP_821921 22.001 1.000

integrase, catalytic region YP_821924 21.212 1.000

integrase catalytic region YP_821733 20.023 1.000

transposase IS3/IS911 family YP_821734 20.783 1.000

transposase IS3/IS911 family YP_821923 20.824 1.000

*Some of the pairwise comparisons (for examples, see Tables S5, S6, S7) showed significant values (probability less than 0.05, indicating positive selection). These
significant values are reflected in higher overall average values of the Z statistic and the lower values of probability. Representative paralog groups were included in this
analysis. The identifier of the first sequence is shown in the table, and the remaining paralogs in each group were selected based on the criteria outlined in the methods
section. The probability of rejecting the null hypothesis of strict-neutrality (dN = dS) in favor of the alternative hypothesis (dN.dS) is shown (in the probability column).
Probability values less than 0.05 are considered significant at the 5% level. The Z statistic (dN - dS) is shown in the Stat column. dS and dN are the numbers of
synonymous and nonsynonymous substitutions per site, respectively.
doi:10.1371/journal.pone.0024882.t003

Large Genome of Candidatus Solibacter usitatus

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e24882



fully with other microbes for limited or rapidly changing nutrient

resources. Expansion of the COG functional categories of

carbohydrate, amino acid and inorganic transport and metabolism

in Ellin6076 (Tables S7, S8, S9) suggests an enhanced competitive

ability to exploit different environmental resources. Because

Ellin6076 is so challenging to culture, we have not performed

detailed metabolic profiling to confirm the potential functions

indicated by the gene content. However, some of these traits have

previously been verified in culture studies [22,51]. Carbon

utilization analyses of various Acidobacteria demonstrate that they

are generally able to use simple organic compounds, such as

sugars, sugar alcohols and amino acids, as carbon sources for

growth. However, the various strains analyzed showed differences

with respect to the specific compounds that they could utilize

[6,15,18,22,52]. The diverse array of paralogs in Ellin6076 could

confer an expanded set of metabolic and regulatory functions that

would be advantageous under widely changing conditions in soil

microhabitats. Our finding that paralogs within a particular

functional group have divergent sequences compared to each

other, and that some of them may have been subjected to positive

selection, supports this conjecture. In addition to metabolic

exploitation of available resources, Ellin6076’s large genome could

provide an alternative competitive and survival strategy in adverse

environmental conditions, as has been suggested for other soil-

dwelling heterotrophs [44,53]. Functional redundancy in the

genome of Ellin6076 could be due to the presence of ecoparalogs

[54], which perform the same basic function under different

environmental conditions, and can help microorganisms during

seasonal periods of fluctuations in resources [55]. Patchy nutrient

distribution, limiting nutrients, and geochemical conditions that

can vary dramatically across the mm scale, are major factors that

shape soil microbial communities [56,57]. The ability to use varied

nutrient sources across gradients of physical conditions would be

advantageous in the soil. Ellin6076 has genes involved in cell wall/

membrane biogenesis, and numerous paralogs that may function

in transcription and signal transduction cascades, suggesting an

increased ability to sense and respond to environmental changes,

and to regulate metabolism (Table S5). Most notable are genes

encoding serine/threonine protein kinases, transcriptional regula-

tors, and DNA-directed RNA polymerase, sigma-24 (sigma E)

homologs. To date, the large genome of Ellin6076 contains the

most sigma E homologs of any sequenced bacterial genome.

Table 4. Results from substitution saturation analysis.

Paralog group (accession of first sequence) P(invariant) Saturation test result Comment

serine/threonine protein kinase (YP_821325) 0.11516 little

carboxylesterase, type B (YP_821393) 0.01800 little

acetolactate synthase, large subunit, biosynthetic type (YP_821479) 0.03254 little

phage integrase family (YP_821919) 0.16027 little

two component transcriptional regulator (YP_821972) 0.00047 substantial*

ABC transporter-related (YP_821380) 0.00024 substantial*

transcriptional repressor, CopY family (YP_821398) 0.00059 substantial*

anti-sigma factor antagonist (YP_821407) 0.02566 substantial

RNA polymerase, sigma-24 subunit, ECF subfamily (YP_821437) 0.01145 substantial*

oxidoreductase domain protein (YP_821473) 0.01711 substantial

TonB-dependent receptor, plug (YP_821493) 0.00 substantial*

CnaB-type protein (YP_821495) 0.00 substantial*

ASPIC/UnbV domain protein (YP_821513) 0.00414 substantial

glycosyltransferase, family 2 (YP_821582) 0.02855 substantial*

NAD-dependent epimerase/dehydratase (YP_821583) 0.00208 substantial*

phage integrase family (YP_821644) 0.00087 substantial*

aldo/keto reductase (YP_821684) 0.00 substantial*

drug resistance transporter, EmrB/QacA family (YP_821403) ND ND too few sequences

TonB-dependent receptor, plug (YP_821405) ND ND too divergent

phage tail collar protein (YP_821449) ND ND too few sequences

von Willebrand factor, type A (YP_821474) ND ND too divergent

phage integrase family (YP_821920) ND ND too few sequences

phage integrase family (YP_821921) ND ND too few sequences

transposase, IS3/IS911 family (YP_821923) ND ND too few sequences

integrase catalytic region (YP_821924) ND ND too few sequences

integrase catalytic region (YP_823733) ND ND too few sequences

transposase, IS3/IS911 family (YP_823734) ND ND too few sequences

‘‘little’’ means that the test showed little substitution saturation in the group of sequences. ‘‘substantial’’ indicates that there was substantial substitution saturation. ND,
not determined because there were either too few sequences to test, or the sequences were too divergent.
*indicates sequences that were too divergent to be useful for phylogenetic analyses.
doi:10.1371/journal.pone.0024882.t004
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Bacterial sigma E regulons are induced in response to stressful

environmental conditions including nutrient limitation/starvation,

oxidative stress, heat shock, lead exposure, cell envelope stress

[58,59,60,61,62,63,64]. Processes activated by sigma E include

outer membrane synthesis and assembly [65], carotenoid biosyn-

thesis [66], mucoid production [67], and organism-specific

functions necessary for environmental adaptation [65]. Ellin6076’s

increased capacity to respond to the environment may provide a

selective advantage in times of stress.

The functional complexity gained with a large genome may not

be unique to soil microorganisms. Increased bacterial genome size

(6 Mb) has also been observed at the border of the oxic and anoxic

zones in microbial mats, compared to the rest of the mat (3–

3.5 Mb) possibly reflecting an increased functional complexity

needed to survive and thrive at this depth [68]. The large (7.2 Mb)

genome of the marine bacterium Hahella chejuensis also has a

number of functionally redundant genes involved in transcription-

al regulation and/or environmental sensing that may play roles in

its adaptability to a changing marine environment [69].

Currently, the large genome of Ellin6076 is unique among the

few cultured Acidobacteria for which we have estimated genome

sizes. However, the Ellin6076 and Ellin345 pair represent two

different subdivisions within the phylum (Figure 2), and are not as

closely related as the other pairs in Table 1. The large genome

trait occurs sporadically among closely related species, as

evidenced by studies of genomes greater than 6 Mb in size such

as Hahella chejuensis KCTC 2396 [69], Bradyrhizobium japonicum

USDA 110 [70], Mesorhizobium loti MAFF303099 [71], Streptomyces

coelicolor A3(2) [24], Streptomyces avermitilis MA-4680 [72], Rhodococcus

sp. RHA1 [44], and Burkholderia xenovorans LB400 [53]. Like

Ellin6976, these large genomes also demonstrated increased

numbers of paralogs (Tables 1 and S4). A previous study

quantified genome size and paralog numbers within 106 complete

bacterial genomes, showing that size was strongly correlated with

the number of paralogs, which represented functional classes of

genes involved in adaption to the environment [33].

In conclusion, our results indicate that the large genome of

Ellin6076 has arisen through horizontal gene transfer via ancient

bacteriophage and plasmid-mediated transduction, as well as

widespread small-scale gene duplications, resulting in an increased

number of paralogs. The low amino acid sequence identities, and

correspondingly divergent nucleotide sequences, among paralogs

encoding similar functions argue against recent duplication events.

Ellin6076 appears to be ancient, and the abundant paralogs

encode traits that may provide a variety of metabolic, defensive

and regulatory functions in the soil environment. The large

genome of Ellin6076, along with improved culture approaches and

studies of the Acidobacteria in soil, will facilitate future biological and

physiological studies to ultimately determine the costs and benefits

of harboring a large genome.

Figure 2. Maximum-likelihood tree of the Acidobacteria subdivisions 1 and 3 (indicated to the right of the group) based on the16S
rRNA gene using sequences obtained from cultivated representatives and environmental clones. Geothrix fermentans, Holophaga
foetida and Acanthopleuribacter pedi of subdivision 8 were used as an outgroup (not shown). Strains for which the genome size has been determined
are highlighted in bold typeface. Internal nodes support by a bootstrap value of .95% are indicated with a filled circle and .70% with an open circle.
The scale bar indicates 0.10 changes per nucleotide.
doi:10.1371/journal.pone.0024882.g002
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Materials and Methods

Genome sequencing and annotation
Genome sequencing and annotation were described previously

[22].

Computational analysis
The MUMmer package [34] programs nucmer, repeat_match

and exact_tandems were used for analysis of repeat regions. To

identify long inexact genomic repeats, the nucmer program was

used with the options –maxmatch and –nosimplify to align the

Ellin6076 genome against itself. Dotplots were generated by

mummerplot. Smaller genomic repeats were identified using

repeat-match (finds all repeats), exact-tandems (exact tandem

repeats), Tandem Repeats Finder (all tandem repeats, [73]), and

Inverted Repeats Finder (inverted repeats, [74]). The repeat_-

match and exact_tandems programs were run with default

arguments. Tandem repeats finder [73] and inverted repeats

finder [74] were run with recommended default arguments to

identify tandem and inverted repeats, respectively.

Distributions of paralogs and orthologs in the Clusters of

Orthologous Groups of proteins (COGs) categories [75] were

obtained from the Integrated Microbial Genomes (IMG) system

(http://img.doe.gov), using Reverse Position Specific BLAST of the

Ellin6076 sequences against NCBI’s Conserved Domain Database

as described in (http://img.jgi.doe.gov/w/doc/userGuide.pdf).

Pairwise relationships were computed as reciprocal hits within the

genome, and paralogous groups were identified using the Markov

Cluster Algorithm (MCL) with default parameters.

Comparative genome analyses were performed using the IMG

system [76], BLAST [77], the Conserved Domain Database [75],

MetaCyc (http://metacyc.org) and output from the Pathway Tools

[78]. The cumulative GC skew was determined as described in [79]

using the GenSkew application (http://genskew.csb.univie.ac.at/).

Putative genomic islands were identified and analyzed using the

IslandPath [35] web resource (http://www.pathogenomics.sfu.ca/

islandpath/cgi-bin/islandupdate.pl?gc = Submit&organism = Sousi

008536). The IMG system was used to identify clustered regularly

interspaced short palindromic repeats (CRISPRs)[76].

Identification of paralogous gene families
Paralogs were identified by BLAST sequence similarity

comparisons of the collection of Ellin6076 protein sequences

against each other using a threshold E-value of 1.00E-05. Paralogs

were grouped through manual examination of the tabular

formatted BLAST results; sequences were included in a particular

paralog group only if the alignment to the query sequence covered

at least 90% of the query sequence length. Phylogenetic analysis

was performed for 27 representative paralog groups, using the

Phylogeny.fr web service [80] and MEGA5 [81]. For each paralog

group, the ‘‘One Click’’ pipeline at Phylogeny.fr was used,

consisting of MUSCLE sequence alignment, Gblocks alignment

curation, PhyML phylogenetic analysis and TreeDyn tree

rendering. Within this pipeline, MUSCLE was used in full

processing mode. Gblock settings were: Min. seq. for flank pos.:

85%; Max. contig. nonconserved pos.: 8; Min. block length: 10;

Gaps in final blocks: no. PhyML was used with the aLRT

statistical test. The PhyML settings were: Model: Default;

Statistical test: alrt; Number of categories: 4; Gamma: estimated;

Invariable sites: estimated; Remove gaps: enabled. TreeDyn tree

rendering settings were: Conformation: rectangular; Legend:

displayed; Branch annotation: bootstrap; Font: Times 8 normal.

The codon-based Z-test of positive selection was performed on

each paralog group using MEGA5 [81]. Analyses were conducted

using MUSCLE for sequence alignments and the Nei-Gojobori

substitution model/method [42]. All positions containing gaps and

missing data were eliminated. The codon-based Z-test compares

the number of non-synonymous mutations that would lead to a

change in the translated protein sequence, with synonymous

mutations that are neutral and do not change the protein

sequence. The codon-based Z-test was performed on each pair

of sequences within each paralog group, as well as all sequences in

the group to obtain an average number of nonsynonymous

substitutions. For each pair of sequences, MEGA5 estimates the

number of synonymous substitutions per synonymous site (dS) and

the number of nonsynonymous substitutions per nonsynonymous

site (dN), and their variances: Var(dS) and Var(dN), respectively.

With this information, we used the MEGA5 package to test the

hypothesis that H0: dN.dS (positive selection) using a one-tailed Z-

test: Z = (dN–dS) / SQRT(Var(dS) + Var(dN)) [81]. The variance of

the difference was computed using the bootstrap resampling

method (500 replicates). We also used MEGA5 to compute the

average number of synonymous substitutions and the average

number of nonsynonymous substitutions to conduct a Z-test in a

manner similar to the pairwise test described above. The variance

of the difference between these two quantities was also estimated

by the bootstrap resampling method. If the number of non-

synonymous mutations is greater than the synonymous mutations,

the value of the test statistic Z is greater than one, and a

corresponding probability of less than 0.05 is evidence for positive

selection (or when a non-synonymous mutation becomes fixed in

the genome). A Z value of less than one provides evidence of

purifying selection, or selection against deleterious amino acid

changes [42]. To analyze potential substitution saturation, which

would overwrite past changes in the paralog nucleotide sequences,

we performed a substitution saturation test using DAMBE [82].

For each paralog group, this test involved estimating the

proportion of invariant sites among the sequences, and using this

proportion in a test of substitution saturation [83].

16S rRNA phylogenetic tree generation
Sequences were aligned using the SILVA [12] website and the

phylogenetic tree was generated in the ARB Software [84]. The

maximum likelihood algorithm (RAxML) in ARB was used for the

generation of the phylogenetic trees with a base frequency filter

with a minimum and maximum sequence similarity of 70% and

100%, respectively. The filter was designed from nearly full-length,

high quality acidobacteria sequences across the subdivisions.

Bootstrapping was done in the ARB software using the rapid

bootstrap analysis with 100 iterations.

Genome size determination
The genome sizes of seven subdivision 1 and 3 Acidobacteria

strains (Table S6) were estimated using pulsed-field gel electro-

phoresis after restriction of genomic DNA using SwaI and PmeI

enzymes (New England Biolabs, Beverly, MA) as described

previously [85]. Restricted genomic DNA was separated by

electrophoresis on a CHEF-DR apparatus (Bio-Rad Laboratories,

Richmond, CA), together with yeast chromosome, Lambda

ladder, and low range molecular size markers (New England

Biolabs, Beverely, MA). The isolates represent different genera,

with 16S rRNA gene sequence similarity (a measure of bacterial

relatedness) of ca. 90% between the subdivision 3 strains (n = 2),

and of ca. 92% among the subdivision 1 strains (n = 5: Figure 2).

Data availability
The genome sequences of Ellin6076 and Ellin345 are in

GenBank (NC_008536, NC_008009).
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Supporting Information

Figure S1 Dotplot showing the Ellin6076 genome nucle-
otide sequence aligned against itself. The alignment and

dotplot were generated by the MUMmer package programs

nucmer (using arguments -maxmatch –nosimplify) and mummer-

plot.

(PDF)

Figure S2 Cumulative GC-skew plots for Candidatus
Solibacter usitatus Ellin6076 (panel A) and Candidatus
Korebacter versatilis Ellin345 (panel B). Plots were

generated with the GenSkew application (http://genskew.csb.

univie.ac.at/).

(PDF)

Figure S3 Phylogenetic trees showing the relationships
of the CnaB-type protein (panel A) and oxidoreductase
domain protein (panel B) paralogs to each other. Trees

were generated using the Phylogeny.fr web service (http://www.

phylogeny.fr).

(PDF)

Figure S4 Phylogenetic trees showing the relationships
of the serine/threonine protein kinase (panel A), Drug
resistance transporter, EmrB/QacA subfamily (panel B),
glycosyl transferase family protein (panel C), acetolac-
tate synthase, large subunit (panel D), and RNA poly-
merase, sigma-24 subunit, ECF subfamily (panel E)
paralogs to each other. Trees were generated using the

Phylogeny.fr web service (http://www.phylogeny.fr).

(PDF)

Figure S5 Results of pairwise codon-based test of
positive selection for CnaB-type protein (YP_821495.1)
paralogs.
(TIFF)

Figure S6 Results of pairwise codon-based test of posi-
tive selection for phage tail collar protein (YP_821449.1)
paralogs. Sequence #3 was included twice (as sequence #4) to

show the probability for identical sequences.

(TIFF)

Figure S7 Results of pairwise codon-based test of
positive selection for phage integrase (YP_821919.1)
paralogs.
(TIFF)

Table S1 Total number of repeats in the Ellin6076
genome compared to Ellin345.

(DOC)

Table S2 Ellin6076 mobile elements.
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Table S3 Candidate genomic islands in the Ellin6076
genome.
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Table S4 Distribution of genes in COG categories for
Acidobacteria strains Ellin6076 and Ellin345, compared
to other large-small genome pairs.
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Table S5 Distribution of genes in COG categories for
Acidobacteria strains Ellin6076 and Ellin345.
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Table S6 Average genome size of representative Acid-
obacteria isolates from subdivisions 1 and 3, deter-
mined by pulse field gel electrophoresis.
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Table S7 Expansion of COG categories for carbohy-
drate transport and metabolism.
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Table S8 Expansion of COG categories for amino acid
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