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Abstract

Empoasca onukii Matsuda is one of the most devastating pests of the tea plant (Camellia

sinensis). Still, the presumed expression stability of its reference genes (RGs) has not been

analyzed. RGs are essential for accurate and reliable gene expression analysis, so this

absence has hampered the study of the insect’s molecular biology. To find candidate RGs

for normalizing gene expression data, we cloned ten common housekeeping genes from E.

onukii. Using the ΔCt method, geNorm, NormFinder and BestKeeper, we screened the RGs

that were appropriate for quantifying the mRNA transcription of cellular responses under

five experimental conditions. We identified the combinations of α-TUB and G6PDH, α-TUB

and UBC, two RGs (α-TUB and β-TUB1) or three RGs (α-TUB, RPL13 and GAPDH), AK

and UBC, or RPL13 and α-TUB as the best for analyzing gene expression in E. onukii adults

of both sexes in different tissues, nymphs at different developmental stages, nymphs

exposed to different temperatures or nymphs exposed to photoperiod stress. Finally, the E.

onukii cysteine proteinase (Eocyp) was chosen as the target gene to validate the rationality

of the proposed RGs. In conclusion, our study suggests a series of RGs with which to study

the gene expression profiles of E. onukii that have been manipulated (biotically or abioti-

cally) using reverse transcription quantitative polymerase chain reaction. The results offer a

solid foundation for further studies of the molecular biology of E. onukii.

Introduction

Reverse transcription quantitative polymerase chain reaction (RT-qPCR, hereafter qPCR) is a

popular and indispensable technique for quantifying the mRNA transcription of cellular

responses triggered by biotic or abiotic manipulations [1]. qPCR offers high-throughput

screening, and is known to be fast, sensitive and accurate [2–4]. Every step of qPCR sample

preparation and processing—determining the intrinsic variability of RNA, removing impuri-

ties during RNA extraction, carrying out reverse transcription and measuring PCR efficiencies

—needs to be accurately normalized [5–7]. For now, stably expressed reference genes (RGs)
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are the best internal controls when results are quantified using the 2-ΔΔCt method or its modi-

fied versions [8, 9]. The measurement of internal controls along with target genes helps to

compensate for the inevitable experimental variations, such as disparities in the amount of

starting material and/or sample loading [10, 11]. Therefore, identifying appropriate RGs for a

normalization scalar is an essential prerequisite for developing a qPCR assay. Furthermore, at

least two RGs (preferably more) should be employed simultaneously in the normalization pro-

cess [12–15].

Ideally, RGs should display constitutive and stable expression characteristics across cell

lines, tissue types, developmental stages or experimental treatments, and should also be

expressed at levels similar to those of target genes [5, 6]. Appropriate RGs are referred to as

housekeeping genes. Although glyceraldehyde-3-phosphate (GAPDH), 18S ribosomal RNA (18S
rRNA) and β-actin (ACTB) have been widely used in gene expression assays of invertebrates

[16–19], increasing evidence has demonstrated that these genes have been used without proper

validation [12, 20, 21]. Recent experiments have determined the most appropriate RGs for

manipulations (biotic and abiotic) of the following species: Drosophila melanogaster (Meigen),

Plutella xylostella (Linnaeus), Bemisia tabaci Mediterranean, Spodoptera litura (Fabricius),

Sesamia inferens (Walker), S. exigua (Hübner), Bactrocera minax (Enderlein), Helicoverpa
armigera Hübner, Myzus persicae (Sulzer), Nilaparvata lugens (Stål) and Galeruca daurica
(Joannis) [22–32]. Results from these studies suggest that although RG expression is some-

times constant, it may vary considerably according to experimental treatment or to species.

For example, arginine kinase (AK) was ranked as the most stable gene when N. lugens was

exposed to temperature-induced stress or examined at different developmental stages, but AK
was ranked as the most variable gene in the different tissues of the same species [33]. More-

over, ACTB in S. litura was ranked as the second most stable expression gene when insects

were treated with insecticide but it was ranked as the most variable one when S. litura were fed

on different foods or when we looked at different tissues [23]. By identifying the proper RGs

for a given species under specific experimental conditions, we can avoid missing or overem-

phasizing potential biological changes in the expression of target genes.

The tea green leafhopper, Empoasca onukii Matsuda, one of the most devastating pests of

the tea plant (Camellia sinensis (L.) O. Kuntze), usually produces ten generations per year in

China [34, 35]. Both nymphs and adults of E. onukii attack the buds, tender leaves and stems

of tea plants, causing plant parts to curl and parch [36]. Outbreaks of this hard-to-control

insect can cause economic losses of up to 33% due to diminished tea yields [37]. A few molecu-

lar studies focusing on species assignment or transcriptome have investigated E. onukii [36, 38,

39] but little attention has been paid to gene expression analysis or even to the presumed

expression stability of RGs. In order to obtain candidate RGs that were appropriate for quanti-

fying the mRNA transcription of cellular responses under five experimental conditions, we

cloned ten common RGs with different functions from E. onukii. Next, using qPCR, we mea-

sured ten mRNA transcriptional levels (ribosomal protein L13 (RPL13), alpha tubulin (α-TUB),

ubiquitin conjugating enzyme (UBC), glutathione-S-transferase (GST), glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH), TATA-box binding protein (TBP), glucose-6-phosphate dehy-
drogenase (G6PDH), AK and two β-tubulins (β-TUB1 and β-TUB2) in the whole bodies, in

tissues from different body parts in male or female adults, in nymphs at different life stages

and, finally, in nymphs treated with both temperature-induced stress and photoperiod-

induced stress. The results were evaluated by using BestKeeper, geNorm, NormFinder and the

ΔCt method to identify the most stably expressed RGs [12, 40–42]; an online tool, RefFinder,

was then used to integrate the results to find the most stable. Finally, to demonstrate the

importance of stable scalar in the normalization process of E. onukii gene expression, the E.

onukii cysteine proteinase, Eocyp, which is expressed in all tissues and at all stages [43], was
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chosen. Our results identify a series of RGs that could be used with qPCR to study the gene

expression profiles of E. onukii treated with induced stresses (biotic or abiotic); these will pro-

vide a solid foundation for further studies of the molecular biology of E. onukii.

Methods and materials

Experimental insects

Mixed-age E. onuki adults were collected from a tea plantation at the Tea Research Institute of

the Chinese Academy of Agricultural Sciences (N 30˚10’, E 120˚5’), Hangzhou, China. Adults

were transported to freshly potted tea shoots in enclosed net cages (75 × 75 × 75 cm) and kept

in a controlled climate room that was programmed at 26±2˚C, 70±5% r.h., under a photope-

riod of 14:10 h (L:D). Female adults laid eggs on the tender stems. After one generation,

nymphs at different developmental stages or male and female adults were used for different

treatments. All samples were frozen instantaneously with liquid nitrogen and stored in a -80˚C

refrigerator until use. Three biological replicates of all the treatments were prepared. The treat-

ments are briefly summarized below (Table 1).

Developmental stages of nymphs. Five treatment groups, composed of nymphs from the

first through the fifth instars, were established. As some groups had few members, large num-

bers of nymphs at the same developmental stage (70 first-instar, 50 second-instar, 30 third-

instar, 20 fourth-instar and 20 fifth-instar) were pooled separately for RNA extraction.

Nymphs were separated by morphological characteristics under the microscope (Olympus

SZ61, Beijing, China) and collected on the first day of molt.

Sexes. Ten two-day-old virgin adult males and females were collected and used for sepa-

rate analyses.

Tissues. Two-day-old virgin male or female adults were dissected (head, thorax, and

abdomen) by micro-forceps in liquid nitrogen under the microscope. Tissue from 20 male or

female adults was collected and pooled as one sample.

Table 1. Treatments and results.

No. Treatments Number of insects in each treatment Recommended RGs for each treatment

Name Material Condition

1 Developmental stages of nymphs First-instar Whole body 70 α-TUB,UBC
Second-instar Whole body 50

Third-instar Whole body 30

Fourth-instar Whole body 20

Fifth-instar Whole body 20

2 Sex Male adults Whole body 10 α-TUB,G6PDH
Female adults Whole body 10

3 Different tissues Male adults Head 20 α-TUB, RPL13,GAPDH
Thorax 20

Abdomen 20

Female adults Head 20 α-TUB, β-TUB1
Thorax 20

Abdomen 20

4 Temperatures Fifth-instar Whole body, 4˚C 10 AK, UBC
Whole body, 26˚C 10

36˚C 10

5 Photoperiod Fourth-instar Whole body, 0:24h (L:D) 10 RPL13, α-TUB
Whole body, 14:10h (L:D) 10

Whole body, 24:0h (L:D) 10

https://doi.org/10.1371/journal.pone.0205182.t001

Reference genes for Empoasca onukii

PLOS ONE | https://doi.org/10.1371/journal.pone.0205182 October 8, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0205182.t001
https://doi.org/10.1371/journal.pone.0205182


Temperatures. Ten fifth-instar nymphs (newly molted) were pooled in a glass tube

(diameter 1.5cm, length 8.2cm) with one fresh tea shoot per sample. Tubes were then exposed

for 1h to three temperature gradients in a metal bath: low (4˚C), moderate (26˚C) and high

(36˚C). The nymphs were allowed to recover at 26˚C for another hour. Three sample pools

(ten nymphs each) of each treatment were collected separately for RNA extraction. There was

no mortality in response to the treatment.

Photoperiods. The stability of candidate RGs was tested in fourth-instar nymphs sub-

jected to three different photoperiod treatments in illuminated incubators (SenXinRGQ-

360N, Shanghai, China) that were programmed at 26±2˚C, 70±5% r.h.: 0:24 h (L:D), 14:10 h

(L:D) and 24:0 h (L:D). Two days later, three sample pools (ten nymphs each) of each treat-

ment were collected separately for RNA extraction. There was no mortality in response to the

photoperiod treatment.

Total RNA isolation and cDNA synthesis

Total RNA was isolated by Promega SV Total RNA Isolation System according to the manu-

facturer’s protocol. The quantity and quality of extracted RNA were confirmed with NANO-

DROP 2000c (Thermo Scientific, Wilmington, DE, USA). Ratios of A260/280 ranged from 2.0

to 2.2, suggesting a high level of purity among all RNA samples. One μg of RNA was used to

synthesize the first-strand complementary DNA fragment using PrimeScript RT Master Mix

(perfect real time) (TaKaRa, Tokyo, Japan), according to the manufacturer’s protocol. The

standard curves were created with a five-fold dilution series of cDNA as a template for each

treatment using a liner regression model. The cDNA of all samples was stored at -20˚C.

Cloning and sequence identification

Ten housekeeping genes (α-TUB,AK, GAPDH, β-TUB1,RPL13, GST, β-TUB2,TBP,G6PDH
and UBC) were selected as candidate RGs from the transcriptome database of E. onukii. These

genes were cloned and sequenced, then confirmed by BLASTX. Primer premier 5 was used for

primer design to clone these genes. Full-length cDNA was amplified by PCR using primers

shown in Table 2. Each reaction included 50 ng cDNA, 1 μl of each primer (10 μM) and 2X

PrimeSTAR Max Premix (TaKaRa, Tokyo, Japan), and the volume was adjusted with nucle-

ase-free water to 20 μl. The PCR program contained a preliminary step at 95˚C for 5min, 40

cycles of denaturation at 95˚C for 10 s, an annealing temperature for 6s and 58˚C for 1–3 min

(depending on the length of mRNA). PCR products were examined by gel electrophoresis,

purified using a TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver 4.0 (TaKaRa, Tokyo,

Table 2. Sequence information of the Candidate Reference Genes.

Gene Name Symbol Forward Primer Reverse Primer Amplicon Size (bp)

ribosomal protein L13 RPL13 TGAAAAATGGCTCCCAAA CACAAGACATAACCGTATAAAA 734

alpha tubulin α-TUB TGTTGCGTCACTTCGTCT AGTCAGTTGCGGAAATAAA 1588

ubiquitin conjugating enzyme UBC ATTGCCTGTATGAAAAAAAA AGGAGCTGATGTCACTTGTG 845

TATA-Box binding protein TBP AATTAACTTAACCATTTCATTT ACTAACACGTACACTTACACG 981

glutathione-S-transferase GST TACCCTGGTGAGGGTGTC TCATGCTTTCTTGGTGAGA 823

glyceraldehyde-3-phosphate dehydrogenase GAPDH ACTTTCCTCTTCGTGCCCTTGAAGT TTGTGAAAAAAATCATGGGCTC 1191

glucose-6-phosphate dehydrogenase G6PDH AACAGAAGAGACTCTGCAGAT GAGCGTAATTAAGTTAAGGAA 2373

beta tubulin-1 β-TUB1 CTTAAAGGAATGTTTACCGATT TCAGGCAGTTCACTTGTTTC 1588

arginine kinase AK GCCCGACCTGACGCAACCTCGCCGC TCAGTACCCCAGCTATCTGTTT 1633

beta tubulin-1 β-TUB2 TTACTGACAAGTTATTGGGCG TGGGAAACACTATTTTCTAAGATA 1620

https://doi.org/10.1371/journal.pone.0205182.t002
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Japan), connected to the pMD 19-T Vector Cloning Kit (TaKaRa, Tokyo, Japan), following the

manufacturer’s protocol, and cloned in Escherichia coli; three of the bacteria solutions were

then sent to Genscript (Nanjing, China) for sequencing. The obtained sequences were com-

pared to the transcriptomic database to confirm the sequence prediction, and an online tool

(https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool) was used for

qPCR primer design (Table 3).

qPCR analysis

qPCR reactions were performed using a fluorescent quantitative system (LightCycler 480 II)

based on Synergy Brands. The 10μl reaction system contained 5 μl FastStart Essential DNA

Green Master, 0.5 μl of forward and reverse primers (10 μM) and 25 ng of first-strand comple-

mentary DNA. The PCR program for all the genes included an initial denaturation step for 10

min at 95˚C, followed by 45 cycles of 15s at 95˚C, 15s at 60˚C and 12s at 72˚C. Finally, a melt-

ing curve analysis from 60˚C to 95˚C was performed to confirm the specificity of PCR prod-

ucts. Expression levels of these genes were determined by the number of cycles needed for the

amplification to reach a fixed threshold in the exponential phase of the PCR reaction. Tripli-

cates were carried out for each sample.

Validation of selected reference genes

To demonstrate the importance of proper RGs in the analysis of gene expression profiles,

Eocyp (Genbank accession number: MH036890) was selected as the target gene. Three differ-

ent normalization factors (NFs) were calculated based on the geometric mean of the genes

with the lowest and the highest geometric mean values as determined by RefFinder, and a sin-

gle RG with the lowest or the highest geometric mean value. Raw Ct values were transformed

to relative quantities using the ΔΔCt method.

Data analysis

The stability of the candidate RGs was evaluated by BestKeeper, geNorm, NormFinder, the

ΔCt method and the online tool RefFinder (http://150.216.56.64/referencegene.php?type=

reference). The ΔCt method, geNorm and NormFinder rely on transformed Ct values of

(1+E) –ΔCt, while original Ct values were used in BestKeeper and RefFinder. All these methods

can recommend the most stable RGs; geNorm can also compare the pair-wise variation (V) of

one gene with others. The value of Vn/n+1 indicates the pair-wise variation between two

Table 3. Primers of Candidate Reference Genes in E.onukii for qPCR.

Symbol Forward Primer Reverse Primer Amplicon size (bp) Efficiency R2

RPL13 CGCGCCATCACTGAAGAGGA CAGCCTCTGGTCAGCTCGTG 75 104.8 0.9997

α-TUB GTGGTGCCAGGAGGTGACTT ACCCTCTCCGACGTACCAGT 153 100.2 0.9973

UBC GATGCTGAGGCAGACGGACT TCCCGAGGTGACGTTTGTCG 133 101.2 0.9976

TBP TGGGCTGCAAACTGGACCTG AAGATTAGCGCCGTCGTCCG 121 109 0.9963

GST TCGCCGATATCGCTCTTGCC CGTAGCCGGGCAGAGATGAC 120 95.7 0.9992

GAPDH GCTCCTCTCGCCAAGGTCAT GCGGCGGGAATGATGTTCTG 158 109.5 0.998

G6PDH GAAGGCCCACAGGGTGTTCT GAGGACATGCAGGTGTTGCG 87 105.2 0.996

β-TUB1 ATCCTGCCTCGGAAGATGGC TCCCGCGTCTCCACTTCTTC 184 101.3 0.9984

AK CAAGCTCGAGGAGGTCGCTG CTCGGTGAGTCCCATTCGCC 121 99.34 0.9927

β-TUB2 ACACCCACCTACGGAGACCT TCGTGCTGTCAGTGGAGCAA 174 106.9 0.9976

Eocyp CGTCGGCAGATGTGTTCCAA TGGTCCCAAGCAGAGTCGAT 142 95.6 0.9927

https://doi.org/10.1371/journal.pone.0205182.t003
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sequential NF and the optimal number of RGs required for accurate normalization; these two

variables show the optimal number of RGs. Comparisons among more than two samples were

analyzed using one-way ANOVA (Tukey’s test); those between two samples were analyzed

using Student’s t-test.

Results

Identification, amplification and PCR efficiency for qPCR of E. onukii
reference genes

Screening by PCR using primers (Table 2) yielded a single amplicon of the expected size for

each RG. Each amplicon was cloned, sequenced and annotated in the GenBank database as fol-

lows: α-TUB,AK, GAPDH, β-TUB1,RPL13, GST, β-TUB2,G6PDH and UBC. For each pair of

primers, the single normalized melting peak suggested that each pair of the primers amplified

a unique product. The amplification efficiency (E) values for the 10 RGs ranged from 95.6 to

109.5%, with R2 values from 0.9927 to 0.9997 (Table 3), making all assays suitable for quantita-

tive analysis.

Expression profiles of Candidate Reference Genes

As shown in Fig 1, raw Ct values of all candidate RGs ranged from 14.78 (AK) to 30.75 (TBP).

α-TUB (17.31), AK (17.52), GAPDH (17.92) and β-TUB1 (18.08) were the most abundant tran-

scripts, reaching the threshold fluorescence peak after 18 cycles. UBC (24.12) and TBP (25.95)

were expressed at the lowest levels.

Fig 1. Expression profiles of Candidate Reference Genes in E. onukii. The expression level of RGs in all samples is documented in terms of the cycle threshold

number (Ct value). The data are expressed as box-whisker plots; the short bar in the box refers to Ct mean value; the box represents the 25th–75th percentiles; the

median is indicated by a bar across the box; the whiskers on each box represent the distribution of the Ct values; and the dark spots refer to extreme outliers.

https://doi.org/10.1371/journal.pone.0205182.g001
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Developmental stages of Nymphs

The gene expression stability of ten candidate RGs from nymphs at different developmental

stages was analyzed using geNorm, the ΔCt method, BestKeeper and NormFinder. Results

showed that the gene stability ranking as analyzed by geNorm differed from the ranking as

analyzed by the other three methods (Table 4). For example, approaches using the ΔCt

method, BestKeeper or NormFinder across the developmental stages of all nymphs identified

α-TUB and UBC as the most stable RGs, whereas the geNorm approach identified the most sta-

ble genes across all developmental stages of all nymphs as RPL13 and G6PDH. However, all

four methods all identified GST as the most variable. According to results using RefFinder, the

ranking from the most to the least stable RG was as follows: α-TUB>UBC>G6PDH>RPL13
>β-TUB2>GAPDH>AK>TBP>β-TUB1>GST (Fig 2A). With GeNorm (Fig 3), all pairwise

variation (Vn/n+1) was below 0.15 (the recommended cut-off), indicating that the inclusion of

an additional RG was unnecessary (Fig 3). Based on the ranking of the RGs by RefFinder, α-
TUB and UBCwere identified as the best combination for the developmental stages of nymph

E. onukii.

Sexes

BestKeeper, geNorm, ΔCt method and NormFinder identified α-TUB and G6PDH as the most

stable RGs, and TBP as the least stable RG (Table 4). According to results from RefFinder, the

ranking from the most to the least stable was as follows: α-TUB>G6PDH>β-TUB1>β-TUB2
>AK>UBC>GST> GAPDH>RPL13>TBP (Fig 2B). Based on results of geNorm, two RGs

were suggested. According to RefFinder, α-TUB and G6PDH were chosen as the best combina-

tion for normalizing the expression of E. onukii adults in different sexes.

Tissues

Analyses of the ΔCt method, NormFinder and geNorm divided the ten RGs into two groups,

each with different tissues of female E. onukii: the group of more stably expressed genes con-

tained α-TUB, RPL13 and GAPDH; the group of less stable expressed genes contained AK,

UBC and TBP (Table 4). The BestKeeper analysis revealed that UBC, α-TUB and GAPDH are

the most stably expressed genes. According to the results from RefFinder, the stability ranking

from the most to the least was as follows: α-TUB>RPL13>GAPDH>GST>UBC>G6PDH
>β-TUB1>β-TUB2>TBP>AK (Fig 2C). Meanwhile, the most stable RGs in different tissues

of male adults were as follows: BestKeeper and the ΔCt method identified α-TUB, NormFinder

identified β-TUB1, and geNorm identified TBP. However, all four methods identified AK as

the most unstable gene (Table 4). Using geNorm and RefFinder in different tissues of female

and male adults of E. onukii, normalization required two (α-TUB and β-TUB1) and three (α-
TUB, RPL13 and GAPDH) RGs (Fig 3).

Temperatures

The ΔCt method and geNorm ranked AK as the most stably expressed genes in nymphs

exposed to different temperatures, whereas BestKeeper and NormFinder ranked UBC as the

most stable RG. All analysis programs, except BestKeeper, ranked TBP as the most variable

gene. RefFinder ranked the genes from the most to the least stable as follows: AK>UBC>GST
>α-TUB>G6PDH>GAPDH>RPL13>β-TUB2>TBP>β-TUB1 (Fig 2E). Furthermore,

geNorm and RefFinder analysis revealed that all the V values were below 0.15, which means

AK and UBC are the best RG combination for gene expression analysis when E. onukii nymphs

were exposed to different temperatures (Fig 3).
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Table 4. Ranking of reference genes expression under different experimental treatments.

Experimental Conditions Reference Gene geNorm NormFinder BestKeeper ΔCt

Stability Rank Stability Rank Standard Deviation Rank r Standard Deviation Rank

Developmental stages of nymphs RPL13 0.186 1 0.275 6 0.308 5 0.737 0.371 6

α-TUB 0.256 3 0.13 1 0.266 2 0.902 0.302 1

UBC 0.266 4 0.144 2 0.234 1 0.859 0.308 2

TBP 0.351 9 0.307 7 0.276 4 0.571 0.395 7

GST 0.369 10 0.368 10 0.357 7 0.579 0.444 10

GAPDH 0.284 5 0.241 5 0.375 9 0.909 0.354 5

G6PDH 0.186 1 0.236 4 0.35 6 0.84 0.349 3

β-TUB1 0.319 7 0.326 9 0.381 10 0.754 0.41 9

AK 0.336 8 0.315 8 0.272 3 0.59 0.407 8

β-TUB2 0.295 6 0.227 3 0.366 8 0.899 0.35 4

Sexes RPL13 0.368 5 0.335 6 0.833 9 0.96 0.57 7

α-TUB 0.22 1 0.11 1 0.533 4 0.989 0.457 1

UBC 0.506 9 0.79 9 0.166 1 0.073 0.84 9

TBP 0.618 10 1.033 10 1.468 10 0.987 1.063 10

GST 0.343 4 0.313 5 0.718 6 0.92 0.56 6

GAPDH 0.439 8 0.486 8 0.366 3 0.78 0.619 8

G6PDH 0.22 1 0.115 2 0.578 5 0.966 0.473 2

β-TUB1 0.296 3 0.23 3 0.825 8 0.991 0.511 3

AK 0.408 7 0.375 7 0.323 2 0.902 0.559 5

β-TUB2 0.319 4 0.232 4 0.722 7 0.974 0.525 4

Tissues of female adults RPL13 0.287 1 0.315 2 1.5 5 0.982 0.78 2

α-TUB 0.287 1 0.239 1 1.347 2 0.996 0.752 1

UBC 0.848 9 1.234 9 0.616 1 0.954 1.356 9

TBP 0.722 8 0.927 8 2.157 10 0.964 1.107 8

GST 0.503 4 0.363 4 1.71 6 0.985 0.813 3

GAPDH 0.45 3 0.357 3 1.409 3 0.981 0.814 4

G6PDH 0.656 7 0.561 6 1.415 4 0.951 0.881 7

β-TUB1 0.613 5 0.558 5 1.962 9 0.995 0.867 6

AK 0.967 10 1.323 10 1.755 7 0.888 1.445 10

β-TUB2 0.637 6 0.565 7 1.874 8 0.98 0.86 5

Tissues of male adults RPL13 0.246 1 0.338 4 0.441 4 0.616 0.675 4

α-TUB 0.352 4 0.154 2 0.195 1 0.685 0.647 1

UBC 0.681 9 0.887 9 0.794 8 0.234 1.011 9

TBP 0.246 1 0.276 3 0.444 5 0.661 0.648 2

GST 0.625 8 0.603 7 0.452 6 0.361 0.865 7

GAPDH 0.566 7 0.462 5 0.377 3 0.709 0.794 6

G6PDH 0.487 6 0.818 8 0.854 9 0.631 0.949 8

β-TUB1 0.406 5 0.074 1 0.271 2 0.81 0.672 3

AK 0.853 10 1.507 10 1.038 10 0.001 1.541 10

β-TUB2 0.273 3 0.491 6 0.556 7 0.647 0.729 5

(Continued)
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Photoperiods

The ΔCt method, NormFinder and geNorm ranked RPL13, α-TUB,UBC and β-TUB1 as the

four most stably expressed genes, and ranked β-TUB2,GST and TBP as the three most variably

expressed genes, when nymphs were exposed to different photoperiods. BestKeeper also

ranked RPL13, α-TUB and UBC as more stable genes than others, except TBP. RefFinder

ranked the genes from the most to the least stable: RPL13>α-TUB>UBC>β-TUB1>TBP
>G6PDH>AK>GAPDH>GST>β-TUB2 (Fig 2F). Analysis by geNorm also revealed that all

V values were below 0.15 (Fig 3). Thus, the RGs recommended for the nymphs of E. onukii
exposed to photoperiod stress are RPL13 and α-TUB.

Validation of proposed reference genes

Eocypwas chosen as the target gene to validate the rationality of the proposed RGs. The expres-

sion level of Eocyp in the third instar was significantly higher than that in the first instar when

normalized with the combination of α-TUB and UBC (NF 1–2, F = 7.997, P = 0.004) or α-TUB,

UBC and G6PDH (NF 1–3, F = 10.498, P = 0.001) as RGs, but no significant difference was

found when normalized with only one RG (NF1, F = 6.537, P = 0.007 or NF10, F = 3.215,

P = 0.061) or the combination of the two unstable RGs, β-TUB1 and GST, NF (9–10, F = 4.469,

P = 0.025) (Fig 4A). Analogously, the expression level of Eocypwas also not the same when

normalized with more than one RG [NF (1–2), F = 10.703, P = 0.010; NF (1–3), F = 5.656,

P = 0.042; NF (1–4), F = 6.706, P = 0.030; NF (9–10), F = 9.755, P = 0.013] compared with com-

pounds normalized with only one RG (NF1, F = 5.896, P = 0.038 or NF10, F = 6.843, P =

0.028) in different tissues of female adults. Moreover, when normalized with NF (1–2)

(F = 7.669, P = 0.011), the expression level of Eocypwas significantly higher in the head than in

Table 4. (Continued)

Experimental Conditions Reference Gene geNorm NormFinder BestKeeper ΔCt

Stability Rank Stability Rank Standard Deviation Rank r Standard Deviation Rank

Temperatures RPL13 0.26 9 0.246 7 0.316 2 0.846 0.377 9

α-TUB 0.155 1 0.192 6 0.465 7 0.952 0.317 5

UBC 0.231 7 0.079 1 0.302 1 0.964 0.31 4

TBP 0.376 10 0.824 10 0.415 4 0.145 0.842 10

GST 0.179 4 0.142 3 0.417 5 951 0.295 2

GAPDH 0.24 8 0.178 5 0.322 3 0.917 0.325 6

G6PDH 0.166 3 0.147 4 0.474 8 0.977 0.296 3

β-TUB1 0.215 6 0.276 9 0.519 10 0.941 0.361 8

AK 0.155 1 0.09 2 0.44 6 0.988 0.29 1

β-TUB2 0.204 5 0.255 8 0.511 9 0.961 0.351 7

Photoperiods RPL13 0.188 1 0.084 1 0.183 2 0.911 0.291 1

α-TUB 0.228 3 0.138 2 0.205 4 0.854 0.309 2

UBC 0.24 4 0.156 3 0.193 3 0.765 0.321 3

TBP 0.315 8 0.301 8 0.141 1 0.035 0.394 8

GST 0.345 9 0.426 9 0.264 6 0.001 0.481 9

GAPDH 0.294 7 0.278 7 0.331 9 0.767 0.378 7

G6PDH 0.26 5 0.242 5 0.228 5 0.663 0.357 5

β-TUB1 0.188 1 0.237 4 0.278 7 0.72 0.354 4

AK 0.281 6 0.25 6 0.282 8 0.683 0.36 6

β-TUB2 0.374 10 0.436 10 0.438 10 0.923 0.49 10

https://doi.org/10.1371/journal.pone.0205182.t004
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the abdomen, but no significant difference was found when Eocypwas normalized with other

RGs (Fig 4C). When the combination of α-TUB and G6PDH (NF 1–2, F = 0.063, P = 0.889) or

the combination of α-TUB,G6PDH and β-TUB1 (NF 1–3, F = 0.058, P = 0.469) was used for

normalization, similar expression levels of Eocypwere observed in female and male adults of E.

onukii. However, when normalized with TBP (NF10, F = 4.600, P = 0.013) or the combination

of PRL13 and TBP (NF 9–10, F = 1.730, P = 0.040), the expression level of Eocypwas higher in

female adults than that in male adults (Fig 4B). Similar results were observed in different tis-

sues of male adults as well, when normalized with the highest geometric mean value of AK
(NF10, F = 86.973, P = 0.000) or the combination of AK and UBC (NF (9–10), F = 42.887,

P = 0.000), the expression level of Eocyp in the head was higher than that in the thorax, whereas

it remained the same in the head and thorax when assessed with the most appropriate RG of

α-TUB (NF1, F = 6.696, P = 0.017) or the combination of α-TUB and β-TUB1 (NF1-2,

Fig 2. Expression stability of Candidate Reference Genes in E. onukii. The stability of RG expression was measured by RefFinder. A lower geometric mean value

represents more stable expression.

https://doi.org/10.1371/journal.pone.0205182.g002
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F = 7.669, P = 0.011) (Fig 4D). Moreover, the expression level of Eocyp under the two abiotic

stresses showed no significant difference when normalized with different individual RGs or

combinations of RGs (Fig 4E and 4F).

Discussion

Accurate normalization is required to minimize errors in qPCR and is a prerequisite for

obtaining reliable gene-expression results, especially when the differences are subtle. Many

methods to assess the expression stability of RGs have been developed but until now none has

been completely reliable. In addition, little attention has been paid to the presumed expression

stability of RGs and to gene expression analysis in E. onukii. As a result, the molecular biology

of this pest is not well understood. In the present study, we cloned ten common RGs with dif-

ferent functions from E. onukii and synthesized four commonly used methods to obtain the

most stable RGs; these are needed for quantifying the mRNA transcription of cellular

responses in response to five experimental manipulations. The methods—BestKeeper, ΔCt,

NormFinder and geNorm—are based on different algorithms [24, 44]. BestKeeper analyzes

the stability of the RG individually, whereas the ΔCt method, NormFinder and geNorm ana-

lyze pairwise variation between two RGs [45]. In our study, the results from BestKeeper varied

somewhat from the results of the other three methods in response to the same treatment. For

example, BestKeeper ranked UBC as the most stable RG, whereas the other methods identified

it as the most unstable in both sexes of E. onukii (Table4). The negative correlation between

UBC (r = 0.0073) and the other RGs (Table 4) indicates that the results of BestKeeper were

imprecise. A similar phenomenon was found earlier by Pfaffl (2001) [46]. The ranking of RGs

by geNorm also differed somewhat from the ranking of other methods when the

Fig 3. Optimal number of reference genes for the normalization of E. onukii under different experimental manipulations. The pairwise variation (Vn/n

+ 1) was analyzed by geNorm software to determine the optimal number of RGs included in the qPCR analysis. Values less than 0.15 indicate that another RG

will not significantly improve normalization.

https://doi.org/10.1371/journal.pone.0205182.g003
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developmental stages of nymphs were considered (Table 4). Previous results showed that geN-

orm was not able to evaluate the expression stability of RGs that were co-regulated or

expressed similarly; thus, using geNorm presupposed the selection of a pair of RGs [42].

According to Fig 3, if G6PDH were excluded, the geNorm ranking of RGs of nymphs at

Fig 4. Validation of the gene stability measure. Expression profiles of Eocypunder different experimental conditions using different RGs. A. Nymphs at different

developmental stages; B. Sex; C. Different tissues in female E. onukii; D. Different tissues in male E. onukii; E. Fifth-instar nymphs exposed to different temperatures; F.

Fifth-instar nymphs exposed to different photoperiod. Data are means±SE. One-way ANOVA (Tukey’s test) was used to analyze significant difference among

treatments (A, C~F); different letters in the same color columns show the statistical difference, P<0.05. Two samples were compared using Student’s t-test (B); �,

P<0.05.

https://doi.org/10.1371/journal.pone.0205182.g004
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different developmental stages would be changed and the stability of RPL13 would be corre-

spondingly decreased. However, because the results of NormFinder did not show this trend

(S1 Fig), we inferred that geNorm emphasizes the comparisons. Therefore, in order to obtain

reliable evaluation results, our study used RefFinder.

In our present study, α-TUB exhibited the most stable expression status in response to most

biotic manipulations, including the selection of the developmental stages of nymphs and of dif-

ferent tissues in adults of both sexes and in the whole bodies of both sexes (Fig 2). Further-

more, α-TUB also exhibited the most stability in different tissues and in the whole bodies of

adults of each individual sex and in different tissue from a mixed-sex group of adults (S2–S5

Tables); G6PDH, on the other hand, exhibited the most stability across different stages of

nymphs and in both sexes (S1 Table). α-TUB, which is a cytoskeletal protein and functions in

many physiological processes [47], has been ranked as the most stable RG in expression studies

under different developmental conditions with N. lugens, Liriomyza trifolii, B. tabaci, Tetrany-
chus cinnabarinus, Monochamus alternatus and Sogatella furcifera [48–51]. In addition, α-TUB
was ranked as the most stable RG in different tissues of C. suppressalis, Galeruca daurica, M.

alternatus, Rhodnius prolixus and Phenacoccus solenopsis [17, 32, 52]. However, α-TUBwas

regarded as a variable RG in response to different developmental conditions of Apis mellifera
and Delphacodes kuscheli [53, 54]. In conclusion, although α-TUBwas expressed stably in most

cases, it should be tested across more species and in response to different treatments before

being employed.

Specific RGs may not be completely stable in a species exposed to different experimental

conditions or to evaluation by different methods. Sometimes the instability may be due to a

gene’s function. AK, arginine kinase, the only phosphagen kinase in insects [55], has been

found to be the most stable RG in N. lugens and C. suppressalis when these were subjected to

temperature stresses or insecticides, and also the most stable RG in different larval tissues of S.

litura, and in the labial gland and fat body of Bombus terrestris [56, 57]. Our results showed

that AK was the most stable RG in E. onukii nymphs exposed to different temperatures (Fig

2E) but it was the most unstable RG in tissues from the head and/or the thorax of both male

and female adults (Fig 2B and 2C). Ribosomal protein 13L (RPL13) encodes a ribosomal protein

that is a component of the 60S subunit and, in conjunction with rRNA, constitutes the ribo-

somal subunits involved in the cellular process of translation [47]. Our results showed that

RPL13 was an optimized RG of E. onukii in different tissues of female adults and in nymphs

that had been exposed to different photoperiods (Fig 2F). Previous results showed that the

ribosomal protein gene was found to be the most stable RG in A. mellifera, Schistocerca gre-
garia, Tribolium castaneum, D. melanogaster, Bombyx mori, C. suppressalis and B. tabaci under

certain experimental conditions [22, 29, 53, 57–60]. GST was regarded as the most unstable

RG in E. onukii nymphs at different developmental stages or in nymphs exposed to different

photoperiods; however, RefFinder ranked GST as the most stable RG when all experimental

conditions were considered (S6 Table). In conclusion, the normalization scalars among the

candidates correspond to experimental conditions and the best way to select a suitable RG for

gene expression analysis is to evaluate it under specific experimental conditions.

Recently, multiple RGs have been used to normalize the expression of target genes more

accurately. When multiple RGs were used in a given experiment, the probability of biased nor-

malization was reduced [19, 61–64]. Traditionally, an optimal number of RGs with the least

pairwise variation (V) was selected by GeNorm. GeNorm determines the pairwise variations

(Vn/n+1) in NFs (the geometric mean of multiple RGs) using n or n+1 RGs with a threshold

value< 0.15 but the threshold value is not totally absolute [12]. In the present study, our results

not only confirmed that the most appropriate RGs differed across experimental manipulations

but they also proved that the use of multiple RGs in qPCR increased the accuracy and
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sensibility of gene expression analysis in E. onukii (Fig 4A–4D). Furthermore, the results dem-

onstrated that when Eocyp expression data were normalized with the combination of α-TUB,

RPL13 and GAPDH, subtle differences among different tissues of female adult E. onukii were

detected but when data were normalized with one RG or with other combinations of RGs, no

differences were observed.

In conclusion, using qPCR, we screened a series of RGs to study the gene expression pro-

files of E. onukii in response to multiple experimental manipulations. This study provide a

solid foundation for further studies of the molecular biology of E. onukii.
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