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Abstract

Background

Personalized medicine is a growing area of research which aims to tailor the treatment

given to a patient according to one or more personal characteristics. These characteristics

can be demographic such as age or gender, or biological such as a genetic or other bio-

marker. Prior to utilizing a patient’s biomarker information in clinical practice, robust testing

in terms of analytical validity, clinical validity and clinical utility is necessary. A number of

clinical trial designs have been proposed for testing a biomarker’s clinical utility, including

Phase II and Phase III clinical trials which aim to test the effectiveness of a biomarker-

guided approach to treatment; these designs can be broadly classified into adaptive and

non-adaptive. While adaptive designs allow planned modifications based on accumulating

information during a trial, non-adaptive designs are typically simpler but less flexible.

Methods and Findings

We have undertaken a comprehensive review of biomarker-guided adaptive trial designs

proposed in the past decade. We have identified eight distinct biomarker-guided adaptive

designs and nine variations from 107 studies. Substantial variability has been observed in

terms of how trial designs are described and particularly in the terminology used by different

authors. We have graphically displayed the current biomarker-guided adaptive trial designs

and summarised the characteristics of each design.

Conclusions

Our in-depth overview provides future researchers with clarity in definition, methodology

and terminology for biomarker-guided adaptive trial designs.
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Introduction
The rapidly developing field of ‘personalized medicine’ [1], also known as ‘individualized med-
icine’, ‘stratified medicine’, or ‘precision medicine’ is allowing scientists to treat patients by pro-
viding them with a specific regimen according to their demographic or individualized genomic
or biological characteristics, known as biomarkers [2]. The terms Personalized Medicine and
Individualized Medicine often create confusion in literature as in reality, the objective of this
approach is to identify demographic- or biomarker-defined subgroups. Thus, as it still remains
a population and not an individualized approach, the terms Stratified or Precision medicine
are often considered to be more accurate.

The Biomarkers Definitions Working Group defined a biomarker to be “a characteristic
that is objectively measured and evaluated as an indicator of normal biological processes, path-
ogenic processes, or pharmacologic responses to a therapeutic intervention” [1, 3–6]. Biomark-
ers related to clinical outcome which are measured before treatment can be classified as either
prognostic or predictive biomarkers. Prognostic biomarkers provide information regarding the
likely progression of a disease without taking into account any specific treatment, whilst pre-
dictive biomarkers provide information about the patient’s outcome given a certain treatment,
i.e. their likely response to the treatment [3, 6–33].

Prior to utilizing a patient’s biomarker information in clinical practice, it is necessary that
they have been robustly tested in terms of analytical validity (this answers the question whether
or not we should trust the results of a specific biomarker), clinical validity (the results obtained
from the test should be related to other clinical information) and clinical utility (a particular
biomarker should be useful in ameliorating patients’ health) [8, 12, 18, 24].

A number of Phase II and Phase III trial designs have been proposed for testing the clinical
utility of predictive biomarkers and they can be broadly classified into adaptive and non-adap-
tive trial designs. As we enter the new era of personalized medicine, there is substantial need
for novel trial designs which will (i) demonstrate cost benefits and minimize the required time
to conclusive results despite an increase in the number of subjects needed for the trial; (ii)
avoid erroneous conclusions and (iii) be more ethical by giving patients more effective treat-
ments. Whereas non-adaptive trial designs often result in large and costly Phase III trials of
long duration, adaptive designs are becoming increasingly attractive in the context of bio-
marker-directed therapies as they allow for additional flexibility during the course of the trial.

The current study aims to communicate the different biomarker-guided adaptive trial
designs proposed in the literature so far, and to report on the potential advantages and weak-
nesses of each.

Methods and Findings
We have undertaken a search of the MEDLINE (Ovid) database, restricted to published papers
in the English language within the previous ten years aiming to identify articles which describe
and discuss both non biomarker-guided trial designs, which we will refer to as ‘traditional’ trial
designs, and biomarker-guided trial designs. Two separate strategies as illustrated in Fig 1 were
used to identify relevant articles, and the keywords utilized in the search are presented in S1
Keywords. First author (MA) screened the available titles and abstracts, and second and third
authors (ALJ, RKD) were consulted where it was questionable whether a paper should be
included or not. Our initial search resulted in 9,412 and 5,024 relevant titles for biomarker-
guided clinical trial designs and traditional designs respectively. From the 9,412 papers, 104
articles were included based on their title and abstract. From the 5,024 papers, 40 articles were
included based on their title and abstract and after removing inaccessible articles or those
already identified in the search for biomarker-guided trial designs. A further 57 papers were
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identified from searching both the reference list of included articles and the internet (the inter-
net searches were performed using the same keywords as those for the Ovid strategy). Of the
201 included papers, biomarker-guided adaptive trial designs were referred to in 107 papers.
An extraction form was designed to collect all necessary information, and the summary of the
extracted data was reviewed by the second and third authors (ALJ, RKD). If there were any

Fig 1. CONSORT diagram of the review process.

doi:10.1371/journal.pone.0149803.g001
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ambiguities or confusion as to the extracted data, the second and third authors were consulted.
For each included paper, the following details were extracted: definition of the trial design(s)
referred to in the paper, how patients were screened and/or randomized based on their bio-
marker status, treatment groups randomized to, other key information relating to the trial
design and methodology, advantages and limitations, and examples of actual trials which have
adopted designs if mentioned together with the proposed methodology and clinical field where
the design had been applied. There is no evidence of some of proposed trial designs in practice
in the literature which was used for our review; however, they may well currently be in use in
ongoing trials. The review of all trial designs which have been implemented in practice is
beyond the scope of this paper.

Adaptive designs
Before discussing the specific biomarker-guided adaptive trial designs, we consider key aspects
of adaptive trial designs in more general.

Definitions and terminology. To date, several authors have given different definitions
about adaptive designs in general [34–36]. Chow et al. (2005) [34] described the adaptive
design as a strategy that allows adaptations in trial procedures and/or statistical procedures
after initiation of the trial without undermining the validity and integrity of the trial. In 2006,
the Pharmaceutical Research Manufacturer Association (PhRMA) Working Group on Adap-
tive Design [35] defined an adaptive design as a clinical trial design that uses accumulating
data to decide how to modify aspects of the study as it continues, without undermining the
validity and integrity of the trial.

In 2010, US Food and Drug Administration defined an adaptive design as a study that
includes a prospectively planned opportunity for modification of one or more specified aspects
of the study design and hypotheses based on analysis of (usually interim) data from subjects in
the study [36]. In the context of biomarker-guided therapies, Chen et al. (2014) [12] defines the
biomarker adaptive trial design as “designs which identify most suitable target subpopulations
with respect to a particular treatment, based on either clinical observations or known biomark-
ers, and evaluate the effectiveness of the treatment on that subpopulation in a statistically valid
manner”.

Some researchers refer to these approaches as flexible designs [33, 37–40], terminology
which can cause confusion since some trial designs which allow adaptivity are by no means
flexible, for example those with pre-specified rules in terms of how to proceed based on interim
data analyses [41]. Thus, the term ‘flexible designs’ can include designs with both planned and
unplanned properties [42].

Adaptations to the design. Adaptations based on interim analysis, which are made during
the course of an adaptive strategy include adding or dropping treatment arms, changes in the
required sample size, changes in the allocated proportion of the study population in order to
randomize more patients to treatment arms which are doing better, or refinement of the exist-
ing study population according to their predictive biomarkers [38–40, 43–49].

In Personalized Medicine the most common adaptations during the implementation of
adaptive designs refer to changes in randomization probabilities within the biomarker-defined
subgroups or dropping a biomarker-defined subgroup [15, 50].

Generally, this type of biomarker-guided approach is appropriate when (i) the candidate
biomarker is not known at the start of the study; (ii) there are multiple experimental treatments
and pre-specified biomarker-defined subgroups; (iii) existence of well-established analytical
validity; (iv) rapid turnaround time for biomarker assessment [12, 15, 51].
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Analysis of adaptive designs. Although both a Bayesian and Frequentist framework has
been used for the analysis of adaptive designs [26, 52–54] the former has been described by
many authors as a more suitable perspective due to its flexibility as it enables revision of knowl-
edge according to prior information. I-SPY2 and BATTLE studies are examples of actual
adaptive trials designed with a Bayesian framework [48, 49, 55]. Nevertheless, the Bayesian per-
spective in adaptive designs can cause many problems in terms of computational demands,
inference making and parameter estimations [10, 26, 55, 56].

Biomarker-guided adaptive trial designs
In our review, we have identified eight main biomarker-guided adaptive designs. Four of the
eight designs also have variations. Each main design is presented graphically in Figs 2–9. The
characteristics and methodology of the eight main designs are discussed below and summa-
rized in Table 1, whilst information on their variations are summarized in S1 File (Table A in
S1 File).

Adaptive signature design. The adaptive signature design is described in 30 (28%) papers
of our review. It is a two-stage Phase III non-Bayesian trial design proposed by Freidlin and
Simon (2005) [105] for settings where an assay or signature that identifies sensitive patients
(i.e, biomarker-positive patients) is not known at the outset. This trial design permits the devel-
opment and evaluation of a biomarker based on high dimensional data. It uses a training set to
identify predictive biomarkers and evaluates them in a validation set. Generally, this approach
is useful when there is no available biomarker at the start of the trial or there is a great number
of candidate biomarkers which could be combined to identify a biomarker-defined subgroup,
and the attention is given first to the entire study population. Five variations of the adaptive
signature design have also been identified, with differences occurring mainly in terms of the
analysis. These variations are the following: i) Adaptive threshold design, ii) Molecular signa-
ture design, iii) Cross-validated Adaptive Signature design, iv) Generalized adaptive signature
design and v) Adaptive signature design with subgroup plots. Information about each variant
can be found in S1 File, section ‘‘Variations of Adaptive signature design”.

Design: Fig 2 graphically represents the trial design. The design begins with a comparison
between the experimental treatment and the standard treatment in the entire study population
at a pre-specified level of significance. In case that the overall result is positive, it is considered
that the treatment is beneficial and the trial is closed. If the comparison in the overall popula-
tion is not promising, then the entire population is divided in order to develop and validate a
biomarker, using a split sample strategy. More precisely, a portion of patients is used to detect
a biomarker signature that best distinguishes subjects for which the novel treatment is better
than the standard treatment. Hence, this approach (i) identifies patients who are more suscep-
tible to a specific treatment during the initial stage of the study (at the interim analysis); (ii) it
assesses the global treatment effect of the entire randomized study population through a pow-
ered test, and (iii) finally, it assesses the treatment effect for the biomarker-positive subgroup
identified during the initial stages of the study but only with patients randomized in the
remainder of the trial, the so-called ‘validation test’.

Methodology: The analysis is undertaken as follows: At the interim analysis stage, if the
overall treatment effect is not significant at a reduced level a1 (< 0.05), the full set of P patients
in the clinical trial is partitioned into a training set Tr and a validation set V. A pre-specified
algorithmic analysis plan is applied to the training set to generate a classifier Cl(x;Tr) where x
is a biomarker vector. This classifier is a function that identifies a biomarker-positive subgroup
of patients who appear to benefit from the experimental treatment E. Cl(x;Tr) = 1 means that a
patient with x is predicted to benefit from E whereas Cl(x;Tr) = 0 indicates that a patient is not
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Fig 2. Adaptive signature design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g002

Fig 3. Outcome-based adaptive randomization design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g003
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predicted to benefit from E [57]. At the final analysis, the experimental treatment E is com-
pared with the standard of care (or control) treatment in the biomarker-positive patients sub-
group using a significance level of a2 = α−a1 in order to ensure that the overall likelihood to
obtain a false-positive conclusion is no greater than α (= 0.05).

Freidlin and Simon (2005) [105] recommended that a level of a1 = 0.04 (two-sided) is allo-
cated to the entire population hypothesis and a2 = 0.01 (two-sided) is allocated to the bio-
marker-positive subgroup hypothesis. The multiplicity problem is a concern with this
approach as the statistical test is conducted twice. The power of this strategy can be increased
using K-fold cross-validation as Freidlin and Simon (2005) [105] demonstrated (see the Cross-
validated adaptive signature design (CVASD) in S1 File for further information).

Statistical/practical considerations: Although the adaptive signature design allows for
approval of the novel treatment in a quick and efficient way, the main statistical challenges to
be taken into account include the potential increase in the number of patients and the limited
power to assess the treatment effect in the biomarker-defined subgroup. However, this
approach avoids introduction of bias since the adaptations do not involve modifications in
allocation ratio and eligibility criteria. Further, it prevents the inflation Type I error rate as the
design does not use the study population which was employed to develop the predictive signa-
ture for the assessment of the treatment effect.

Outcome-based adaptive randomization design. The outcome-based adaptive randomi-
zation approach is referred to in 24 (22.4%) papers. In the context of personalized medicine,
this design is used when the biomarkers are only putative or not known at the beginning of a
Phase II trial and is also useful when there are multiple targeted treatments and biomarkers to

Fig 4. Adaptive threshold sample-enrichment design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g004
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be considered. It aims to test simultaneously both biomarkers and treatments while providing
more patients with effective therapies according to their biomarker profiles. Outcome-adaptive
randomization is sometimes included under the umbrella of “Bayesian clinical trials” but as
criticized by Korn and Freidlin (2011) [71], there is nothing inherently Bayesian about it.
There is a single variant of the outcome-based Adaptive Randomization design with differences
occurring in its analysis methodology. This variant is referred to as Bayesian covariate adjusted
response-adaptive randomization and information about this approach can be found in S1
File, section ‘‘Variation of Outcome-based adaptive randomization design”. Two examples of
actual trials which use the outcome-based adaptive randomization approach are the following:
i) BATTLE trial [14, 29, 52, 59, 62, 70, 72–74, 76, 77], ii) ISPY2 [29, 32, 49, 62, 72, 75, 76].

Design: An illustration of this approach is shown in Fig 3. The trial begins with the assess-
ment of patients’ biomarker status. The design permits the modification of patients’ allocation
to different treatment arms so that the arm(s) which seem(s) to benefit the study population
the most, is composed of the higher proportion of randomized patients. Consequently, we have
randomization probabilities which do not stay fixed over time (e.g. change from adaptive ran-
domization (AR) ratio 1:1 to AR 2:1, see Fig 3). The random assignment of patients to treat-
ment arms, according to their biomarker status, depends on the use of accumulated patients’
data about how well the biomarker performs as at each interim analysis stage. When these
accruing outcome data indicate that an experimental treatment is more effective as compared
to the standard of care (or control), it is possible that a higher number of patients will be
assigned to this particular experimental arm.

Fig 5. Adaptive patient enrichment design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g005
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Methodology: Zhou et al. (2008) [77] proposed an analysis plan in a Bayesian hierarchical
framework using the Bayesian probit model to characterize the disease control rate for each
treatment by biomarker subgroup. Therefore, the estimates for the treatment and the bio-
marker effect are provided by using the adaptive randomization design with the incorporation
of a hierarchical Bayes model (it is a probit model included in the category of generalized linear
models which uses the probit link function to model categorical or ordinal data). More pre-
cisely, the process starts with the biomarker profile assessment of all eligible patients and then
according to the profile of each individual, the study population will be assigned to the different
biomarker groups (e.g. a patient with a particular biomarker will be assigned to a specific bio-
marker group). Due to the fact that at the beginning of the trial we do not know the true disease
control rate (i.e., the proportion of patients who demonstrate response to a treatment) the trial
begins with equal randomization so that each treatment by biomarker subgroup is composed
of at least one individual with a known disease control status (whether the patient will experi-
ence progression given a certain treatment). Next, the trial continues with adaptive randomiza-
tion of patients; this is achieved by using the Bayesian probit model to calculate the posterior
disease control rate. After the posterior rate is found, we define the randomization rate as the
posterior mean of the disease control rate of each treatment in each biomarker-defined sub-
group. The adaptive randomization process continuous until the last individual is enrolled and
can stop early only in case that all treatments are dropped due to inefficacy. Whereas in many
trial designs the baseline covariate (in this case the biomarker) is considered as prognostic, the
design proposed by Zhou et al. (2008) [77] allows for modelling the treatment by biomarker
interactions where the biomarker is in fact predictive. The incorporation of the above

Fig 6. Adaptive parallel Simon two-stage design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g006

Biomarker-Guided Adaptive Clinical Trial Designs

PLOS ONE | DOI:10.1371/journal.pone.0149803 February 24, 2016 9 / 30



Fig 7. Multi-armmulti-stage (MAMS) design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g007

Fig 8. Stratified adaptive design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g008
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hierarchical Bayesian structure allows ‘borrowing strength’ or information-sharing across
patients receiving the same treatment but with different biomarker profiles [77].

Statistical/practical considerations: Despite the fact that this design can be considered suc-
cessful as an ethical approach where patients can be assigned to the most effective treatments
according to their biomarker profiles, an issue that raises concern is the requirement of a rela-
tively short assessment period of both biomarker and endpoint to avoid erroneously not only
the assignment of patients but also the adjustment of the randomization rate. Also, potential
introduction of bias due to time trends in the prognostic mix of the patients enrolled to the
study should be taken into consideration.

Adaptive threshold sample-enrichment design. Adaptive threshold enrichment design
was identified in 5 papers (4.7%) of our review. This approach is a two-stage design in a Phase
III setting which was proposed by Liu et al. (2010) [79] to adaptively modify accrual in order to
broaden the targeted patient population (see Fig 4).

Design: The design is based on the former knowledge that a specific biomarker-defined sub-
group (biomarker positive) is believed to benefit more from a novel treatment as compared to
the remainder of the study population (biomarker negative). This knowledge can be gained, for
example, from previous studies such as a large scale comparative trial (Phase III) when there
was treatment effect heterogeneity among the study population. This design allows the trial to
be terminated for futility in the biomarker positive subgroup. More precisely, the trial proceeds
as follows: (i) accrue and randomize only biomarker positive patients; (ii) conduct an interim

Fig 9. Tandem two stage design. “R” refers to randomization of patients.

doi:10.1371/journal.pone.0149803.g009
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Table 1. Characteristics of biomarker-guided adaptive trial designs in Phase II and Phase III.

Types of Biomarker-guided
adaptive trial designs

Phase Adaptations Pros Cons

Adaptive signature design (30
papers) [2, 6, 8, 9, 12, 14–16,
18, 20, 21, 24, 27, 31, 32, 47, 49,
57, 58–68]

III Identification of biomarker-
positive subpopulation

Identification of optimal group of
patients which benefit the most
from a specific treatment.

Larger sample size may be
required, especially when there is
small difference between biomarker-
negative and biomarker-positive
patients.

Also called: Two-stage Adaptive
Signature design, Adaptive Two-
stage design, Biomarker-
Adaptive Signature design

Identification and validation of
candidate biomarker in a single
trial.

Can limit its power when testing the
treatment effectiveness in the
biomarker-positive subgroup as half
of patients are used for signature
development and half for validation
of the biomarker.

Avoids inflation of type I error rate
as it does not use the individuals
on which the predictive signature
was developed in order to test the
treatment effect.

Treatment comparisons can only
performed when the study is
completed.

Rapid and efficient approval of the
novel treatment.

No modifications in randomization
weights or in eligibility criteria are
made, consequently, it avoids any
statistical adjustment needed to
ensure that there is no
introduction of bias.

Outcome-based adaptive
randomization design (24
papers) [14, 26, 29, 32, 37, 40,
47, 49, 52, 56, 59, 62, 63, 65, 69,
70–78]

II Change in randomization ratio Smart, novel, and ethical
approach

Complexity in terms of building-up
the trial design, conduct and
analysis of the trial.

Also called: Adaptive
randomization Bayesian
Adaptive, Bayesian Adaptive
randomization, Combined
dynamic multi-arm, Outcome-
Adaptive randomization,
Outcome-based Bayesian
Adaptive Randomization

Permits updating patient’s
outcome (it uses the accumulated
information in order to assign
patients to different treatment
arms; the arm which seems to
benefit the study population the
most, is composed of the higher
proportion of randomized
individuals).

Can make incorrect decisions in
case of incorrect biomarker
selection as the design is based on
the accumulated data about how
well the biomarker performs.

Can result in high probability of
success of the trial as there is
increase in the number of patients
who receive effective treatments.

Requirement of relatively short
biomarker and endpoint assessment
(quick testing of the biomarker is
required in order to avoid incorrect
decision regarding the assignment
of patients and rapid assessment of
outcome to randomize adaptively
according to the updated outcome.).

In the Bayesian perspective, Type
I and II errors can be controlled by
carefully calibrating the design
parameters.

Likely to introduce bias due to time
trends in the prognostic mix of
individuals enrolled to the study
(e.g., less frail individuals
considered for the trial after some
point due to toxicity concerns).

Can boost patients’ ethics as
patients are assigned to the best
available therapy.

(Continued)
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Table 1. (Continued)

Types of Biomarker-guided
adaptive trial designs

Phase Adaptations Pros Cons

Adaptive threshold sample-
enrichment design (5 papers)
[18, 20, 21, 63, 79]

III Change in the inclusion criteria
of the study population after the
initial stage of the study in order
to broaden the targeted patient
population.

More cost-effective as it avoids
further recruitment of patients
when there is no difference in
treatment outcome among the
biomarker-defined subgroups.

Cannot work if there is no
information about a subset of
patients for whom the novel
treatment is more effective than
others before the beginning of the
trial.

Also called: Threshold sample-
enrichment approach, Two-stage
Sample Enrichment, Two-stage
sample-enrichment design
strategy

Researchers can use the data
which was accumulated during
the first stage of the study to
proceed with further investigation
of any other potential assumption
made at the start of the trial.

Adaptive patient enrichment
design (23 papers) [3, 6, 7, 14,
18, 20, 21, 29, 38, 42, 43, 63, 70,
74, 78, 80–87]

III Information obtained from
interim stage is used to broaden
the targeted patient population.

Can detect a particular biomarker-
defined subgroup most likely to
respond to the novel treatment,
thus the efficiency of study design
can be increased.

Can be quite complex.

Also called: Adaptive accrual,
Adaptive accrual based on
interim analysis design, Adaptive
Enrichment, Adaptive
Modification of Target
Population. Adaptive Population
Enrichment, Two-stage Adaptive
Design, Two-stage adaptive
accrual

Can gain more power than a fixed
study design under the scenario
that the genomic biomarker is
predictive of treatment effect (i.e.,
the value of effect size indicates
that there is treatment effect in the
biomarker-defined subgroup, e.g.
the value of 0.4) than in the case
where the genomic biomarker is
prognostic (i.e., the scenario
where we assume that the value
of effect size is zero).

Can result in biased treatment effect
estimates.

Criticised as a design without
satisfactory operating characteristics
in real practice with a lack of
generalizability and information in
subgroups which are excluded.

May augment the duration of the
trial depending on the prevalence of
the biomarker for the biomarker—
defined subgroup which continues
to full accrual due to recruitment of
many more biomarker-positive
patients.

Requirement of an appropriate
futility boundary and rapid and
reliable clinical endpoint.

Conservativeness of futility
boundaries as the futility boundary
is set to be in the region in which the
observed efficacy of the standard of
care is greater than that for the
experimental treatment.

Assumes complete confidence in
the biomarker.

Early termination of the entire trial is
not permitted.

(Continued)
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Table 1. (Continued)

Types of Biomarker-guided
adaptive trial designs

Phase Adaptations Pros Cons

Adaptive parallel Simon two-
stage design (8 papers) [6, 76,
85, 88–92]

II The design starts with two
parallel studies and according to
the results of the initial stage we
enroll selected or unselected
patients during the second
stage.

May reduce the required sample
size.

Does not allow early termination of
the trial for efficacy in biomarker-
defined subgroups during the first
stage of the trial.

Also called: Biomarker-adaptive
parallel two-stage, Adaptive
parallel, Two-parallel Simon,
Two-stage design

May augment the efficiency of the
trial as it allows for early
understanding that a particular
experimental treatment is
beneficial in a specific biomarker-
defined subgroup.

Straightforward and simple
strategy with reasonable
operating characteristics.

Multi-arm multi-stage designs
(16 papers) [18, 20, 40, 56, 63,
69, 89, 93–103]

II/III Experimental arms can be
dropped for futility from the
study.

Promising treatments are tested
concurrently using a smaller
number of patients as some
treatments arms can be dropped
early for futility.

High setting-up time due to the
complexity caused by logistic issues
and collection of experimental drugs
from different companies.

Also called: Adaptive biomarker-
driven design, Adaptive Analysis,
Adaptive Multi-stage designs,
Multi-stage

Reduced costs and time as they
assess multiple treatments
simultaneously.

Operational challenges regarding
the randomization and the
modifications of allocation ratios
after the performance of an interim
analysis.

Preferable to continue with the
investigation of promising
treatments as compared to the
conduct of separate single-arm
phase II clinical trials.

The simultaneous assessment of
multiple experimental treatments
increases the chance of
identifying a promising treatment.

It is unlikely that the trial will stop
for futility as multiple experimental
treatments are tested and hence,
it is not likely that all experimental
arms will be ineffective and
dropped.

Can ease the regulatory and
administrative burden as
compared to building—up
separate trials.

Unpromising experimental arms
can be dropped in a quick and
reliable way.

Stratified adaptive design (1
paper) [89]

II The number of patients and
decision rules are based on the
observed response rates during
the first stage of the study.

Can avoid unethical studies in
patients for whom the novel
treatment is not effective as it
allows for the identification of
efficacy which is limited to a
particular biomarker-defined
subgroup.

No information found

(Continued)
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analysis in order to compare the experimental treatment with the standard of care within the
biomarker positive subgroup; (iii) if the interim result is negative, then the accrual stops and
the trial is closed without showing a treatment benefit; if the result is ‘promising’ for the specific
biomarker-positive subgroup, then the study continues with this specific biomarker positive
subgroup and accrual also begins for biomarker negative patients. Thus, the trial continues
with patients randomized from the entire population. A ‘promising’ result in the biomarker
positive subgroup at the interim stage is claimed when the estimated treatment effect is above a
particular pre-specified threshold.

Table 1. (Continued)

Types of Biomarker-guided
adaptive trial designs

Phase Adaptations Pros Cons

No alternative names found for
this trial design

The trial can continue to Phase III
only with a subgroup which is
proven to benefit from the
experimental therapy and not with
the entire population.

Less numbers of individuals for
whom the novel treatment is not
effective will be tailored to toxic
treatments.

Permits the identification of the
actual treatment benefit in at least
one biomarker-defined subgroup.

Avoids the termination of tailoring
a novel treatment due to
treatment effect dilution in the
entire population.

Permits early stopping of efficacy
or inefficacy.

Tandem two stage design (5
papers) [21, 63, 76, 90, 104]

II Assessment of treatment
effectiveness in the entire
population at the first stage of
the study to make a decision
about enriching the targeted
patient population.

Although the two stages could be
run separately, i.e. one for the
biomarker-positive subgroup and
the other for the unselected
patients, the performance of the
study in this way can increase the
duration and costs of the trial.
Consequently, it will be better to
run the study in just one trial so
as to have a more seamless
study.

No information found

Also called: Tandem two-step
phase II trial, Tandem-two step
trial (phase II), Tandem two-step
phase 2 trial design, Tandem
two-step

Allow estimating response rates
not only in the unselected
biomarker-defined patients (entire
population) but also in the
biomarker-positive subset.

Identify whether the experimental
treatment is beneficial in the
entire population, and if it is not,
then can test whether the
candidate predictor can enrich the
responding population.

Allow for simultaneous testing of
multiple different biomarkers for
the same treatment in a single
parallel multi-arm trial.

doi:10.1371/journal.pone.0149803.t001
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Methodology: The analysis is undertaken as follows: At the interim analysis stage, the treat-
ment effect of a sample of patients (n1) from the biomarker-positive subset is estimated. If an
improvement is seen in the experimental treatment arm which is greater than a pre-specified
threshold value (i.e. the estimated treatment difference between the novel treatment arm and
the control treatment arm for this subpopulation is greater than a threshold value c divided by
the square root of the aforementioned sample size n1) the trial continues with accrual of
patients from the entire biomarker-positive subgroup and additional patients are also accrued
from the biomarker-negative subpopulation; otherwise the trial is stopped for futility. At the
end of the trial, the treatment effect is estimated for all subpopulations. Researchers should
choose the sample size n1 so that a persuasive result can be reached when the first stage of the
trial is completed. In general, the threshold value c can be determined so that c=

ffiffiffiffiffi

n1

p
is a pro-

portion of the smallest meaningful treatment improvement that researchers expect, e.g. it can
be set to half of the smallest clinically important difference. Other methods also have been pro-
posed [79].

Liu et al. (2010) [79] give a detailed description regarding the statistical formalization of the
Type I error rate of this two-stage test and the power for assessing group-specific treatment
effects. Also, Liu et al. (2010) [79] give detailed information on testing hypotheses based on the
overall treatment effect indexed as a weighted average of the group-specific treatment effects,
where the weight can be specified as the prevalence of that particular subgroup.

Statistical/practical considerations: The Adaptive threshold sample-enrichment design is
not feasible if there is no prior knowledge regarding a subgroup of patients which is more sus-
ceptible to a particular treatment than others. In addition, this approach is considered more
cost-effective as there will be no further recruitment from the study population when there is
no evidence of treatment effectiveness.

Adaptive patient enrichment design. The adaptive patient enrichment design was
included in 23 papers (21.5%). This is a two-stage Phase III clinical trial design proposed by
Wang et al. (2007) [80]. There is a single variant of the adaptive patient enrichment design
with differences occurring in its methodology. This variant is referred to as Modified Bayesian
version of the two-stage design of Wang et al. (2007) [80] and information about it can be
found in S1 File, section ‘‘Variation of Adaptive patient enrichment design”. An example of
actual trial which incorporates the adaptive patient enrichment design is the NCT01001234
trial [42, 87].

Design: This approach is used for the comparison of an experimental treatment with the
standard of care (control) which adaptively modifies accrual to two predefined biomarker-
defined subgroups based on an interim analysis for futility. Fig 5 presents the adaptive patient
enrichment design, and in general it flows as follows: (i) accrue both biomarker-positive and
biomarker-negative patients; (ii) perform an interim analysis to evaluate the experimental
treatment in the biomarker-negative subgroup; (iii) if the interim result in that subgroup is ‘not
promising’, defined as the observed efficacy for the control group being greater than that for
the experimental group and the difference being greater than a futility boundary, then accrual
of biomarker-negative patients stops; but the strategy continues with accruing additional bio-
marker-positive patients in order to substitute the unaccrued biomarker-negative patients until
the pre-specified total target sample size is achieved; (iv) contrarily, if the interim results are
promising in the biomarker-negative patients, the accrual of both biomarker-negative and bio-
marker-positive patients continues until the total target sample size is achieved.

Methodology: A pre-planned total sample size with futility stopping is considered for this
two-stage adaptive design. The trial assesses the treatment effect both in the entire population
and in the biomarker-positive population. Wang et al. (2007) [80] performed a simulation
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study testing a composite hypothesis; the hypothesis of the global treatment effect and a
hypothesis of treatment effect in the biomarker-positive subgroup. A bivariate normal model
which incorporates the correlation between the two test statistics for each hypothesis was used.
Furthermore, two multiplicity adjustment methods which have a strong control of experiment-
wise false-positive rate (α = 0.025) were considered in order to test the composite hypotheses
of no treatment effect; the first method was the equal split-alpha method which allocate α1 = α2
= 0.0125 [106] and the second method was the Hochberg’s method [107] for multiple testing; a
special case of partitioning α which starts with the least significant p-value and investigate the
other p-values in a sequential manner until it reaches the most significant one (unequal alpha
split).

Statistical/practical considerations: Although a greater power is achieved as compared to a
non-adaptive trial design in simulation settings, this strategy can yield an important increase in
the duration of recruitment depending on the prevalence of the biomarker. Additionally, it
does not allow for early termination of the study and can lead to biased treatment effect esti-
mates when the results from interim analysis are used for selection or exclusion of a bio-
marker-defined subgroup. In addition, this study design is appropriate when there is rapid
outcome assessment relative to the accrual rate and assumes complete confidence in the bio-
marker at the outset. A further limitation is that the futility boundary is considered conserva-
tive and less than optimal.

Adaptive parallel Simon two-stage design. Jones and Holmgren (2007) [85] proposed a
Phase II adaptive design (Fig 6) by extending the Simon two-stage design [88]. This strategy
does not include a control arm yet, consequently it can be considered a single-arm approach
exactly like the Simon two-stage approach. The biomarker-adaptive parallel Simon two-stage
design was mentioned in 8 (7.5%) papers of our review. The design aims to test a novel treat-
ment which possibly has a different treatment effect in the biomarker-positive versus the bio-
marker-negative subgroups. This approach requires a pre-defined biomarker with well-
established prevalence and permits preliminary determination of efficacy that may be restricted
to a particular subset of patients. An example of actual trial which uses this strategy is the
NCT00958971 trial [76, 92, 108].

Design: The design begins with two parallel phase II studies. During the first stage, two sep-
arate studies are performed in the biomarker-positive and biomarker-negative subgroups.
Next, depending on the interim results of the first stage, the trial either stops or continues into
a second stage with the enrollment from either the entire patient population (unselected
patients) or from the biomarker-positive subpopulation only (selected patients). If a prelimi-
nary efficacy is observed during the first stage of the study for the experimental treatment in
both the biomarker-positive and biomarker-negative subset, then additional patients from the
general patient population will be enrolled in the second stage; if the interim result during the
first stage of the trial shows that the efficacy is limited to the biomarker-positive subjects, then
the recruitment of additional biomarker-positive patients only continues during the second
stage.

Methodology: If there are sufficient results in both first and second stages, the novel treat-
ment can further be explored. More precisely, the strategy is as follows as outlined by McShane
et al. (2009) [90]: In the first stage of the design, N�

1 biomarker-negative individuals and Nþ
1

biomarker-positive individuals are recruited. An interim analysis is undertaken with its results
determining how the design proceeds as follows: If the number of responses to the novel treat-
ment in the biomarker-negative group, in the first stage X�

1 , meets or exceeds a cutoff of k�1 ,
then Nun additional unselected individuals are accrued during the second stage (including X�

2

biomarker-negative responders and Xþ
1 biomarker-positive responders). If X�

1 is less than k�1
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but the number of responses in the biomarker-positive group in the first stage, Xþ
1 , meets or

exceeds a cutoff of kþ1 , then the design enrolls Nþ
2 , additional biomarker-positive individuals

during the second stage (including Xþ
2 responders). If X�

1 is less than k�1 and Xþ
1 is less than kþ1

then the trial stops. Consequently, when the second stage is terminated, a total of N+ and N−

biomarker-positive and biomarker-negative individuals, respectively, will have been enrolled,
whilst a total of Xþ

T (biomarker-positive group) and X�
T (biomarker-negative group) responders

will have been observed.
At the end of stage two, treatment benefit is determined as follows: In the case where unse-

lected individuals continued to be accrued during the second stage, the total number of
responders in the biomarker-negative subgroup, X�

T , is compared to a cutoff, k− whilst the total
number of responders in the biomarker-positive subgroup, Xþ

T , is compared to a cutoff, k+. If
X�

T � k�, then we conclude that the experimental treatment is beneficial in the unselected
population; if Xþ

T � kþ and X�
T < k� then we conclude that the treatment is beneficial only

in the biomarker-positive population; if Xþ
T < kþ and X�

T < k�, then we conclude no treat-
ment benefit. In the case where only biomarker-positive patients continued to be accrued dur-
ing the second stage, Xþ

T , is compared to a cutoff, kþ2 . If X
þ
T � kþ2 then we conclude treatment is

beneficial in the biomarker-positive subgroup; otherwise we conclude no treatment benefit.
The trial stage- and subgroup-specific sample sizes N�

1 , N
þ
1 , N

un, Nþ
2 and cutoffs k�1 , k

þ
1 , k

−,
k+, kþ2 are determined so that they control the probability of correct conclusions in the bio-
marker-positive and unselected patient groups.

Jones and Holmgren (2007) [85] have used the values 34, 34, 32 and 36 for N�
1 , N

þ
1 , N

un,
and Nþ

2 respectively and the values 2, 1, 4, 4 and 5 for k�1 , k
þ
1 , k

−, k+ and kþ2 respectively. As
stated by Jones and Holmgren (2007) [85] values for the cutoffs k�1 and kþ1 (equal to 2 and 1
respectively) are obtained from the first stage of the optimal Simon two-stage design. Addition-
ally, in the case where there is preliminary efficacy of the experimental treatment in the unse-
lected population during the first stage of the trial, the study enters the second stage where the
values of k− and k+ for decision making need to be defined. Assuming the total number of bio-
marker-positive subjects (N+) enrolled by the end of the second stage is fixed at its expected
value given a known prevalence, the aforementioned values (k− and k+) can be acquired as the
minimum values needed for exclusion of the null value from the (1 − α) × 100% exact Blythe-
Still-Casella confidence interval where α�0.05; these values can be found using the StatXact
software package. However, if the observed total number of biomarker-positive subjects is
much different from the expected value, then the cut-offs (k− and k+) can be changed using the
confidence interval approach aiming to preserve the desired operating features of the design.
Moreover, the value of kþ2 needed also during the second stage of the trial for decision making
can be acquired using either the confidence interval approach or through the calculation of
exact binomial probabilities.

Statistical/practical considerations: The Adaptive Parallel Simon two-stage design may be
considered as a simple approach with reasonable operating characteristics which can result in
sample size savings as compared to the Simon two-stage design [88], however, one major draw-
back is that early termination of the study is not allowed during the initial stage of the trial for
efficacy in a single biomarker-defined subgroup. Additionally, this approach requires the pre-
specification of appropriate response rates in both biomarker-positive and biomarker-negative
subgroups which may be difficult.

Multi-arm multi-stage designs. Multi-arm multi-stage (MAMS) designs were found in 16
(14.9%) papers. They have the ability to simultaneously compare multiple experimental treat-
ments with the standard treatment in order to achieve more reliable results in less time as com-
pared with separate Phase II trials to assess each novel treatment individually. An intermediate
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outcome measure is used to identify both treatments for which there is an early sign of effec-
tiveness and treatments that appear ineffective thus allowing the study to continue with the
promising experimental arms and to stop the investigation of insufficient treatments. Gener-
ally, MAMS designs, according to Parmar et al. (2008) [97], are useful when (i) there are multi-
ple promising treatments in phase II/III studies; (ii) there is no strong belief that a treatment
will be more beneficial compared to another therapy; (iii) availability of adequate funds; (iv)
there is an adequate number of patients to be enrolled and (v) there is an intermediate outcome
measure correlated with the primary outcome measure. Parmar et al. (2008) [97] encouraged
the use of the MAMS strategy in the field of oncology but highlighted that these designs should
only be used when quick outcome assessment is possible [69]. There are two variants referred
to as i) Two-stage adaptive seamless design, ii) Group Sequential design to the MAMS designs
with differences occurring in its methodology. Information about these variants can be found
in S1 File, section ‘‘Variations of Multi-arm multi-stage (MAMS) design”. Some examples of
actual trials which use the MAMS approach are the following: i) GOG-182 [20, 97, 102], ii)
STAMPEDE [93, 97], iii) ICON6 [93, 97, 109], iv) FOCUS4 trial [69, 103].

Design: Fig 7 illustrates a MAMS design where the first stage of the trial (the Phase II stage)
involves randomization within one of two arms which simultaneously compare two experi-
mental treatments with the standard of care (control) using an intermediate outcome measure
(e.g. progression free survival). The arm within which a patient is included depends on their
biomarker status, for example patients positive for biomarker 1 may be randomized in arm 1 to
either standard of care or experimental treatment 1 whilst patients positive for biomarker 2
may be randomized in arm 2 to either standard of care or experimental treatment 2. At the end
of this first stage, an interim analysis is undertaken in each arm, comparing the experimental
treatment with standard of care. Depending on the outcome of the interim analysis, accrual of
patients either continues within an arm to the second stage of the trial or the accrual of addi-
tional patients stops within that arm. Despite the fact that some experimental treatments can-
not pass the first stage, a secondary analysis can be conducted for each of these treatment arms
comparing them with the standard of care. This approach ensures that patients are randomized
to the most promising treatments which were selected at the first stage of the study.

Methodology: At the interim stage, in the case where the observed effect size in an experi-
mental arm is greater than a predefined critical value, accrual of patients continues within that
arm to the second stage of the trial until the pre-specified number of events on the primary out-
come (e.g. overall survival) measure is reached, otherwise the accrual of additional patients
stops within that arm and the corresponding novel treatment does not enter the second stage
of the trial. The aforementioned predefined critical value is calculated for each stage of the
study in a way that takes into account whether the null hypothesis can be rejected at the level of
the probability of the continuation of the study to the next stage should the null hypothesis be
true as Parmar et al. (2008) [97] state.

The stopping thresholds are based on test statistics, resulting in dropping experimental
arms which do not show effectiveness. The allocation to each remaining arm is fixed in MAMS
trials, however, it is possible to assign more patients in the control treatment group than to the
experimental arms which can yield small gains in efficiency over balanced randomization as
Wason and Trippa (2014) [69] highlighted; this strategy has been used in practice with the
STAMPEDE trial where the control arm is compared with five experimental treatments with
the corresponding randomization ratio 2:1:1:1:1:1 [93]. MAMS approach could be designed
with either a fixed sample size by fixing the number of patients enrolled at each stage or a fixed
number of patients enrolled per arm per stage [69].

The methodology has mainly focused on situations where the primary endpoint is assumed
normally distributed or time-to-event [69]. Two papers discuss MAMS designs with the
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normally distributed endpoint [94, 110], whilst a time-to-event endpoint is used by Royston
et al. (2003) [99]. Freely-available software in Stata for calculating sample size was proposed by
Barthel et al. (2009) [97] for MAMS trials [93].

A recent article by Wason et al. (2015) [111] proposed a new Bayesian adaptive design for
clinical trials with biomarkers and linked treatments in multi-arm phase II trials. It is a novel
approach combining the methodology used for BATTLE, I-SPY 2 and FOCUS 4 trial, which
results in significant power to identify treatment effects. This novel trial design could be used
for simultaneously testing several predictive biomarkers and new experimental treatments in a
more cost-effective and rapid way.

Statistical/practical considerations: MAMS designs as compared with testing each experi-
mental treatment in separate large-scale two-armed trials not only shorten the length of time
required and reduce the costs due to the fact that they assess several experimental treatments at
the same time while using a smaller number of individuals as some experimental treatment
arms are dropped early. Despite the aforementioned benefits, researchers are faced with opera-
tional challenges and difficulties in building-up such designs.

Stratified adaptive design. Tournoux-Facon et al. (2011) [89] proposed a new Adaptive
Stratified phase II design based on the multiple-stage Fleming design [112]. A single article
(0.93%) of our review referred to this approach. It is an alternative approach to dealing with
stratification in a phase II setting and aims to demonstrate whether an experimental treatment
(a control arm is not included, thus it’s about a single arm approach) is beneficial for at least
one biomarker-defined subgroup rather than the entire study population.

Design: An illustration of this approach is given in Fig 8. The first stage is consisted of an
interim analysis where the response rate is estimated in the biomarker positive and biomarker
negative subgroups separately. The trial then enters a second stage and depending on the
results of the interim assessment, accrual continues either from the entire patient population if
there is treatment efficacy of both biomarker-defined subgroups, or from one of the distinct
biomarker subpopulations only in which treatment efficacy has been observed.

Methodology: Decision making and the number of patients used at the second stage of the
trial are based on the observed response rates during the first stage of the trial. This approach
depends on the identification of heterogeneity between the two biomarker-defined subgroups
(positive and negative subgroups). Heterogeneity is identified when the observed response rate
in one of the biomarker-defined subgroups is less than π0i (defined as the probability of
response in one of the biomarker-defined subsets below which the novel treatment is consid-
ered to be a low-activity treatment, where i denotes each biomarker-defined subgroup; the
value of 0.25 is used for the π0i by Tournoux-Facon et al. (2011) [89]), whereas the other subset
has a response rate greater than π0i. The subset for which the observed response rate is less
than π0i is considered clinically insignificant, and therefore cannot continue to the second stage
of the trial. Only the subgroup with response rate greater than π0i therefore enters the second
stage where the study can continue as a randomized Phase III trial comparing the novel treat-
ment which has proved to be effective with the standard of care. More precisely, the identifica-
tion of heterogeneity of responses is performed by calculating the symmetric interval of
probability around π0i at each stage (only a symmetric interval is observed due to binomial cal-
culation). When the first stage of the design is terminated, in case that the cumulative number
of responses for one of the biomarker-defined subset is less than/greater than the lower/upper
boundary of the aforementioned symmetric interval of probability and the cumulative number
of responses for the other biomarker-defined subgroup is greater than/less than the upper/
lower boundary of the symmetric interval, then the responses between the two subsets are con-
sidered heterogeneous; otherwise, the treatment effect is similar in the two subsets, conse-
quently, the trial continues without selecting any biomarker-defined subset. After the
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identification of heterogeneity of responses, conclusions at the end of the first stage of the trial
are made according to decision rules based on specific thresholds which are determined by iter-
ations using a Fleming two-stage approach [112]; a single-arm design which permits early ter-
mination of the trial for either efficacy or inefficacy of the treatment.

The adaptive stratified design has a number of differences from the Adaptive Parallel Simon
two-stage design proposed by Jones and Holmgren (2007) [85] and the global one-sample test
for response rates for stratified phase II clinical trials proposed by London and Chang (2005)
[113]. First and foremost, the adaptive stratified design permits early stopping for inefficacy or
efficacy of the study as it is a strategy based on a Fleming design [112]. On the contrary, the
two aforementioned methods are based on the Simon design and do not make the discontinua-
tion of the study possible. Additionally, the stratification approach used in the design provided
by Tournoux-Facon et al. (2011) [89] is utilized in order to target the patients who are most
likely to respond to a novel treatment, whereas, stratification in the design by London and
Chang (2005) [113] aims to ameliorate the power of the overall test.

Statistical/practical considerations: Tournoux-Facon et al. (2011) [89] state several bene-
fits, such as the possibility of early termination for efficacy or inefficacy of the novel treatment
according to the results of the interim analysis (first stage). Moreover, this approach can be
considered more ethical due to the fact that it identifies a particular biomarker-defined subpop-
ulation for which the novel treatment can be effective and thus avoids conducting a study with
patients exposed to toxic treatments. Additionally, this strategy ameliorates targeting of the
populations entering phase III trials. No statistical challenges have been identified for this type
of trial design so far.

Tandem two stage design. The tandem two-stage design was discussed in 5 (4.7%) papers.
It was proposed by Pusztai et al. (2007) [104] and it is composed of 2 optimal trials in a Phase
II settings (Fig 9). This design was proposed for rapid biomarker assessment in settings where
we don’t know the activity of a novel treatment in the unselected population but there is at
least one candidate predictor of response. This approach can identify whether the novel treat-
ment is effective in the unselected patients, and if it is not, can tell us if the predictor can enrich
the responding population [104]. Only an experimental treatment arm is included in this
design and not a control treatment arm, thus this approach can be considered a single-arm
approach. An example of actual trial which uses the tandem two stage approach is the
NCT00735917 [90, 92, 114, 115].

Design: In this design, a predefined biomarker is assumed. In the first stage of the trial,
patients from the entire population enter the trial irrespective of their biomarker status. An
interim analysis is then undertaken and if a sufficient number of events (defined in terms of
clinical benefit rate or response rate) have been observed during the first stage, the study pro-
ceeds to a second stage whereby further patients are accrued from the unselected population to
establish the benefit rate more precisely in unselected patients. However, if an insufficient
number of events have been observed during the first stage, rather than stopping accrual for
futility, a second trial commences whereby its first stage involves continued accrual of bio-
marker—positive patients only. An interim analysis is then conducted and if a sufficient num-
ber of events have been occurred, this second trial continues into a second stage of biomarker-
marker positive patient accrual. Otherwise, if an insufficient number of events have occurred,
the predefined biomarker is rejected.

Methodology: A second phase in the trial design is considered due to the fact that the small
number of individuals used in the first phase of the study (typically n1<25) is likely to include
insufficient number of biomarker-positive individuals in order to decide whether the novel
treatment benefits this particular biomarker-defined subset. In terms of defining what consti-
tutes a ‘sufficient number’, Pusztai et al. (2007) [104] suggest the use of a noninformative prior
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distribution for clinical benefit rate of β(1,1) and make recommendations for the early stopping
rules. More precisely, Pusztai et al. (2007) [104], given a certain value for the targeted level of
activity of the novel treatment (i.e., 25% clinical benefit rate), suggest that the trial should stop
early for futility if the conditional power (i.e., the chance to reach the aforementioned targeted
level of activity) is equal or less than 7.5% in the following cases: (i) at the first 9 evaluated
patients there is no one who responds to treatment; (ii) at the first 15 evaluated patients there is
only one individual who responds to treatment and (iii) at the first 20 evaluated patients there
are only 2 individuals who respond to treatment.

The sample size for this approach is calculated with the same rules as a classic two-stage or
Bayesian phase II design [104] where criteria for specifying the sample size are used (e.g. one
criterion is to choose a sample size so that if there is no early termination of the trial and the
trial accrues the entire population the posterior of the experimental treatment success rate
reaches a specified degree of precision). The sample size calculations are discussed in two
papers [116, 117].

Statistical considerations: The two trials within this design could be conducted separately,
as two independent trials for the unselected individuals and for the biomarker-positive individ-
uals, however, this can result in larger duration and costs, therefore it would be better to run
the two trials as a single study (see Table 1 for further details). Additionally, this approach
enables the estimation of response rates in both biomarker-negative and biomarker-positive
patients.

Discussion
The review has demonstrated ambiguity and confusion regarding biomarker-guided adaptive
designs proposed by different authors. In this review, we focus on 8 types of such designs.
There are several reasons why these design strategies are becoming an appealing approach to a
great extent. The main reason is their application to real clinical practice and their ability to
evaluate both multiple experimental treatments and biomarkers simultaneously. Hence, multi-
ple questions can be answered just in a single trial [48]. During the progression of the trial
alterations are permitted, and consequently, any potential incorrect hypothesis made at the
beginning of the trial can be modified. Many authors note that these strategies are ethical in
terms of safety and efficacy as they attempt to tailor the appropriate treatment to the right pop-
ulation at the right time [10, 33, 37, 40, 46, 55, 70, 118, 119]. The required number of patients
needed for the enrollment in the trial can be modified according to the results from interim
analysis (e.g. stop accrual or increase sample size) and the duration of the trial can be mini-
mized as they allow for dropping early treatments which show poor performance. Also, due to
alterations, e.g. if incrementation of the sample size is suggested as the study progresses, higher
power to demonstrate a treatment effect may be achieved [120]. Furthermore, it has been
argued that during the adaptation process, preservation of type I and type II error rates may be
attained through the appropriate choice of statistical parameters [26].

Despite the aforementioned advantages, there are a considerable number of challenges which
should be carefully investigated before making a decision. Their implementation may be consid-
ered a poor choice when there is already a high quality retrospective dataset available which
includes information both on biomarker status and on long-term follow-up, since in such a situ-
ation an analysis of this dataset to identify a biomarker subgroup would likely be more efficient
as a first stage as opposed to incorporating this first stage into the trial itself [120]. Also, they
can be complex in terms of logistic issues such as maintaining trial integrity, minimising opera-
tional bias [33, 45, 48, 52] and the involved perspectives of regulatory agencies (e.g. what level of
adaptation will be acceptable to the regulatory agencies) [121]. In addition, adaptations, of
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which statistical validity may be challenging, can lead to notable modifications yielding a com-
plicated trial totally different from the initial study [33, 37, 40]. Consequently, it could diverge
from the original question which researchers expect to answer. Furthermore, statistical validity
of conclusions can be influenced to a great extent as unexpected bias or variation may be intro-
duced during the course of the trial making the interpretation of results greatly complex [33,
122, 123]. The inserted operational bias occurred by the modifications in the trial design aug-
ments the likelihood of making a false conclusion that the treatment is beneficial to certain
patients [33, 37, 40, 71, 118]. It is necessary that adaptive designs are planned in such a way that
allows for controlling both Type I and Type II error rates [69]. Additionally, from a statistical
viewpoint, adaptive designs based on Bayesian methods are considered computationally inten-
sive [55] and estimations of Type I error rate can be inaccurate. Problems of statistical testing
may also arise and applying the statistical methods can be very challenging without the availabil-
ity of appropriate software packages to facilitate the implementation of adaptive designs (e.g.
computational intensive demands of Bayesian methods) [33, 40, 45, 48, 52]. A number of obsta-
cles and barriers related to the conduct of adaptive designs in practice in Phase III trials is
addressed in a recent paper [124]; several key stakeholders in clinical trials research have been
interviewed and some of the highlighted difficulties expressed during this study were the lack of
appropriate knowledge and familiarity of these designs in the biostatistics community, insuffi-
cient time and funding structure, additional work required due to the complexity of such
designs and the needed statistical expertise and appropriate software.

However, adaptive designs will continue to hold a prominent place in the era of personal-
ized medicine, and hence, further developments and discussion are of utmost importance in
order to enhance clinical research. In conducting such further developments and discussion,
investigators should take account of the following points in particular (i) regulatory and logisti-
cal issues; (ii) statistical challenges including the control of the false-positive rate, power of the
study and treatment effect estimation; (iii) the unexpected bias likely to be introduced during
the adaptation process and (iv) the potential increased cost and time. Further, the different
designs proposed so far for adaptive trials need to be better understood by the research com-
munity, as the proper use of such designs can result in a great increase in the efficiency of a
trial and boost the development of novel treatments. By conducting this methodological
review, we contribute to the knowledge enhancement of researchers regarding the biomarker-
guided adaptive trial designs.

The characteristics and methodology of the eight main designs are discussed in the current
paper, whilst information on their variations are summarized in S1 File (Table A in S1 File).
Additional references for these variations are provided in [125–142].
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