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Understanding biological diversity is crucial for ecological and evolutionary
studies. Even though a great part of animal diversity has already been docu-
mented, both morphological surveys and metabarcoding analyses have
previously shown that some animal groups, such as Platyhelminthes, may
harbour hidden diversity. To better understand the molecular diversity of
Platyhelminthes, one of the most diverse and biomedically important
animal phyla, we here combined data from six marine and two freshwater
metabarcoding expeditions that cover a broad variety of aquatic habitats
and analysed the data by phylogenetic placement. Our results show that a
great part of the hidden diversity is located in early-branching clades such
as Catenulida and Macrostomorpha, as well as in late-diverging clades
such as Proseriata and Rhabdocoela. We also report the first freshwater
record of Gnosonesimida, a group previously thought to be exclusively
marine. Finally, we identified two putative novel freshwater Platyhelminthes
clades that branch between well-defined orders of the phylum. Thus, our
analyses of several environmental datasets confirm that a large part of
the diversity of Platyhelminthes remains undiscovered, point to groups
with more potential novel species and identify freshwater environments as
potential reservoirs for novel species of flatworms.
1. Introduction
To understand past and present biological processes and to make meaningful
decisions for the future, it is of pivotal importance to decipher extant biodiversity
[1]. Accurate biodiversity assessment is difficult because of sampling biases and
the limitations of morphology-based taxonomic identification [2]. Sampling
biases include restrictions in sampling site accessibility and preferential collection
of specimens due to methodological constraints, both of which lead to a non-repre-
sentative sample of the community under study. Traditional identificationmethods
based on morphology are low throughput, time and resource consuming, require
high taxonomic expertise that is particularly rare for most of the groups that are
not well studied and fail to cope with cryptic diversity. As a consequence, it is esti-
mated that real extant species diversity probably exceeds by 10-fold the current
number of described species [3]. Although the unicellular eukaryotic lineages
suffer from this bias more than their multicellular counterparts [4,5], there are
groups of animals for which an assessment of diversity is incomplete [6,7].

Platyhelminthes (flatworms) is one of themost diverse [8] and relativelywell-
studied animal phyla. Initially considered to be an early-branching bilaterian
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Table 1. Sampling and filtering information.

dataset habitat
18S rRNA
variable region

no. OTUs before
filtering

no. OTUs after
filtering reference

TaraOceans global marine water column V9 185 117 de Vargas et al. [25]

BioMarks European coastal benthos and

marine water column

V4 33 33 Massana et al. [26]

Metabarpark Atlantic and Mediterranean marine

hard-bottom benthos

V7 232 1 Wangensteen et al. [27]

DOSMARES Mediterranean marine deep sea

benthos (Blanes canyon)

V7 123 1 Guardiola et al. [28]

INDEMARES Mediterranean marine deep sea

benthos

V7 29 0 Guardiola et al. [29]

DeepSea Atlantic and Pacific marine deep sea

benthos

V8–V9 80 17 Bik et al. [30]

Parana river in Argentina V4 14 7 Arroyo et al. [31]

Sanabria glaciar lake in Iberian peninsula V4 684 667 in preparation
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clade because of their simplemorphology, theywere studied to
understand the origin of bilaterian symmetry. However, recent
molecular phylogenies nested them inside the superphylum
Lophotrochozoa (Spiralia) [9–11] and recognized them as sec-
ondarily simplified. In addition, species of flatworms are
considered as model organisms to study whole-body regener-
ation [12,13] and the evolutionof development [14]. Flatworms
are also biomedically relevant, being 75% of the described
species of obligate parasites of vertebrates [15,16]. Ecologically,
they are key meiofaunal taxa in both marine and freshwater
aquatic environments [17,18]. Nevertheless, flatworms have
rarely been taken into consideration in traditional biodiversity
studies, given that their morphological identification is
tedious, requiring fixation and histological processing [19] or
live examinationwhen fixation candestroy their taxonomically
informative internal reproductive anatomy [18]. Current esti-
mates for the species richness of this phylum suggest that
there is quite a lot of hidden diversity yet to be identified [7].

Metabarcoding emerged as a promising solution to unra-
velling hidden diversity and has been successfully applied in
different groups of organisms and habitats [20–24]. However,
to our knowledge, a thorough analysis of metabarcoding
data on Platyhelminthes has never been done. To fill this
gap, we here analysed different environmental datasets from
six marine and two freshwater habitats to both explore the
diversity of Platyhelminthes at the level of orders and detect
potential novel, undescribed molecular diversity.
2. Material and methods
We collected a total of 1380 representative sequences of clustered
operational taxonomic units (OTUs) identified as Platyhel-
minthes in six marine and two freshwater environmental
surveys. Each survey targeted a different hypervariable region
of the 18S rRNA gene (table 1, [25–31]). We assigned sequences
to either groups or taxonomic categories based on BLAST 2.6.0
[32] searches of the SILVA 128 SSU reference database [33,34].

We constructed a reference tree of complete 18S rDNA
sequences retrieved from the National Center for Biotechnology
Information (NCBI) nucleotide database to use as a backbone
for phylogenetic placement. We aimed to include all the
known extant diversity of Platyhelminthes focusing on the free-
living representatives. To this end, we conducted a bibliographic
search [35–37] to select complete sequences of all the known
families for each order of the phylum. We restricted our taxon
sampling to 455 taxa so that the resulting reference tree could
easily be visually inspected, while encompassing the diversity
of the extant Platyhelminthes according to the latest complete
phylogeny of the phylum [16,38].

We filtered our initial metabarcoding dataset both by align-
ment (using PaPaRa v. 2.5 [39] to align the query sequences to
the reference alignments) and by phylogenetic placement (using
the EPA [40] as implemented in RAxML [41]). All trimming
was done with trimAL [42]. We removed all sequences that
(i) did not align in the correct hypervariable region, (ii) were
placed in the outgroup of the reference tree, (iii) had extremely
long branches in the best-hit placement tree making the rate of
nucleotide substitutions greater than 1, and (iv) had a placement
hit both in Platyhelminthes branches but also in the outgroup
branches. The filtered dataset (843 OTUs) was placed onto the
reference tree using two different phylogenetic placement
algorithms, RAxML-EPA [40] and pplacer [43]. We compared
the resulting jplace files using compare_jplace_files.cpp as
implemented in genesis tool (http://genesis-lib.org/) to confirm
that the placement with the highest likelihood–weight ratio (top
placement) of both Pqueries was located on the same branch.

We constructed maximum-likelihood trees for all the queries
with top placement outside the known Platyhelminthes orders:
(i) a tree in which we combined full-length reference sequences
with short queries and (ii) a tree in which we manually trimmed
the reference alignment to the length of the short queries. The
trees were built (i) in RAxML [41] under the GTR +GAMMA
substitution model with 1000 rapid bootstrap replicates and (ii)
in IQTREE [44] under the TN + F+R8 substitution model with
1000 ultrafast bootstraps and tested tree branches by SH-like
aLRT with 1000 replicates. All trees were visualized in iTOL [45].
3. Results and discussion
We used 18S rDNA metabarcoding data from aquatic
environments to expand our understanding of the molecular
diversity of Platyhelminthes, search for novel lineages and
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Figure 1. Molecular diversity and novelty in Platyhelminthes. (a) BLAST novelty. Stacked barplots represent the distribution of nucleotide BLAST identity percentages
of the queries. The total number of sequences for every group is shown in parentheses. Note that 60% of the total OTUs identified as Platyhelminthes had less than
97% identity to the reference database. (b) Phylogenetic placement novelty. A total of 843 query sequences were placed into the reference tree. The colour code of
the placements reflects the habitat of origin. Placements expand the molecular diversity of Polycladida, Proseriata and Rhabdocoela and indicate novelty in the
internal nodes of early-branching clades. (c) Best-hit placement tree. This placement tree is based on the highest likelihood–weight ratio for each query. The inner
circle (in grey) reflects the limits of Platyhelminthes orders. The outer coloured circle shows the leaves of the tree that correspond to query sequences. The colour
code stands for the dataset of origin for each query: SA, Sanabria; PA, Parana; BM, Biomarks; TO, TaraOcean; DSF, DeepSea; MP, Metabarpark; DOS, DOSMARES.
All queries marked with a star do not correspond to any known order. (Online version in colour.)
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identify potential diversity hotspots for future expeditions.
To this end, we compiled the most comprehensive flatworm
metabarcoding 18S rDNA dataset to date, comprising 1380
query sequences from six marine and two freshwater
environmental surveys (table 1).

We first checked how many of those sequences corre-
sponded to taxa already described and sequenced and how
many represented novel taxa. We performed BLASTn
searches against the SILVA 128 SSU database to confirm the
identity of these potential Platyhelminthes. Among the 1245
query sequences that returned a flatworm sequence as the
first hit, 60% had less than 97% sequence identity with the
reference sequences (figure 1a). All groups, both parasitic
and free living, showed high percentages of sequences with
low BLAST identity (less than 97% sequence identity), Proser-
iata, Prolecithophora and Trematoda being the groups with
the highest percentages. For example, 95% of the 248
Proseriata sequences had less than 97% sequence identity
with reference sequences.

The quality of the reference database is of pivotal impor-
tance to evaluate the number of novel species inside a clade.
In biodiversity assessments based on sequence similarity
methods, a good reference database includes as many
sequences as possible. By contrast, to evaluate the number
of novel species using a phylogeny-driven approach, the
number of taxa in a good reference tree should be small
enough to allow the visual inspection of the results and
broad enough to encompass all existing diversity. To this
end, we inferred our Platyhelminthes 18S rDNA reference
tree based on a broad taxon sampling of 455 complete 18S
rDNA sequences including representatives from all major
flatworm clades. Although our reference tree did not recover
the same topology of orders as in multigene phylogenetic
analyses [16,38], most orders were monophyletic. This is
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Figure 2. Two novel freshwater clades. (a) OTUs with interesting placements. The inner circle (in grey) reflects the limits of Platyhelminthes orders. In the outer
circle, purple indicates the leaves that correspond to OTUs and no colour the leaves that correspond to reference sequences. The orange marks highlight the OTUs that
were placed outside the known flatworm orders in the best-hit placement tree. (b) Maximum-likelihood tree. The tree was inferred from 22 OTUs with interesting
placements and 455 reference sequences. Nodal support indicates 1000 maximum-likelihood rapid bootstrap replicates. Orange clades represent novel molecular
lineages within Platyhelminthes. (Online version in colour.)
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important for the subsequent placement analysis as all the
queries that fall into the known delimited orders expand
the diversity inside these orders and all the queries that fall
between well-defined orders represent completely novel
molecular diversity.

Given that each study targeted different hypervariable
regions of the 18S rRNAgene, our initial dataset was amixture
of V4, V7, V8–V9 and V9 18S rDNA queries (table 1). Queries
from a hypervariable region must map to a full-length
18S rDNA with minimal ambiguity to serve as a reliable
phylogenetic marker. However, in many cases, queries do
not align unambiguously because of the fast-evolving nucleo-
tide sites resulting in unreliable trees. To overcome this pitfall,
we refined the unfiltered dataset of 1245 query sequences by
alignment. More than one-quarter of the initial sequences
were removed because of misalignment (table 1). The majority
of V7 queries were removed during this filtering step,
indicating that the V7 hypervariable region was too
short and variable to be useful as a molecular marker for
Platyhelminthes. By contrast, all V4 and V9 queries were
retained, showing that these variable regions can serve as
quality molecular markers for Platyhelminthes.

Our phylogenetic placement analyses showed that the
majority of OTUs grouped with free-living taxa (figure 1b).
We detected phylogenetic placements in the internal nodes
of early-branching clades such as Catenulida, Macrostomor-
pha, Prorhynchida and Polycladida that potentially indicate
novel groups yet to be described. Many OTUs grouped
within Polycladida, a well-described clade with more than
800 described species, of which only 30 have representative
sequences. Thus, these placements probably reflect a lack of
molecular data in the reference database rather than real
novel diversity. Many other OTUs were placed within Proser-
iata and Rhabdocoela, probably representing novel diversity,
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given that these two clades are well sampled for the 18S
rRNA gene.

We then inquired whether we could detect marine OTUs
in groups considered freshwater and vice versa (figure 1b,c).
As expected, marine groups were only detected in marine
samples and freshwater groups in freshwater samples,
except for one clade, Gnosonesimida. We recovered the first
freshwater record of Gnosonesimida, a group formed by
only six described species thought to be exclusively marine
[16,18]. Polycladida and Prolecithophora have both freshwater
and marine representatives, but we could only detect them in
our marine datasets. Even though Neodermata is formed by
obligate parasites, we recovered OTUs in the marine water
column. Those OTUs were placed inside the three orders of
Neodermata, suggesting that free-living stages may have
been sampled.

We then analysed potential novel clades within Platyhel-
minthes. In our best-hit placement tree (figure 1c), we
localized OTUs that were placed outside the limits of known
flatworm orders (figure 2a) with high likelihood–weight
scores and characterized them as ‘interesting placements’.
We inferred a maximum-likelihood tree from the alignment
of the full-length reference sequences and those OTUs with
phylogenetically interesting placements (figure 2b). The phy-
logenetic tree revealed two novel freshwater clades, clade
1 and clade 2, branching as monophyletic clades in between
major Platyhelminthes orders. Clade 1 was formed by three
sequences that had 92% sequence identity with sequences
of the genus Castrada (Typhloplanidae) and clade 2 by 19
sequences with sequence identity to Otomesostoma auditivum
and Invenusta aestus (Coelogynoporidae) that ranged between
91% and 94%. We also inferred a maximum-likelihood tree
using only the V4 hypervariable region of the reference align-
ment and the short queries; this tree was not informative
because of the weak phylogenetic signal. Even though the
exact phylogenetic position of the new clades within Platyhel-
minthes remains unclear, they certainly form two separate,
well-defined groups, probably in early-branching positions.

Phylogenetic placement outperforms the conceptually
problematic but often used practice of reconstructing de
novo phylogenies from short reads that do not contain
sufficient phylogenetic signal to reproduce a reasonable tree.
It is a reliable method to classify short DNA sequences, a
common output of metabarcoding and metagenomic studies,
and has been extensively used for taxonomic assignment in
diversity studies. Overall, our analyses show a high diversity
of Platyhelminthes in both marine and freshwater environ-
ments, with the latter habitat likely containing as yet
unnamed taxa. We found that Proseriata and Rhabdocoela
are the two flatworm groups with more potential novel
species. Our data also show a high novelty of molecular data
in Catenulida and Macrostomorpha that may correspond
either to unsequenced data or to new taxa.Moreover, we ident-
ified, in freshwater environments, two novel clades that group
outside the well-known Platyhelminthes orders. While our
data demonstrate the utility of metabarcoding analyses in
search of novel diversity, we emphasize the need for more tra-
ditional taxonomic efforts to have a good understanding of
animal diversity.
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