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Gene regulatory networks address how transcription factors (TFs) and their regulatory

roles in gene expression determine the responsiveness to anti-asthma therapy. The

purpose of this study was to assess gene regulatory networks of adult patients with

asthma who showed good or poor lung function improvements in response to inhaled

corticosteroids (ICSs). A total of 47 patients with asthma were recruited and classified as

good responders (GRs) and poor responders (PRs) based on their responses to ICSs.

Genome-wide gene expression was measured using peripheral blood mononuclear cells

obtained in a stable state. We used Passing Attributes between Networks for Data

Assimilations to construct the gene regulatory networks associated with GRs and PRs

to ICSs. We identified the top-10 TFs that showed large differences in high-confidence

edges between the GR and PR aggregate networks. These top-10 TFs and their

differentially-connected genes in the PR and GR aggregate networks were significantly

enriched in distinct biological pathways, such as TGF-β signaling, cell cycle, and IL-4

and IL-13 signaling pathways. We identified multiple TFs and related biological pathways

influencing ICS responses in asthma. Our results provide potential targets to overcome

insensitivity to corticosteroids in patients with asthma.

Keywords: asthma, gene expression, gene regulatory networks, inhaled corticosteroid, transcription factor,

pharmacogenomics, blood

INTRODUCTION

Blood contains many cells involved in immune responses, which explains why blood cell
transcriptomics has been used for the study of asthma, an immune-mediated disease. For instance,
it was reported that MKP-1 and IL-8 gene expression in peripheral blood mononuclear cells
(PBMCs) of patients with asthma was useful in predicting clinical response to corticosteroids (1).

Recent transcriptomic studies have focused on the biological systems that are organized by
various molecular entities such as genes, proteins and metabolites as well as the interactions
between them. These systems can be visualized as networks, also interchangeably recognized as
acyclic graphs, in which components (e.g., genes, proteins, or metabolites) are nodes that are
connected by edges (relationships between nodes) (2). One good example is a gene co-expression
network based on the similar, or correlated, gene expression patterns (3).
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However, correlation does not necessarily imply causation.
Gene regulatory networks attempt to identify the influencing
patterns of transcription factors (TFs) on gene expression in
a mechanistic fashion (4). As reviewed before, the activation
or repression of different TFs and their regulatory roles in
gene expression may determine the responsiveness to anti-
asthma therapy, particularly to anti-inflammatory drugs (5).
Qiu et al. found that TFs differentially affected gene expression
in lymphoblastoid cell lines from children with asthma that
included good and poor responders to inhaled corticosteroid
(ICS) treatment by applying gene regulatory networks (6).

The purpose of this study was to assess gene regulatory
networks of adult patients with asthma who showed good or
poor lung function improvements in response to ICSs. To do
this, we began by analyzing genome-wide gene expression levels
in PBMCs from adult patients with asthma. Following this, we
explored whether gene regulatory networks showed good or
poor responder-specific regulatory patterns using the Passing
Attributes between Networks for Data Assimilation (PANDA)
algorithm. PANDA models information flow through networks
under the assumption that both “transmitters” and “receivers”
play active roles in modulating regulatory processes (7).

MATERIALS AND METHODS

This study was approved by the Institutional Review Board of the
corresponding institution (H-1408-051-601 and 2019AN0240)
and informed consent was obtained from all study participants.

Study Populations
We retrospectively reviewed the medical records of two institutes
(Seoul National University Hospital and Korea University Anam
Hospital, Seoul, Republic of Korea) and selected adult patients
with asthma eligible for our study. The diagnosis of asthma
was confirmed when forced expiratory volume in 1 s (FEV1)
showed more than 12% (and 200mL) increase after initiation
of treatment. After diagnosis, all of patients were treated with
medium dose ICSs (8) and regularly followed up; the pulmonary
function measurement was performed every 4 weeks. Current
or former smokers were excluded. We explained our study to
eligible patients with asthma identified from medical records
and enrolled them if they agreed to participate. We defined
poor responders (PRs) or good responder (GRs) to ICSs, as
patients who had less or more than 12% improvement in
FEV1 compared to baseline values at 4 weeks after initiation of
treatment, respectively (1). PRs eventually achieved more than
12% improvement in FEV1 responding to ICSs, but it took longer
than 4 weeks. The overall study design is presented in Figure 1.

Gene Expression Arrays
Blood for gene expression analysis was drawn at a stable state,
that is, no changes in anti-asthma medications and no acute
exacerbations (short-term oral prednisone burst, unexpected

Abbreviations: EES, Edge Enrichment Score; FEV1, Forced expiratory volume

in 1 second; GR, Good responder; ICS, Inhaled corticosteroid; PANDA, Passing

Attributes between Networks for Data Assimilation; PBMCs, Peripheral blood

mononuclear cells; PR, Poor responder; TF, Transcription factor.

FIGURE 1 | Overall study design. Poor responders (PRs) or good responder

(GRs) to inhaled corticosteroids was defined as patients who had less or more

than 12% improvement in FEV1 compared to baseline values at 4 weeks after

initiation of treatment, respectively, and genome-wide gene expression profiles

were obtained from peripheral blood mononuclear cells of participants. Due to

the small sample size, two-thirds of the participants were chosen from each

GR and PR group at random (without replacement) to form subsamples. We

constructed 50 gene regulatory networks in GRs and PRs using PANDA with

these 50 subsamples. We then generated a single, aggregate gene regulatory

network by averaging Z-scores of edges across the 50 networks identified

from subsamples. Finally, we illustrated subnetworks using the top-10

transcription factors (TFs) identified and their differentially-connected genes in

each aggregate GR and PR network.

clinic visit, and emergency room visit or hospitalization due
to asthma symptom aggravation) within 4 weeks prior to
blood sampling. PBMCs were isolated and genome-wide gene
expression levels were measured using the Affymetrix GeneChip
Human Gene 2.0 ST (Affymetrix, Santa Clara, CA, USA). We
removed probes with bad chromosome annotations and probes
in the X or Y chromosome. We then performed variance-
stabilizing transformation and quantile-normalization to reduce
technical noises and to make the distribution of expression level
for each array closer to a normal distribution.

Network Analysis
The analysis was performed with R version 4.0.2
(www.r-project.org). We performed PANDA analysis on
gene expression profiles from GRs and PRs using the R package
“pandaR” (9). network. To seed the PANDA algorithm, we used a
mapping between TF motifs and target genes from the TRRUST
database (10). This mapping file consists of 8,444 regulatory
interactions for 800 TFs and 2,521 target genes. There are 796
TFs in both our gene expression data and the mapping file. These
TFs correspond to 9,392 pairs of (TF, gene) and correspond to
2,490 genes in our expression data.
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To minimize the effect of outliers in our networks that were
built on a smaller sample size, two-thirds of the participants
were chosen from each GR and PR group at random (without
replacement) to form subsamples. These 50 subsamples were
used to construct 50 gene regulatory networks in GRs and PRs.
PANDA reports the probability that a connection (edge) exists
between a TF and gene in an estimated network as a Z-score
(7). We generated a single, aggregate gene regulatory network
by averaging Z-scores of edges across the 50 networks identified
from subsamples, as described elsewhere (11). We then selected
high-confidence edges that had an average edge Z-score>0 in the
aggregate GR or PR networks. These edges can be interpreted as
edges that are most likely to exist in each aggregate network.

To quantify differences in high-confidence edges, we
calculated an edge enrichment score (EES) (11): EESi =

log2[(k
g
i/k

p
i)/(N

g/Np)] where kgi and kpi are the (out-degree)
number of high-confidence edges for TF i in the aggregate
GR and PR networks, respectively, and Ng and Np are the
total number of high-confidence edges in each network.
Note that the EES is positive for edge-enrichment from a
particular TF in the aggregate GR network, and negative
for edge-enrichment from a particular TF in the aggregate
PR network.

Gene Set Enrichment Analysis
Based on EES, we selected the top-10 TFs from aggregate
networks (5 of the highest ones and 5 of the lowest ones). We
then identified genes connected to these 10 TFs differentially
in the aggregate GR and PR networks by selecting genes whose
differences in high-confidence edge Z-scores were >0.75.
This means that these genes have at least a 75% chance of
existing and being different in each aggregate network. As we
assumed that these 10 TFs and their differentially-connected
genes were the main drivers in each aggregate network, we
constructed GR and PR subnetworks using them. To assign
biological meaning to interpretability of each subnetwork,
we performed pathway overrepresentation analysis (gene set
enrichment analysis) of individual TF and its target genes in the
GR and PR subnetworks using “g:Profiler” (database version:
e100_eg47_p14_7733820) (12). g:Profiler (https://biit.cs.ut.ee/
gprofiler/) provides an adjusted P-value calculated in a manner
that accounts for the hierarchical relationships among the tested
gene sets. g:Profiler utilizes 3 types of biological pathways;
KEGG, Reactome, and WikiPathways. As Reactome provides
more and diverse signaling pathways including immunological,
developmental and kinase, signaling pathways, the drug-
or target-based, stress activated, or lipid-mediated signaling
pathways compared to the other databases (13), we selected
Reactome database.

RESULTS

A total of 47 adult patients with asthma (28 GRs and 19 PRs)
were enrolled. Table 1 summarizes their baseline characteristics.
There were no significant differences between GRs and PRs
for age, sex, atopy, blood eosinophil counts, or pulmonary
functions at baseline (before initiation of treatment). GRs showed

TABLE 1 | Characteristics of enrolled patients with asthma.

Good responder Poor responder P-value

n = 28 n = 19

Age (year) 51.9 (13.8) 52.8 (15.6) 0.83

Male 9 (32.1%) 8 (42.1%) 0.75

Atopy 15 (53.6%) 8 (42.1%) 0.64

Blood eosinophil (/µL) 541.7 (220.4) 605.3 (349.6) 0.48

FEV1 (ml) 1,897.1 (501.3) 2,323.1 (987.6) 0.057

FEV1 predicted (%) 67.5 (15.2) 71.9 (19.2) 0.092

FVC (mL) 2,770.3 (684.6) 3,178.4 (1,115.1) 0.12

FVC predicted (%) 79.1 (13.5) 86.2 (15.8) 0.11

FEV1/FVC ratio (%) 66.5 (11.5) 71.9 (10.3) 0.11

FEV1 increase (mL)a 694.3 (410.9) 78.4 (172.5) 1.82 × 10−7

FEV1 increase (%)a 45.5 (42.7) 3.7 (8.1) 1.24 × 10−4

FEV1, Forced expiratory volume in 1 second; FVC, Forced vital capacity.
aDifferences between FEV1 measured at baseline and FEV1 measured at 4 weeks after

initiation of treatment. Data are presented as “mean (standard deviation)” except for male

and atopy which are presented as “number (%).”

TABLE 2 | Top-10 transcription factors identified from aggregate networks based

on edge enrichment scores.

TF nEdge(GR) nEdge(PR) nDiff Log2(EES)

MXD1 582 185 397 1.653

NFYB 430 142 288 1.598

E2F6 621 212 409 1.551

CREM 828 290 538 1.514

RFX2 590 209 381 1.497

ID3 235 662 −427 −1.494

HOXA1 279 818 −539 −1.552

JUNB 268 823 −555 −1.619

PROX1 205 678 −473 −1.726

SMAD7 57 323 −266 −2.503

TF, transcription factor; n, number; diff, difference; EES, edge enrichment score; GR, good

responder; PR, poor responder.

significant improvement in FEV1 compared to PRs at 4 weeks
after initiation of treatment [694.3 ± 410.9mL (GR) vs. 78.4
± 172.5mL (PR), P = 1.82 × 10−7), as expected from the
definition of 2 groups. Using PANDA, we created aggregate
GR and PR networks and identified the top-10 TFs based
on EES. Table 2 lists top-5 TFs of those with the highest
EES and top-5 TFs of those with the lowest EES. MXD1
has the highest EES, which means that high-confidence edges
connecting MXD1 and genes are most greatly enriched in the
aggregate GR network. Meanwhile SMAD7 with the lowest
EES is positioned in the opposite end. Table 2 also shows
absolute numbers of high-confidence edges connecting top-10
TFs and genes in each aggregate GR or PR network and net
differences between two aggregate networks. It was difficult
to visualize the differential connectivity of TFs and connected
genes in the aggregate GR and PR networks, if all TF-gene
connections were considered. Hence, we illustrated subnetworks

Frontiers in Medicine | www.frontiersin.org 3 March 2021 | Volume 8 | Article 652824

https://biit.cs.ut.ee/gprofiler/
https://biit.cs.ut.ee/gprofiler/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kim et al. Gene Regulatory Network in Asthma

FIGURE 2 | Good (GR) and poor responder (PR) subnetwork made by the top-10 transcription factors and their differentially-connected genes. (A) GR and (B) PR.

Based on edge enrichment score, we selected the top-10 TFs from aggregate networks (5 of the highest ones and 5 of the lowest ones). We then identified genes

connected to these 10 TFs differentially in the aggregate GR and PR networks and illustrated subnetworks using them. The edges are directed from TFs to their

targeting genes whose differences in high-confidence edge Z-scores are >0.75. This means that these genes have at least a 75% chance of existing and being

different in each aggregate network.

using the top-10 TFs identified and their differentially-connected
genes in each aggregate GR and PR network. Figure 2 shows
the differential connectivity of top-10 TFs to genes between
aggregate GR and PR network. E2F6 and RFX2 are connected
to genes with high-confidence in aggregate GR network only,
whereas HOXA1 is connected to genes in aggregate PR network
only. The other 7 TFs are differentially connected to genes
between aggregate GR and PR networks. The name of genes
connected to the top-10 TFs in each aggregate network is listed
in Table 3. Table 4 summarizes identified biological pathways in
which TF and its connected genes in each aggregate network
are enriched with adjusted P values less than 0.001. For
example, E2F6 and its connected genes in aggregate GR network
(APAF1, BRCA1, BRD7, CDK1, CYC1, DHFR, E2F1, IL13, and
NRIP1) are significantly enriched in G1/S-Specific Transcription,
Transcriptional Regulation by E2F6, G1/S Transition, Mitotic
G1 phase and G1/S transition, and Transcriptional Regulation
by TP53 pathways. The pathways that were identified helped
us understand differences in regulatory control driven by Top-
10 TFs between GR and PR. In the GR subnetwork, E2F6,
and NFYB supposedly play important roles by regulating
cell cycle-related and FOXO-mediated transcription pathways,
respectively. Meanwhile, CREM, PROX1, and SMAD7 are crucial
in the PR subnetwork controlling cell cycle-related, immune-
mediated and TGF-β signaling pathways. Interestingly, JUNB
is engaged in both GR and PR subnetworks. However, it
differentially regulates biological pathways (TGF-β vs. IL-4 and
IL-13 signaling pathways). The top-10 TFs identified in this study
are not differentially expressed between GR and PR groups (data
not shown).

DISCUSSION

In this study, we constructed gene regulatory networks associated
with good or poor response to ICSs using gene expression profiles
of PBMCs from 47 adult patients with asthma. We identified
the top-10 TFs that showed large differences in EES in the
aggregate GR and PR networks. We also identified subnetworks
made by top-10 TFs and their differentially-connected genes in
each aggregate GR and PR network. In addition, these TFs and
genes were enriched in distinctly different biological pathways
in GRs and PRs. Based on our results, we summarize that TGF-
β signaling, cell cycle related, and IL-4 and IL-13 signaling
pathways are important in determining responses to ICSs in
patients with asthma.

Interestingly, the top-10 TFs and their differentially-
connected genes in our regulatory networks showed no
significant differences in expression between GRs and PRs
(data not shown). It is possible that multiple TFs compete for
the same binding site of a target gene, but which one primarily
regulates that gene is dependent on the drug response phenotype.
Gene regulatory networks provide us an opportunity to model
biological processes as information flowing between genes
and the potential to identify the underlying causes of the drug
response that cannot be captured by differential gene expression
networks. PANDA constructs networks based on differential
connectivity by comparing differential expression of the TFs.
Therefore, the same sets of TFs may regulate different sets of
downstream genes between GRs and PRs, as we observed with
JUNB in our analysis. Our results indicated that responses
between good and poor responders to a certain drug does not
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TABLE 3 | Top-10 transcription factors and their differentially-connected genes in the aggregate good and poor responder network.

Transcription factor Connected genes

Good responder only

E2F6 APAF1; BRCA1; BRD7; CDK1; CYC1; DHFR; E2F1; IL13; NRIP1

RFX2 FGF1; IL5RA

Poor responder only

HOXA1 BCL2; CCND1; EPAS1; IER3; LYL1; MYC; PCNA

Common

CREM [Good responder] ACE; ACR; ATF7; CCL4; CD247; CREB1; FASLG; FHL5; G6PD; GCM1; GPX4; HOXC6; HOXC8; HOXD9; IL2;

IL5RA; LDHC; MSL1; PLAT; SPAG6; TAF4; TBP; TBP; TG; TH; ZAP70

[Poor responder] CCNA1; CCNA2; DUSP1; DUSP4; FOS; MC2R; SLC5A5; SLC8A3; STAR

ID3 [Good responder] NRXN1

[Poor responder] TCF3; VEGFA

JUNB [Good responder] CLU; SMAD4; SFTPD

[Poor responder] APOM; CD82; CDKN1A; CDKN2A; EGFR; HOXB8; IL1B; IL3; IL4; IVL; LOR; NQO1; PLAUR; PTGS2

MXD1 [Good responder] ODC1; PTEN

[Poor responder] TERT

NFYB [Good responder] CCND2; CDKN1B; CYP2A6; FOS; FXR2; GFI1B; HBB; HOXB7; LPIN1; SOX18; SOX3; STK11; TPH1

[Poor responder] ABCB1; FAS

PROX1 [Good responder] CYP7A1

[Poor responder] AKT2; CCNE1; CDKN1B; CDKN1C; IFNG; NR1I2; NR5A2; RGS4; SIX3; TWIST1

SMAD7 [Good responder] TGFBR1

[Poor responder] CDK1; CDKN1A; CDKN2B; HMOX1; KLF5; KRT14; MET; MYC; TGFB1

necessarily emanate from differential gene expression networks
but may instead be from regulatory gene expression networks.

SMAD7 had the lowest EES, which suggests that it may play
an important role in the aggregate PR network. Binding of
TGF-β to its receptor triggers phosphorylation of SMAD2 and
SMAD3 and phosphorylated SMAD2/3 proteins heterodimerize
with SMAD4 to generate a complex that moves to the nucleus,
where it regulates the expression of target genes (canonical
TGF-β signaling) (14). This TGF-β-associated SMAD signaling
is tightly controlled by SMAD7, another intracellular SMAD
protein (15). Thus, SMAD 7 acts as a negative regulator of the
canonical TGF-β signaling pathway. Previously, it was reported
that TGF-β impairs therapeutic responses to corticosteroids in
chronic airway diseases and the non-canonical signaling pathway
is important in this process (16, 17). However, these reports were
based on experiments using lung epithelial cells. TGF-β regulates
pathologic CD4+ T cell responses by directly suppressing T-
bet and GATA-3 expression and by downregulating both Th1
and Th2 cell differentiation (18, 19). In addition, TGF-β can
promote the induction of regulatory T cells (20). For dendritic
cells, TGF-β can downregulate the antigen-presenting function
and expression of co-stimulatory molecules in vitro (21). Mice
over-expressing Smad7 in T cells develop severe intestinal
inflammation in various experimental models (22). In this study,
we examined gene expression in PBMCs from adult patients
with asthma, contrary to previous studies using lung epithelial
cells. This would explain why Smad7 influence increases in the
aggregate PR network in our study. In addition, we observed
that JUNB is confidently connected with SMAD4 in the GR
subnetwork (Figure 2A). A previous report showed that JUNB is

a critical activator protein componentmediating TGF-β signaling
in human breast epithelium (23). Taken together, increased
TGF-β signaling in blood cells may confer good response
to ICSs in asthma. Although it was recently reported that
knockdown of SMAD7 with a specific antisense oligonucleotide
that restores endogenous TGF-β activity is not effective for
patients with steroid-resistant/dependent Crohn disease (24), a
SMAD7-targeting approach is worthy of being searched to treat
patients with insensitivity to corticosteroids in asthma.

Corticosteroid possesses an anti-inflammatory action and
inhibits various inflammatory chemokines and cytokines,
including IL-4 and IL-13 (25). Unexpectedly, we found that
JUNB and its related genes in the PR subnetwork were
significantly enriched in the IL-4 and IL-13 signaling pathway.
Moreover, we observed that E2F6 is connected to IL-13 in the
GR subnetwork. Bruhn et al. have suggested an inhibitory role
for E2F6 in the regulation of IL-13 and allergy based on gene
expression analysis of CD4+ T cells (26). As participants in this
study were treated with medium dose ICS, it was possible that the
amount of corticosteroids was not enough to suppress IL-4 and
IL-13 signaling pathway entirely. Another possible explanation is
that corticosteroids in their conventional doses are not sufficient
to suppress IL-4 and IL-13 signaling pathway completely in
some patients. For example, the 1-week course of prednisone
treatment did not show significant changes in bronchoalveolar
lavage cells expressing IL-4 and IL-13 mRNA in patients with
asthma who were recognized as PRs to corticosteroids (27).
In this sense, the role of dupilumab, a monoclonal antibody
blocking IL-4 and IL-13 signaling pathway by inhibiting IL-
4R alpha, is promising for the management of patients with
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TABLE 4 | Reactome pathways significantly enriched by the top-10 transcription factors and their differentially-connected genes in the good and poor responder

subnetworks.

TF Good responder Poor responder

Pathway name P-value* Pathway name P-value*

E2F6 G1/S-Specific Transcription 2.02E-06 None

Transcriptional Regulation by E2F6 4.57E-06

G1/S Transition 0.001104

Mitotic G1 phase and G1/S transition 0.001794

Transcriptional Regulation by TP53 0.002374

CREM None Phosphorylation of proteins involved in the G2/M

transition by Cyclin A:Cdc2 complexes

0.000465

G2 Phase 0.001549

NFYB FOXO-mediated transcription 0.006694 None

JUNB SMAD2/SMAD3:SMAD4 heterotrimer regulates

transcription

0.007895 Interleukin-4 and interleukin-13 signaling 0.000039

Signaling by interleukins 0.002486

Cytokine signaling in immune system 0.005848

PROX1 None Mitotic G1 phase and G1/S transition 0.000534

PTK6 regulates cell cycle 0.001627

Cyclin E associated events during G1/S transition 0.005497

Cyclin A:Cdk2-associated events at S phase entry 0.005905

AKT phosphorylates targets in the cytosol 0.009838

TP53 regulates transcription of genes involved in G1 cell

cycle arrest

0.009838

SMAD7 None SMAD2/SMAD3:SMAD4 heterotrimer regulates

transcription

0.000503

Mitotic G1 phase and G1/S transition 0.001057

Transcriptional activity of SMAD2/SMAD3:SMAD4

heterotrimer

0.001335

TFAP2 (AP-2) family regulates transcription of cell cycle

factors

0.001549

Signaling by TGF-beta receptor complex 0.005696

*adjusted P-values.

asthma with reduced response to corticosteroids, as reviewed
recently (28). An interesting finding is that the cell cycle (G1/S
transition) related pathways are significantly enriched in both
GR and PR subnetworks. The accurate transition from G1 (Gap
1) phase of the cell cycle to S (Synthesis) phase is crucial for
the control of eukaryotic cell proliferation (29). Since long time
ago, we have known that dexamethasone induces irreversible
G1 arrest and death of a human lymphoid cell line (30). An
arrest of cell cycle progression in the G1/S phase also induced
apoptosis of human eosinophils from patients with asthma
(31). All these together imply a potential role of the G1/S
transition in blood cells in response to corticosteroids. We
found that E2F6 and its differentially-connected genes in the
GR subnetwork and CREM and PROX1 and their differentially-
connected genes in the PR subnetwork are enriched in the
G1/S transition related pathways. E2F6 functions as a repressor
of E2F-dependent transcription during S phase and thus is
presumed to be a cell cycle transcriptional repressor (32).
Meanwhile, CREM is implicated in the stimulation of cyclin
A transcription at G1/S (33). PROX1, has conflicting roles in
cell cycle regulation. PROX1 induces cell cycle arrest in liver

hepatocellular carcinoma cells (34), but paradoxically increases
proliferation in fetal hepatoblasts (35). These findings suggest
that PROX1 regulates the cell cycle in a cell-type-dependent
manner. Taken together, cell cycle arrest at G1/S may help
to avoid steroid resistance. In addition, it was reported that
dexamethasone can stimulate the G1/S transition in human
airway fibroblasts in asthma, which may result in airway
remodeling (36). In a study reported by Goleva E et al. (1),
significantly more dexamethasone was required to suppress in
vitro T cell proliferation in PBMC from steroid resistant than
steroid sensitive asthmatics. Taken together, an intrinsic property
related with PBMC proliferation in asthmatics may determine
the susceptibility for corticosteroid treatment and thus a new
approach focused on the G1/S transition is worthy of being
investigated to overcome corticosteroid insensitivity.

RFX2 and HOXA1 may also play an important role in
determining response to ICSs. Probably, the number of targeted
genes with difference in high-confidence edge Z-scores greater
than 0.75 between GR and PR groups is too small to be captured
as a specific biologic pathway. As gene expression changes over
time, the sampling time of PBMCs in this study may not be the
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exact time representing the whole picture of RFX2- or HOXA1-
related mechanisms.

A small number of participants in this study is a potential
limitation. To minimize heterogeneity because of this, we
constructed regulatory networks using random subsampling of
participants and averaged these networks to identify aggregate
GR and PR networks. By doing this, we removed the effect of
changes in gene expression that are specific to only one individual
(outliers) and focus on changes that are most likely a result
of corticosteroid responses. We assumed that TFs with greater
differences in high-confidence edges were the main drivers in
each aggregate network. Moreover, it was difficult to visualize all
the differential connectivity of TFs and their connected genes in
the aggregate networks. For these reasons, we selected only the
top-10 TFs with a quantified method (EES) focusing on the large-
scale changes in edge numbers between two aggregate networks.
However, it is possible that other TFs and their related genes
excluded from our analysis would have their potential roles in
determining ICS responses. Despite taking these precautions,
we recognize that future studies are needed for the functional
validation of our networks.

In addition, the statistical power and sample size should
be considered before generalizing our observations. The
performance of gene regulatory network inference algorithms
with a genome-wide scale depends on the sample size. It is
generally considered that the larger the sample size, the better
the gene network inference performance. However, there has
not been adequate information on determining the sample size
for optimal performance of gene regulatory network inference.
In one study using a pseudo gene regulatory network with 6
nodes which is generated from gene-gene associations based
on the coefficient of intrinsic dependence, the false networks
only appears ≤5 times in 100 simulations for the sample size
= 25, 50, and 100 (37). In other study based on the real world
gene expression data sets, it was reported that the sample size
around 64 is sufficient to obtain acceptable performance of
the information-theory-based gene regulatory network inference
algorithms (38). We cannot directly apply previous observations
to ours, as inference algorithms are different with that of PANDA.
However, considering previous reports, we may say that the
chance of obtaining false positive gene regulatory networks in this
study would not be too much.

In conclusion, we have identified gene regulatory networks to
elucidate the differences between GRs and PRs to ICSs in patients

with asthma. We identified the top-10 TFs showing different
connections between GRs and PRs and found that these top-10
TFs and their differentially-connected genes were significantly
enriched in distinct biological pathways, such as TGF-β signaling,
cell cycle, and IL-4 and IL-13 signaling pathways. TFs and
biological pathways that were identified in this study may be
potential targets to overcome insensitivity to corticosteroids in
patients with asthma.
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